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ABSTRACT. This paper presents a Wavelet-based Artificial Neural Network (WANN) approach to model rainfall-runoff process of 
the Delaney Creek and Payne Creek watersheds with distinct hydro-geomorphological characteristics, located in Florida. Wavelet is 
utilized to handle the multi-frequency characteristics of the process in daily and monthly time scales. Thus, rainfall and runoff time se-
ries were decomposed into several sub-series by various mother wavelets. Due to multiple components obtained through wavelet de-
composition, input sets to the Feed Forward Neural Network (FFNN) were enhanced. The application of two information content 
based criteria (i.e., entropy, H, and mutual information, MI) to select more reliable input sets (among all potential input sets) and to 
have better insight into the physics of process is considered as the basic innovation of the study which led to a more accurate and 
compact model. The increase in the number of input of the FFNN might lead to a complex structure and low performance. The results 
demonstrated that MI as a supervised feature extraction criterion could lead to more reliable outcomes due to its non-linear nature. 
Furthermore, results indicated the superiority of proposed entropy-based WANN model (EWANN) in comparison to simple FFNN. 
Moreover, multi-step-ahead FFNN, conventional WANN and classic Auto Regressive Integrated Moving Average with eXogenous in-
puts (ARIMAX) models could not reveal appropriate forecasting results with regard to EWANN model. The superiority of the EW-
ANN over the WANN and FFNN models is not only in terms of efficiency criteria, but also due to its appropriate ability to provide in-
formation about the physics of the process. The consequences of EWANN for rainfall-runoff modeling of two watersheds revealed that 
the proposed EWANN could simulate the process of a small and flat sub-basin slightly reliable than a sloppy and wild watershed. The 
poor outcome of monthly modeling in regard to daily modeling might be due to involvement of more uncertainty in the monthly data. 

Keywords: rainfall-runoff modeling, Feed Forward Neural Network, wavelet transform, feature extraction, Shannon entropy (infor-
mation content), multi-step-ahead forecasting 

1. Introduction

Precise modeling of hydrological processes such as rain-
fall-runoff can give effective information for city and environ- 
ment planning and water resources management. Due to the 
complexity of designating a reasonable physical relationship 
between the inputs and output in the rainfall-runoff modeling, 
application of black box models such as Auto Regressive Inte- 
grated Moving Average with eXogenous input (ARIMAX) and 
Artificial Neural Network (ANN) has been recommended by 
hydrologists (e.g., Nourani et al., 2011). The ARIMAX model 
is basically linear and fails in coping with hydrologic process-
es that are embedded with high complexity, non-stationary and 
non-linearity. On the other hand, ANN as a self-learning and 
self-adaptive approximator has shown great authority in non- 
linear hydrological modeling. A review of ANN applications 
in hydrology in general and in rainfall-runoff modeling in par- 
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ticular have been presented by American Society of Civil En-
gineering (ASCE Task Committee on Application of Artificial 
Neural Networks in Hydrology, 2000) and Abrahart et al. (2012), 
respectively.  

Despite the fact that ANN is a reliable approach to model 
hydrologic processes, there are some disadvantages in dealing 
with high non-stationary signals such as hydrological time se- 
ries. The concealed frequencies in hydrological time series may 
lead to inability of ANN in coping with non-stationary data if 
proper pre-processing of data is not performed (Cannas et al., 
2006). The wavelet transform as such a pre-processing tech-
nique, has been widely utilized in hydrology. Several studies 
addressed the efficiency of wavelet technique for modeling 
hydrological processes (e.g., Adamowski, 2008; Rajaee et al., 
2011; Maheswaran and Khosa, 2012a; Sang, 2013).   

To take the advantages of both wavelet and ANN conce- 
pts, the hybrid wavelet-ANN (WANN) model which benefits 
the wavelet-based decomposed sub-series as inputs of the ANN 
can be an effective tool and may yield more reliable forecast-
ing results than a classic ANN model. WANN model was first 
presented by Aussem et al. (1998) for financial time series fo- 
recasting and nowadays, this methodology has become one of 
the common approaches in rainfall-runoff modeling (e.g., Can- 
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nas et al., 2006; Nourani et al., 2009, 2013; Adamowski et al., 
2012).  

In spite of appropriate flexibility of WANN model for si- 
mulation of rainfall-runoff process, a main shortcoming asso-
ciated is the large number of inputs. As several time scales can 
be conceived in the rainfall and runoff time series, number of 
such sub-series obtained via wavelet transform (input neurons) 
are drastically increased which in turn provide a complicate 
structure to the WANN model. The WANN model as an in-
terconnected group of artificial neurons processes information 
based on iterative approach. Each iteration (i.e., epoch) per-
forms training processes by adjusting the weighted connections 
found between neurons and biases in the network. Since time 
series data as an input data involve noises, WANN outputs 
might be affected by those noises. Apparently, the increase in 
numbers of input neurons magnifies the noise effect and might 
yield to divergence while adjusting values of weights and bias 
in a network. Therefore as well as any ANN-based modeling, 
determination of the most effective sub-series as inputs of 
WANN model that are independent, informative and efficiently 
cover the proposed input domain is essential to overcome the 
mentioned disadvantages (Maheswaran and Khosa, 2012b). 
Therefore robust algorithms are required to extract dominant 
features (input sub-sets) for a WANN model. For this purpose, 
computed linear correlation coefficient (CC) between input and 
output time series, which only detects linear relationships em- 
bedded in data is usually employed as a conventional feature 
extraction technique (e.g., Rajaee et al., 2011; Maheswaran and 
Khosa, 2012b). However as criticized by Nourani et al. (2011), 
in spite of a weak linear relationship, a strong nonlinear rela-
tionship may exist between the time series (or sub-series) of 
two parameters.  

In this paper, Shannon entropy (information content) as a 
statistical non-linear measure is applied to extract dominant 
features of the process as inputs of the WANN model for rain- 
fall-runoff modeling. Thereafter in the current paper, the entro- 
py-based WANN model is abbreviated as EWANN.  

Since the entropy measures dependencies between random 
variables, it is suitable to be applied to complex classification 
tasks, where methods based on linear relationships may lead 
to unacceptable outcomes. Entropy can be regarded as a statis- 
tical measure of information, disorder, chaos and uncertainty 
(Shannon, 1948). As a mathematical study, Ebrahimi et al. 
(1999) discussed the role of variance and entropy in ordering 
distributions and concluded that unlike variance which mea- 
sures concentration only around the mean, entropy measures 
diffuseness of the probability density function (PDF) irrespec-
tive of the location of concentration. Amorocho and Espildora 
(1973), Caselton and Husain (1980) and Krstanovic and Singh 
(1992) were the noteworthy pioneers who utilized the infor-
mation content at different fields of hydrology. Harmancioglu 
and Singh (1998) and also Singh (1997, 2011), surveyed ap-
plications of entropy to environmental and water resources 
problems. Although the most applications of entropy theory in 
hydrology have been proposed to handle uncertainties of hy-
drologic quantities and to model several water resources sys-
tems (e.g., Mishra et al., 2009), May et al. (2008) focused on 

an input selection algorithm for ANN models and demonstra- 
ted the superior performance of this non-linear measure. 

The utilization of entropy as a feature extraction method 
for the WANN models used in hydrological simulations is quite 
novel methodology presented in the current paper. Thus, a ro- 
bust intelligent algorithm is proposed by conjunction of ANN 
and wavelet concepts to the entropy theory for modeling rain-
fall-runoff process. For this purpose firstly, the wavelet trans-
form is used to decompose the main rainfall and runoff time 
series into several sub-series. Then, Shannon entropy is used 
to select independent and more effective sub-series, resulted 
in wavelet-based decomposition, as input data to the ANN mo- 
del. The purpose of this application is not only to increase the 
accuracy of the modeling by reducing the dimension of input 
data set, but also to have a physical insight into the process by 
extracting dominant frequencies (features) of the process. Fur- 
thermore, to investigate the effect of physical features of the 
watershed on the performance of the proposed methodology, 
two watersheds in Florida (i.e., the Delaney Creek and Payne 
Creek Sub-basins) with almost same climatological conditions 
but distinct topographic characteristics were considered in the 
current study. 

2. Material and Methods 

2.1. Wavelet Transform 

The wavelet transform has increased in usage and popula- 
rity in recent years. The hydrological contributions of wavelet 
transform have been cited by Labat (2005). 

For a discrete time series, xi, the dyadic wavelet transform 
becomes (Nourani et al., 2009): 
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where g is called wavelet function or mother wavelet, m and n 
are integers that control the wavelet dilation and translation, 
respectively and Tm,n  is wavelet coefficient for the discrete 
wavelet of scale 2m and location 2m n. Equation 1 considers a 
finite time series, xi , i = 0, 1, 2, . . ., N − 1; and N is an integer 
power of 2: N = 2M. This gives the ranges of m and n as, res- 
pectively, 0 < n < 2M – m − 1 and 1 < m < M, where M is the de- 
composition level. At the largest wavelet scale (i.e., 2m where 
m = M) only one wavelet is required to cover the time interval, 
and only one coefficient is produced. At the next scale (2m − 1), 
two wavelets cover the time interval, hence two coefficients 
are produced, and so on down to m = 1. At m = 1, the scale is 
21, i.e., 2M-1 or N/2 coefficients are required to describe the si- 
gnal at this scale. The total number of wavelet coefficients for 
a discrete time series of length N = 2M is then 1 + 2 + 4 + 8 
+ . . . + 2M-1= N − 1. 

Mother wavelet determination is one of the important is-
sues at the wavelet transform application. The similarity betw- 
een the shape of the mother wavelet and the shape of raw time- 
series is the most exclusive guideline to choose the reliable 
mother wavelet (Nourani et al., 2009). Generally, the mother 
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wavelets which have a compact support form (e.g., Daubech- 
ies-1 or Haar and Daubechies-4 or db4) have effective time lo- 
calization characteristics and appropriate for time series which 
have a short memory with short duration transient features. In 
contrast, mother wavelets with wide support form (e.g., Dau- 
bechies-2 or db2) yield reliable forecasting efficiency for time 
series which have long term features (Maheswaran and Khosa, 
2012a). 

The inverse discrete transform is calculated by (Nourani 
et al., 2009): 
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or in a simple format as (Nourani et al., 2009): 

 

1

( ) ( )
M

i m

m

x T t W t



 
  

(3) 

 
In recent equation, ( )T t is called approximation sub-series 

at level M and Wm(t) are detailed sub-series at levels m = 1, 
2, ..., M. 

The wavelet coefficients, Wm(t), provide the detailed se-
ries, which can capture small features of interpretational value 
in the data; the residual term, ( )T t , represents the background 
information of data. Also, the normalized wavelet energy (E) 
is defined as (Morchen, 2003): 
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2.2. Shannon Entropy (Information Content)  

Shannon (1948) mathematically defined entropy in terms 
of its probability distribution and presented entropy as a statis- 
tical measure of the randomness or uncertainty. For a discrete 
random variable X, which takes values x1, x2, …, xN with pro- 
babilities p1, p2, …, pN, respectively, entropy is defined as 
(Shannon, 1948): 

 

1

( ) ( ) log( ( ))
sN

i i

i

H X p x p x



    (5) 

 
where H(X) is entropy of X (also referred to entropy function) 
and Ns is the number of intervals or bins to form the histogram 
and thereinafter PDF.  

If X is a deterministic variable, H(X) will be zero, which 
can be considered as the lower limit of the entropy and this 
corresponds to the case of absolute certainty. On the other hand, 
when the variable X is uniformly distributed (p(xi) = 1/Ns and 

i= 1, 2, …, Ns), thereafter, Equation 5 yields H(X) = Hmax(X) = 
log Ns.  

Although entropy can statistically illustrate the rate of uni- 
formity for a single variable, it cannot detect the uniformity 
and relations between two variables (for instance between an 
input and output variables of the FFNN model). To overcome 
the drawback, joint entropy between two variables; X and Y, is 
also defined as (Gao et al., 2008): 
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where p(xi, yi) is the joint probability of X and Y with number 
of bins Ns and Ms, respectively. In order to calculate the prob-
ability and joint probability of X and Y (applying Equations 5 
and 6) the univariate and bivariate PDFs should be computed, 
respectively. Histogram and kernel function methods are com- 
monly used methods to create the PDF of variables. To avoid 
the risk of assuming a wrong probability distribution for the 
variables in kernel function method, it is suggested to utilize 
the histogram method (Yang et al., 2000). The histogram me- 
thod is not only a simple way to generate PDF of variables, 
but also because of its data classification inherent is the best 
suited technique to entropy-based methods (Yang et al., 2000). 
The proper values of Ns and Ms in Equations 5 and 6 were ass- 
umed according to the sample size to perform the PDFs.  

To compute the values of H (for a single variable and for 
joint entropy utilizing Equations 5 and 6) for each sub-series, 
the data were normalized by scaling between zero and one to 
eliminate the dimensions of the variables using following equ- 
ation: 
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where xNormal, xi, xmin and xmax are normalized value of variable, 
variable, minimum and maximum values in data set, respecti- 
vely. 

As another entropy-based criterion, the mutual informa- 
tion (MI) measures the dependency between two random varia- 
bles (Yang et al., 2000). MI can measure the statistical non-li- 
near dependency between two random variables and it is zero 
when the two random variables are independent (Cover and 
Thomas, 1991). MI between two random variables X and Y 
can be computed as (Yang et al., 2000):

    

 

 

( , ) ( ) ( ) ( , )MI X Y H X H Y H X Y     (8) 

 

As mentioned, MI and H are employed in this study as 
feature extraction criteria and the results are compared with E 
and CC based methods. E, H and MI are calculated using Equ- 
ations 4, 5 and 8, respectively. On the other hand linear CC 
value between two random variables (e.g., X and Y) is compu- 
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ted as: 
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where x and y are the mean values of X and Y, respectively. 

It should be noted, MI and CC, as supervised measures, 
are calculated on the basis of relationship between input and 
target values (Equations 8 and 9) while E and H are unsuper- 
vised criteria and measure the structural characteristics of data 
(Equations 4 and 5). On the other hand, H and MI are non-li- 
near feature extraction criteria and may be more suitable to be 
used in a non-linear model such as FFNN.  

 

2.3. Artificial Neural Network and Efficiency Criteria 

ANN offers an effective approach for handling large am- 
ounts of dynamic, non-linear and noisy data, especially when 
the underlying physical relationships are not fully understood. 
This makes ANNs well suited to time series modeling of a da- 
ta-driven nature.  

ANN is composed of a number of interconnected simple 
processing elements called neurons with the attractive attribute 
of information processing characteristics such as non-linearity, 
parallelism, noise tolerance, and learning and generalization 
capability. Among the applied ANNs, the Feed Forward Neu-
ral Network (FFNN) with back propagation (BP) training algo- 
rithm and multilayer perceptron structure is the most commonly 
used method in solving various engineering problems (Hornik 
et al., 1989). 

It has been approved that networks with a single hidden 
layer can approximate any function to a desired accuracy and 
is enough for most forecasting problems (Hornik et al., 1989). 

The Levenberg-Marquardt (LM) algorithm is the widely 
used optimization algorithm for ANN training. It is an iterative 
technique that locates the minimum of a multivariate function 
that is expressed as the sum of squares of non-linear real-valued 
functions (Levenberg, 1994). The mathematical notation for 
training FFNNs with the LM algorithm is fully described by 
(Hagan and Menhaj, 1994). The LM algorithm has become a 
standard technique for nonlinear least-squares problems and 
could be thought of as a combination of the steepest descent 
and the Gauss-Newton method. The LM algorithm was desi- 
gned to approach second-order training speed without having 
to compute the Hessian matrix. When the performance func-
tion has the form of a sum of squares (as is typical in training 
feed-forward networks), then the Hessian matrix can be ap-
proximated as (Hagan and Menhaj, 1994): 

TH J J   (11) 
 
and the gradient can be computed as: 
 

Tg J e   (12) 

 
where J is the Jacobian matrix that contains first derivatives 
of the network errors with respect to the weights and biases and 
e is a vector of the network errors. The Jacobian matrix can be 
computed through a standard BP technique, which is much less 
complex than computing the Hessian matrix. The LM algori- 
thm uses this approximation to the Hessian matrix in the fol-
lowing Newton-like update (Hagan and Menhaj, 1994): 
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when the scalar μ is zero, this is simply Newton's method using 
the approximate Hessian matrix. When μ is large, this becomes 
the gradient descent method with a small step size. Newton's 
method is faster and more accurate near an error minimum, 
thus the aim is to shift toward Newton's method as quickly as 
possible. Therefore, μ isdecreased after each successful step 
(reduction in performance function) and is increased only when 
a tentative step would increase the performance function. Ac-
cordingly, the performance function is always reduced at each 
iteration of the algorithm. 

The network architecture that yields the most reliable re-
sult in terms of root mean square error (RMSE) and determi-
nation coefficient (DC) on the calibration, test and validation 
steps is determined through trial-error process. The time series 
data before going through the network are usually normalized 
between 0 and 1 (using Equation 7). Legates and McCabe 
(1999) reported that a hydrological model can be sufficiently 
evaluated by DC and RMSE as (Nourani et al., 2009). DC is 
also known as Nash-Sutcliffe efficiency criterion (Nourani, 
2010): 

 

2

1

2

1

ˆ( )

1

ˆ( )

N

i i

i
N

i

i

Q Q

DC

Q Q







 






   (14) 

 

2

1

ˆ( )
N

i i

i

Q Q

RMSE
N








  (15) 

 
where iQ , ˆ

iQ and Q are respectively observed data, predicted 
values and mean of N observed values. The RMSE is used to 
measure the accuracy of forecasted values, which produces a 
positive value by squaring the error. The RMSE increases from 
zero for perfect forecasts through large positive values as the 
discrepancies between forecasts and observations become incr- 
easingly large. Obviously high value for DC (up to one) and 
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small value for RMSE indicate high efficiency of the model. 

Firstly, in training step the model is calibrated for each 
epoch by the calibration data set. The descending rate of cali-
bration diagram by the increase on epoch numbers illustrates 
the decrease on RMSE (i.e., the evaluation criterion in current 
study). Secondly in order to avoid the over-fitting problem, 
the test step is proceeded by the test data for the networks ob- 
tained in the calibration step. In order to avoid trapping in lo- 
cal minima and over-fitting problem, the testing step continues 
until an epoch where in spite of decrease in RMSE of calibra-
tion, the RMSE of test begins to increase. At such epoch, the 
training process is terminated and the relevant epoch to the 
minimum point of the testing diagram is selected as the opti-
mum epoch. Finally, the optimal model which is selected based 
on calibration and testing procedures is verified using valida-
tion data set. 

 

2.4. Study Area and Data 

To investigate the effect of physical features of the water- 

shed on the performance of the proposed methodology, two 
watersheds in Florida (i.e., the Delaney Creek and Payne Creek 
Sub-basins) with almost same climatological conditions but 
distinct topographic characteristics were considered in the cur-
rent study. The watersheds are introduced as cases (1) and (2), 
in below. 

 

2.4.1. Case study (1): The Delaney Creek Sub-basin 

The Delaney Creek Sub-basin of Tampa Bay Watershed 
at Florida was selected as the first study area. The watershed 
located between 27°52’ and 27°56’ North latitude and 82°22’ 
and 82°24’ West longitude and its drainage area is about 42 
km2 of open water which drains to the Tampa Bay on the Gulf 
of Mexico (Figure 1). This watershed is fairly flat and its ele-
vation varies between 10 meters above and below sea level. 
The climate of this region is subtropical, exhibiting a transi-
tional pattern from continental to tropical Caribbean. Long, 
warm and humid summers are typical as well as mild, dry win- 
ters. The annual average temperature, the total yearly rainfall 

 
Figure 1. Location map of the Delaney Creek and Payne Creek Sub-basins, Florida. 

 
Table 1. Statistics of Daily Rainfall and Runoff Data for the Study Areas 

Sub-basin Data set Rainfall time series (mm) Runoff time series (m3/s) 

Max Min Mean Standard devia-
tion 

Max Min Mean Standard deviation 

Delaney 
Creek 

Calibration 154.18 0 3.53 10.68 16.46 0 0.33 0.58 

Test 81.78 0 2.72 9.15 5.12 0 0.25 0.61 

Validation 80.03 0 2.42 9.01 3.75 0 0.22 0.71 

Payne Creek Calibration 158.80 0 3.56 11.50 77.84 0 3.83 6.26 

Test 94.00 0 3.21 9.18 13.40 0 2.71 4.38 

Validation 91.78 0 2.88 8.62 15.20 0 2.37 3.02 

 



V. Nourani et al. / Journal of Environmental Informatics 26(1) 52-70 (2015) 

 

57 

and the time of concentration for the watershed are about 
23 °C, 1,350 mm and 230 minutes, respectively. 

The observed daily runoff (Q) and rainfall (P) time series 
of the Delaney Creek Station, where is the outlet of the Dela- 
ney Creek Sub-basin, were retrieved from the United States 
Geological Survey (USGS) website (http://waterdata.usgs.gov 
/usa/nwis/uv?site-no=02301750). Time series are included 

6,403 daily and 210 monthly data observed from August 1993 
to December 2011.  

 

2.4.2. Case study (2): The Payne Creek Sub-basin 

The Payne Creek Sub-basin located in the Peace Tampa 
Bay Watershed in Florida State was selected as the second stu- 
dy area in this research. The Peace Tampa Bay Watershed con- 
nects central Florida to the southwest coast and consists of nine 
sub-basins. The Payne Creek Sub-basin is the second smallest 
basin in the watershed located at the North West portion of the 
Peace River Watershed. The Payne Creek Basin covers 322 
km2 areas (Figure 1). The Payne Creek River flows through 
the sub-basin with annual mean flow of 2 cms. The climate of 
the area is generally subtropical with an annual average tem-
perature of about 23 °C. Annual average rainfalls in or near 
the Payne Creek Sub-basin is 1,270 to 1,420 mm and the time 
of concentration for the watershed is about 250 minutes. Daily 
stream flow values of the Payne Creek station downloaded 
from the USGS website (water.usgs.gov/cgi-bin/realsta.pl?sta 
tion=02295420) and rainfall data of Bartow station were used 
in this study. The Bartow Station is located in upstream part of 
the sub-basin. Rainfall and runoff time series are included 
5,841 daily and 192 monthly data observed from July 1995 to 
July 2011. 

In order to perform adequate demonstration about ANN- 
based generalization, data set division into three sub-sets of 
calibration, test and validation have been suggested by several 
studies in context of ANN-based modeling of rainfall-runoff 
process (Abrahart et al., 2012). Therefore for both study areas, 
data set was divided into three sub-sets: the first 60% of total 
data were used as calibration set (from August 1993 to August 
2004 for Delaney Creek and from July 1995 to February 2005 
for Payne Creek), the second 20% for testing (from Septem-
ber 2004 to April 2008 for Delaney Creek and from March 
2005 to April 2008 for Payne Creek) and the rest 20% were 
employed for validation (from May 2008 to December 2011 
for Delaney Creek and from May 2008 to July 2011 for Payne 
Creek) of the models. Statistics of the data sub-sets for both 
study areas are presented in Table 1. As tabulated in Table 1, 
the large values of maximum and standard deviation of time 
series have been appeared in calibration data set. Such data di- 
vision scheme helps FFNN, as a data interpolator, to learn the 
pattern of process much effective and leads to more accurate 
predictions in the testing and validation steps. 

Although both study areas are climatically identical, the 
elevation variation between the upstream and middle parts as 
well as high value of standard deviation for runoff data (accor- 
ding to Table 1) in the Payne Creek Watershed indicate the slo- 
ppy topography and wild situation of this area with regard to 
the Delaney Creek Watershed.   

3. Proposed Entropy-Based Wavelet–ANN    
(EWANN) Model 

The proposed EWANN model consists of a three-layer 
FFNN with the input neurons of dominant wavelet-based sub- 

 
Figure 2. Schematic of the proposed EWANN model. 
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series extracted by entropy concept. The schematic of the de- 
veloped model is presented in Figure 2. Basically, the proposed 
EWANN modeling includes three steps as: 

Rainfall and runoff time series are decomposed into seve- 
ral sub-series at different time scales (levels) using discrete 
wavelet transform (decomposing step). For example, decom-
position level M leads to an approximation or trend sub-series 
and M detailed sub-series (frequencies). Values in approxima-
tion sub-series present general view about data. Values in each 
detailed sub-series describe frequency in data (for instance in 
daily data, discrete dyadic wavelet decomposition can capture 
21 = 2, 22 = 4, 23 = 8, …, and 2M days frequencies). Indeed, de- 
composing step is assumed as a data pre-processing step and 
can efficiently elucidate the non-stationary involved in data. 
Type of the mother wavelet and also the level of decomposi-
tion are the basic parameters of the EWANN model in this step. 

Dominant sub-series are extracted via Shannon entropy 
(screening step). Reasonable modeling is trying not only to in- 
crease the accuracy of the modeling, but also to optimize the 
structure (epochs and number of input and hidden neurons) of 
model. Although classic WANN model could reach desirable 
performance in terms of DC and RMSE with regard to the 
FFNN, it should be fed by all of the sub-series resulted in the 
decomposing step. WANN specialists usually present a large 
number of inputs to the model and rely on the network to re- 
cognize dominant inputs (sub-series). There are d = 2(M + 1) 
sub-series obtained via rainfall and runoff decomposition at 
level M. Usually, not all of the input variables (sub-series) will 
be equally informative since some may be correlated, noisy or 
have no significant relationship with the output variable. Alth- 
ough a large number of information is included in raw data, 
screening step extracts dominant features (sub-series) of the 
data and consequently the effect of data noise is diminished. 
For d potential input sub-series, there are 2d - 1 input sub-sets 
and it is too difficult to test all sub-set combinations for large 
values of d. Screening step of the EWANN employs an entro- 
py- based non-linear technique to designate dominant sub-se- 
ries. Since histogram method (to form PDF of variables) as-
sumes data in each interval or bin have same value (to have 
better compliance between entropy-based criteria and disorder 
involved in data), the selection of bin size is the main limitation 
of the EWANN in this step. 

The extracted dominant sub-series are imposed into a 
FFNN to forecast runoff value (simulating step). Due to non- 
linear structure of FFNN, it is selected as simulation tool which 
can efficiently model non-linear rainfall-runoff process. The 
limitation associated with EWANN in this step is the number 
of epochs and the hidden neurons which should be determined 
via a trial-error process. 

Generally, the first step of the proposed EWANN model 
handles the non-stationary associated with rainfall and runoff 
time series and the second and third steps cope with the non- 
linearity involved in the rainfall-runoff process. 

The novelty of EWANN in comparison with classic WANN 
method is related to its screening step where optimal inputs of 
FFNN (simulating step) are determined. In WANN model, the 

FFNN allocates a weight parameter for each input neuron. Va- 
lues of such weights determine the importance of sub-series. 
Because of structural noise and redundant information invol- 
ved in data, the weighting procedure is prone to mistake when 
huge number of data are considered as inputs. Thereinafter the 
lack of screening step yields to drastically complex structure 
(epochs and number of input and hidden neurons) of WANN 
model. In other words, screening step provided the proposed 
EWANN model more efficient via selecting limited proper 
sub-series instead of all sub-series as inputs of model. Basically, 
classic WANN and FFNN models need three separate trial-error 
processes to find: i) optimum sub-set of sub-series as inputs, ii) 
number of epochs, and iii) number of hidden neurons, to arran- 
ge the structure of FFNN. Since the proposed model has no 
necessity to trial-error procedure to find such set of sub-series, 
the EWANN model can be considered as a modified and ro-
bust version of the conventional WANN model. However, the 
number of epochs and hidden neurons should be yet determi- 
ned via a trial-error process. 

4. Results and Discussion 

Prior to apply the proposed EWANN model, FFNN mod-
el (without any data pre-processing) was utilized to model 
rainfall- runoff process of the watersheds. To have reliable 
interpretation about the performance of the EWANN model in 
both daily and monthly time scales, the results were also 
compared with ARIMAX (Auto Regressive Integrated Moving 

Average with eXogenous inputs, See Box and Jenkins, 1976) 
and conventional WANN models. For all models, the input and 
output variables were normalized by scaling between zero and 
one (using Equation 8) to eliminate the dimensions of the va- 
riables and to be ensured that all variables receive equal atten-
tion during the calibrating phase.  

 
4.1. Results of FFNN Model 

At first, a three-layer single-step-ahead FFNN model with- 
out any data pre-processing was used to model the Delaney 
Creek and Payne Creek Sub-basins rainfall–runoff process. 
This kind of ANN model accompanied by BP training algori- 
thm has been widely used in hydrological modeling (ASCE, 
Task Committee on Application of Artificial Neural Networks 
in Hydrology, 2000).  

Four structures were examined for the single-step-ahead 
FFNN modeling of the watersheds (it should be noted that in- 
put layers consisted of rainfall data in current time step and 
runoff time series up to three days lag in daily scale and a sin- 
gle month lag in monthly scale simulations). Because the val-
ues of precipitation at previous time steps have been implicitly 
affecting the values of runoff in the lead times, the rainfall va- 
lue at current step accompanied by runoff values at previous 
time steps could be considered as inputs. The results have been 
tabulated in Table 2. Each FFNN was calibrated using 2 to 18 
hidden neurons in a single hidden layer. Among the training al- 
gorithms, the LM algorithm was selected due to its fast conver- 
gence ability (Hagan and Menhaj, 1994). Some other studies 
which have compared different training algorithm of ANNs 
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have reported the superiority of this algorithm over other algo- 
rithms (e.g. see, Nourani et al., 2012).  

The numbers of hidden neurons and training epoch were 
determined using trial-error process. As tabulated in Table 2, 
comparison of the obtained DC values for different structures 
in validation step revealed that consideration of two days lag 
in runoff time series in daily modeling was sufficient to predict 
runoff value one day ahead. The comparison of daily and mon- 
thly modeling results confirmed the weak Markovian (auto re- 
gressive) property of the process in monthly time scale. Accor- 
ding to Table 2 because of sloppy nature of the Payne Creek 
Watershed, single-step-ahead FFNN reveals low performance 
with regard to the results of Delaney Creek Watershed. 

One of the vital concerns associated with runoff predicting 
models when designing a flood alert system is the capability of 
the model to provide reliable forecasts for future with a lead time 
larger than one time step (Chang et al., 2007). The multi-step- 
ahead estimations can probably provide long-term predicting 
horizon comparing with the single-step-ahead modeling in daily 

time scale (Nourani et al., 2013). The multi-step-ahead approach 

in the current study comprised of rainfall data in current step and 

the runoff antecedents in daily time scale as input neurons of 
model, which could represent the frequencies involved in the 
rainfall-runoff process. Since monthly runoff exhibited poor 
auto regressive property (Table 2) and subsequently values of 
runoff in antecedent months were drastically independent; the 
multi-step-ahead simulation in monthly time scale was ignored. 

In this paper various lead time steps were examined for 
the runoff time-series as output of multi-step-ahead FFNN mo- 
del to determine the accuracy of the model in detecting the fre- 
quencies involved in rainfall-runoff process (Safehian et al., 
2012). The results and details of the input and output neurons 
of daily multi-step-ahead models for both study areas are pre-
sented in Table 3 in which designation of lag sequences for the 
runoff time series as input was established on the base of the 
periodic nature of the process. The results presented in Tables 
2 and 3 reveal that although generally by increasing the predic- 
tion horizon, the model performance was decreased, in both 
study areas (because of climatic similarity) the lead times of 4 
and 8 days led to reliable performance compared to other lead 
times which implicitly denoted to dominant frequencies of the 
process. 

Table 2. Results of single-step-ahead FFNN model for the Delaney Creek and Payne Creek Sub-basins 

Sub-basin 
Modeling 
time scale 

Input variables* Epoch No. Structure** 
DC RMSE (normalized) 

Cal.*** Test Val.**** Cal. Test Val. 

Delaney 
Creek 

Daily Qt + 1, Qt 250 2-4-1 0.88 0.72 0.74 0.0175 0.0183 0.0188 

Qt - 2, Qt - 1, Qt 280 3-8-1 0.89 0.80 0.82 0.0173 0.0180 0.0178 

Qt - 3, Qt - 2, Qt - 1, Qt 280 4-15-1 0.85 0.79 0.77 0.0176 0.0181 0.0184 

Monthly Qt 170 1-4-1 0.81 0.73 0.73 0.0176 0.0191 0.0192 

Payne 
Creek 

Daily Qt - 1, Qt 200 2-5-1 0.77 0.65 0.64 0.0188 0.0199 0.0202 

Qt - 2, Qt - 1, Qt 320 3-9-1 0.77 0.73 0.74 0.0186 0.0193 0.0192 

Qt - 3, Qt - 2, Qt - 1, Qt 330 4-10-1 0.69 0.69 0.68 0.0195 0.0196 0.0195 

Monthly Qt 190 1-3-1 0.70 0.63 0.64 0.0186 0.0199 0.0192 
* Qt+1 is output variable (runoff at time t + 1).
** Best result has been presented among several structures. 
*** Calibration step. 
**** Validation step. 

Table 3. Results of Daily Multi-step-ahead FFNN Modeling for the Delaney Creek and Payne Creek Sub-basins 

Sub-basin Input variables Output variable Structure* 
DC RMSE (normalized) 

Cal. Test Val. Cal. Test Val. 

Delaney 
Creek 

Qt - 4, Qt - 2, Qt, Pt Qt + 2 3-7-1 0.65 0.60 0.61 0.0198 0.0205 0.0204 

Qt - 6, Qt - 3, Qt, Pt Qt + 3 3-7-1 0.65 0.61 0.61 0.0199 0.0207 0.0206 

Qt - 8, Qt - 4, Qt, Pt Qt + 4 3-8-1 0.82 0.75 0.76 0.0162 0.0172 0.0171 

Qt - 12, Qt - 6, Qt, Pt Qt + 6 3-6-1 0.64 0.59 0.57 0.0212 0.0215 0.0216 

Qt - 16, Qt - 8, Qt, Pt Qt + 8 3-6-1 0.76 0.72 0.72 0.0178 0.0183 0.0184 

Qt - 24, Qt - 12, Qt, Pt Qt + 12 3-5-1 0.62 0.62 0.61 0.0203 0.0204 0.0205 

Qt - 32, Qt - 16, Qt, Pt Qt + 16 3-8-1 0.55 0.51 0.48 0.0232 0.0236 0.0240 

Payne 
Creek 

Qt - 4, Qt - 2, Qt, Pt Qt + 2 3-5-1 0.62 0.57 0.56 0.0210 0.0218 0.0223 

Qt - 6, Qt - 3, Qt, Pt Qt + 3 3-7-1 0.57 0.51 0.52 0.0223 0.0230 0.0229 

Qt - 8, Qt - 4, Qt, Pt Qt + 4 3-5-1 0.73 0.64 0.66 0.0184 0.0194 0.0192 

Qt - 12, Qt - 6, Qt, Pt Qt + 6 3-7-1 0.60 0.52 0.51 0.0219 0.0225 0.0227 

Qt - 16, Qt - 8, Qt, Pt Qt + 8 3-7-1 0.64 0.60 0.61 0.0201 0.0199 0.0199 

Qt - 24, Qt - 12, Qt, Pt Qt + 12 3-6-1 0.53 0.51 0.51 0.0191 0.0220 0.0222 

Qt - 32, Qt - 16, Qt, Pt Qt + 16 3-6-1 0.50 0.48 0.48 0.0244 0.0245 0.0246 
* The result has been presented for the best structure. 
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4.2. Results of EWANN Model 

To perform the first step (decomposing step) of EWANN 
model, both daily and monthly rainfall and runoff time series 
relevant to the study areas were decomposed into several sub- 
series via discrete wavelet transform. The decomposition step 
could accurately elucidate the non-stationary characteristics of 
the rainfall-runoff process. Haar, db2 and db4 mother wavelets 
(Mallat, 1998) were used in this study to compare the capability 
of different mother wavelets to decompose the original daily 
and monthly data series (see 2.1. Wavelet Transform). Aussem 
et al. (1998), Singh (2012), Maheswaran and Khosa (2012a) and 
Shoaib et al. (2014) can be referred for more information about 
mathematical and practical concepts of the mother wavelets. 

In addition to the wavelet type, determination of the appr- 
opriate decomposition level (scale) is another important issue 
in the wavelet-based modeling of hydrological processes. In 
this study, due to proportional relationship between amount of 
rainfall and runoff, they were supposed to have the same frequ- 
ency levels and both time series were decomposed at the same 
level. Nourani et al. (2011) concluded decomposition level 7 
could capture frequencies of time series from 2 days to appro- 
ximately a season. Decomposition level 7 for both rainfall and 
runoff time series in daily time scale provided an approxima-
tion sub-signal and 7 detailed sub-series (i.e., 21-day mode, 
22-day mode, 23-day mode which is nearly weekly mode, 24- 
day mode, 25-day mode which is nearly monthly mode, 26-day 
mode and 27-day mode). In current study decomposition lev-
els 3 and 7 were selected for monthly and daily data, respecti- 
vely. Although there is not any deterministic method to find the 
exact decomposition level of hydrological time series and yet 
trial-error methods remain as the reliable solution, application 
of Equation 16 can play a guide role in order to select the suffi- 
cient level of decomposition (Aussem et al., 1998; Nourani et 
al., 2011): 

int[log( )]L N  (16) 

in which L and N indicate the decomposition level and number 
of time series data, respectively. This experimental equation 
was derived for fully autoregressive signals with low/without 
any seasonal or periodic patterns in contrast to hydrologic time 
series. Comparison of daily and monthly data reveals that the 
autoregressive property of monthly data is more dominant than 
daily. Thus, the decomposition level number 3 obtained by 
Equation 16 could be an appropriate guide for monthly data. 
On the other hand, the maximum periodicity of monthly data, 
12-month mode, approximately coincides 23-month mode. In 
contrast to monthly rainfall data that Equation 16 can be guide 
for decomposition level number, in daily rainfall data it might 
not because it is needed to monitor large periodicities such as 
365-days (i.e., approximately 28-day mode). Selection of de-
composition level 8 for daily rainfall data which is nearly an 
annual mode and can include dominant seasonal periodicity in 
a rainfall time series might be considered in such studies. 
Here in this study, sensitivity analysis on levels 7 and 9 beside 
level 8 demonstrated that there is slight difference on the re-
sults of modeling based on these three levels, but it is noticea-

ble that the high decomposition level leads to a large number 
of parameters in the complex non-linear relationship of the 
FFNN model. Consequently, although this relationship may 
monitor and fit the calibration data appropriately, each param-
eter produces an error in the testing data and net errors decr- 
ease the model’s efficiency at the verification stage. Also the 
large amount of input data requires the amount of runtimes in 
the training network. Thus, decomposition level 7 was select-
ed for daily rainfall data.  

As a classic methodology, the computed linear CC betw- 
een the potential inputs and the output of the model has been 
already applied to select proper inputs (sub-sets) for WANN 
models (e.g., Rajaee et al., 2011; Maheswaran and Khosa, 
2012b). However in a non-linear complex hydrological pro-
cess, in spite of a weak linear relationship, strong nonlinear re- 
lationship may exist between input and output variables. Th- 
erefore in such cases where the methods on the basis of linear 
relationship may lead to unacceptable result, the entropy theory 
can be a suitable choice to recognize features in complex cla- 
ssification tasks (such as input selecting for FFNN models). 
To perform screening step of proposed EWANN model, H and 
MI (as non-linear Shannon entropy-based criteria) were used 
in this study for wavelet-based feature extraction of rainfall- 
runoff process.  

To evaluate the efficiency of the entropy-based feature 
extraction criteria, performances of H and MI are illustrated 
and compared with CC and E-based criteria. The values of H, 
MI, E and CC were calculated using decomposed data of the 
Delaney Creek and Payne Creek Sub-basins. In this way, the 
sub-series derived from wavelet decomposition procedure 
were ranked according to the values of CC, E, H and MI for 
daily and monthly data. As an instance, normalized values and 
general ranking of sub-series for daily data at level 7 and mon- 
thly data at level 3 of the Delaney Creek Sub-basin data using 
various mother wavelets are shown in Table 4 for the used fea- 
ture extraction criteria (CC, E, H and MI). In Table 4, Qa and 
Pa present approximation sub-series of decomposed runoff 
and rainfall time series, respectively. Qd1, …, Qd7 refer to 
runoff detailed sub-series and Pd1, …, Pd7 refer to rainfall de- 
tailed sub-series at levels 1 to 7. To rank the sub-series obtai- 
ned via the wavelet transform, values of E, H, MI and CC 
were calculated for all sub-series using Equations 4, 5, 8 and 9. 
Subsequently rank of each sub-series was determined so that 
the first rank was belonged to the maximum value (more ef-
fective input) and the last one to the minimum value.  

Several results could be inferred according to the ranking 
results presented in Table 4 that are briefly listed as below: 
 The type of mother wavelet had no major effect on sub- 

series ranking, based on H and E (unsupervised criteria). 
 For the used mother wavelets, both CC and E based sub- 

series. ranking were almost identical (probably because of 
linear inherent of the criteria). However E, as an unsuper-
vised criterion, was calculated without any attention to the 
target and consequently the probable noise and error, con-
tained in the target, might have no direct effect on the ran- 
king.  

 In contrast to H-based sub-series ranking, most of the prime
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ranks belonged to Q components in the ranking procedure
based on CC, MI and E.

 For all mother wavelets in E-based ranking, first rank belon- 
ged to Qa sub-series. It is remarkable that the energy of si- 
gnal is mostly distributed in the approximation sub-series
rather than details.

To develop the EWANN model, the FFNN model was fed 
by extracted dominant sub-series (simulating step) in order to 
predict runoff values one day ahead for daily and one month 
ahead for monthly data sets. Therefore for both daily and mon- 
thly data of two case studies (the Delaney Creek and Payn  
selected sub-series via four feature extraction criteria (i.e., H, 
MI, E and CC). In order to survey the performance of H, CC, 
E and MI feature extraction criteria, for instance in daily data, 
the sub-series of the first, second and third ranks (according to 
the Table 4) were primarily considered as the inputs of FFNN; 
thereinafter, the sufficient number of inputs was consequently 
determined using the maximum reduction rate method propo- 
sed by Nourani and Zanardo (2014). Table 5 presents the resu- 
lts of developed FFNN models using the selected sub-series 
decomposed by Haar, db2 and db4 mother wavelets for daily 
data. 

High differences between the most efficient and poor vali- 
dation DCs tabulated in Table 5, approved the sensitivity of the 
model to the utilized feature extraction criterion. Presented re- 

sults in Table 5 indicated that almost all models with 2 and 3 
input neurons for daily data could lead to acceptable outcomes 
except when H was used as the extraction criterion. According 
to Table 4, the first and second ranks in H-based ranking for 
both daily and monthly scales belonged to precipitation com-
ponents and consequently H-based models were yielded unac- 
ceptable results in terms of efficiency criteria (according to 
Table 5). Such results may be due to the structure of entropy. 
Although H measures information content of the sub-series, it 
is remarkable that high value of the criterion may be arisen due 
to noise or redundant information (the information is implic- 
itly presented via other sub-series particularly runoff sub-series 
in the current study) involved in the sub-series. This fact re-
confirmed the sufficiency of the input layer of ad hoc FFNN 
models presented in Table 2. Furthermore, the results inferred 
from Table 5 confirmed the superiority of db4 mother wavelet 
in comparison to db2 and Haar for decomposition of the main 
time series. The results confirmed that the selected dominant 
inputs by MI criterion tremendously led to more accurate re-
sults. Therefore in the rest of paper, only the results of models, 
developed on the basis of MI criterion are presented and the 
procedure of EWANN is explained for db4-based decomposi-
tion (for other mother wavelets, the EWANN models were 
developed by the same procedure).  

Reasonable values for DC and RMSE guarantee the accu- 

Table 5. Recognizing Best Feature Extraction Criterion (H, MI, E or CC) for Daily Data, Decomposed at Level 7 

Mother 
wavelet 

Ranking 
base 

Delaney Creek Payne Creek 

Input variables* 
DC 

Input variables 
DC 

Cal. Test Val. Cal. Test Val. 

db4 H Pd7,Pa 0.23 0.04 0.02 Pd7,Qd2 0.23 0.11 0.07 

MI Qd4,Qd2 0.79 0.67 0.68 Qd3,Qd2 0.69 0.66 0.66 

CC Qd3,Qd4 0.73 0.67 0.66 Qd3,Qd4 0.67 0.62 0.61 

E Qa,Qd3 0.70 0.61 0.62 Qa,Qd3 0.62 0.58 0.58 

H Pd7,Pa,Qa 0.24 0.15 0.16 Pd7,Qd2,Qa 0.24 0.25 0.22 

MI Qd4,Qd2,Qd3 0.83 0.75 0.79 Qd3,Qd2,Qd4 0.80 0.75 0.77 

CC Qd3,Qd4,Qd5 0.75 0.66 0.68 Qd3,Qd4,Qd5 0.71 0.63 0.66 

E Qa,Qd3,Qd4 0.76 0.66 0.69 Qa,Qd3,Qd5 0.70 0.64 0.64 

db2 H Pa,Pd7 0.25 0.10 0.08 Pa,Pd7 0.22 0.17 0.14 

MI Qa,Qd3 0.66 0.47 0.46 Qa,Qd3 0.53 0.38 0.40 

CC Qa,Qd4 0.57 0.44 0.45 Qa,Qd5 0.43 0.40 0.38 

E Qa,Qd4 0.57 0.44 0.45 Qd3,Qa 0.53 0.38 0.40 

H Pa,Pd7,Qa 0.36 0.14 0.10 Pa,Pd7,Qa 0.32 0.15 0.17 

MI Qa,Qd3,Qd4 0.73 0.62 0.60 Qa,Qd3,Qd5 0.65 0.55 0.59 

CC Qa,Qd4,Qd3 0.73 0.62 0.60 Qa,Qd5,Qd3 0.65 0.55 0.59 

E Qa,Qd4,Qd3 0.73 0.62 0.60 Qd3,Qa,Qd4 0.59 0.53 0.52 

Haar H Pa,Pd7 0.30 0.16 0.13 Pd6,Pa 0.30 0.22 0.21 

MI Qd2,Qd3 0.62 0.57 0.56 Qd2,Qd3 0.64 0.55 0.58 

CC Qd3,Qa 0.58 0.47 0.48 Qa,Qd3 0.59 0.50 0.52 

E Qa,Qd3 0.58 0.47 0.48 Qa,Qd5 0.59 0.51 0.48 

H Pa,Pd7,Qa 0.29 0.24 0.22 Pd6,Pa,Qa 0.39 0.32 0.28 

MI Qd2,Qd3,Qd4 0.75 0.66 0.68 Qd2,Qd3,Qd4 0.72 0.66 0.67 

CC Qd3,Qa,Qd5 0.69 0.61 0.60 Qa,Qd3,Qd4 0.73 0.61 0.62 

E Qa,Qd3,Qd5 0.69 0.61 0.60 Qa,Qd5,Pa 0.60 0.55 0.58 
*Qt+1 is output variable. 
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racy of the model with an optimum structure. The increase of 
input neurons leads to a complex structure for the FFNN and 
carries out some difficulties in the calibration step. Therewith, 
the input time series structurally contain some noise, thus, the 
increase of inputs magnifies error and may lead to an undesi- 
rable result in the test and validation steps. In this study, in or- 
der to arrange the structure of FFNN, sub-series with accepta-
ble values of normalized MI were selected and imposed to 
FFNN as the inputs of the proposed EWANN model. In order 
to calculate the normalized MI for the sub-series inferred from 
decomposition step, value of MI for each sub-series was divi- 
ded by maximum value of MI. Thus, normalized MI for the first 
rank (as presented at Table 4) was equal to one and for the 
others were between one and zero. For instance, Figure 3 pre-
sents descending orders of the sub-series derived from db4 
mother wavelet for daily data at level 7 for the Delaney Creek 
Sub-basin. The maximum reduction rate of normalized MI se- 
parated dominant inputs from the other sub-series. Such redu- 
ction in MI value was interpreted as maximum decrease in 

non-linear dependency between two random variables. 

In the current study for db4-based decomposition, maxi-
mum reduction rate method presented Qd4, Qd2, Qd3 and Qd5 
as dominant inputs of the model for daily data and Qd2, Qd3 
and Qd1 for monthly data. Qd3, Qd2, Qd4 and Qa and Qd2, 
Qd3 and Qd1 were also determined as dominant sub-series for 
daily and monthly data of the Payne Creek Sub-basin, respec-
tively. The determined dominant sub-series for two study areas 
were almost identical which revealed the almost similar clima- 
tic condition of the watersheds (see section 2.4). 

A shortcoming associated with maximum reduction rate 
method is probably when no significant reduction is taken place 
in the normalized MI values. In such situation, it is suggested 
to change the decomposition level. 

According to the dyadic representation of the discrete wa- 
velet transform, the finest scale (first level) of the daily decom- 
position is 21 = 2-day mode. However due to the Markovian 
(auto regressive) property of the runoff process in daily time 

Table 6. Results of MI-based EWANN Models for the Study Areas Using db4 Mother Wavelet, Decomposed at Level 7 in 
Daily and Level 3 in Monthly Time Scales 

Sub-basin 
Modeling 
time scale 

Input variables* Structure** 
DC 

Cal. Test Val. 

Delaney Creek Daily Qd4,Qd2,Qt, (3,6,1) 0.94 0.72 0.74 

Qd4,Qd2,Qd3,Qt, (4,7,1) 0.94 0.80 0.82 

Qd4,Qd2,Qd3,Qd5,Qt, (5,9,1) 0.95 0.92 0.94 

Monthly Qd2,Qd3 (2,5,1) 0.90 0.86 0.86 

Qd2,Qd3,Qd1 (3,5,1) 0.95 0.90 0.89 

Payne Creek Daily Qd3,Qd2,Qt, (3,5,1) 0.90 0.73 0.72 

Qd3,Qd2,Qd4,Qt, (4,6,1) 0.92 0.81 0.82 

Qd3,Qd2,Qd4,Qa,Qt, (5,7,1) 0.92 0.89 0.91 

Monthly Qd2,Qd3 (2,4,1) 0.84 0.81 0.82 

Qd2,Qd3,Qd1 (3,5,1) 0.91 0.85 0.86 
*Qt+1 is output variable. 
** Best result has been presented among several structures.

Figure 3. Descending order of the daily sub-series derived by db4 mother wavelet in level 7 for the Delaney Creek Sub-basin 
(normalized MI). 
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scale, a strong relationship is expected between runoff values 
at two antecedent time steps. Thus, adding the general runoff 
time series with one day lag time (Qt) as an input neuron in 
daily modeling, in addition to the extracted sub-series might 
lead to more accurate results. For example, daily db4-based de- 
composition using the Delaney Creek Sub-basin data led to im- 
pose Qt, Qd4, Qd2, Qd3 and Qd5 time series into the FFNN 
to predict Qt + 1. The results of sensitivity analysis on the extra- 
cted sub-series for the Delaney Creek and Payne Creek Sub- 
basins are shown in Table 6, using both daily and monthly data. 
As presented in Table 6, the structure (the neurons of input and 
hidden layers of FFNN) in monthly modeling was simpler than 
daily case.  

Table 7 demonstrats the most effective structures of EW-
ANN models using different mother wavelets (Haar, db2 and 

db4) for both daily and monthly data of the Delaney Creek 
and Payne Creek Sub-basins. Although the tabulated results in 
Table 7 illustrate that models on the basis of db4 wavelet de-
composition were more accurate than Haar and db2 based mo- 
dels, it was notable that when db2 was applied, the structure 
of network (the neurons of input and hidden layers), was sim-
pler than other cases. There were several jumps in the runoff 
time series because of sudden start and cessation of rainfall 
over the related watershed. Therefore due to the shape of db4 
mother wavelet, which is similar to the runoff signal, it could 
capture the signal features, especially peak points, well and 
could lead to reliable outcomes. Consequently, it is strongly 
recommended that the used mother wavelet type is selected ac- 
cording to the formation of the main time series. As tabulated 
in Table 7, since majority of accurate models included Qd3, 

Table 7. Mother Wavelet Impact on the Results of Proposed EWANN Model for both Study Areas, in Daily and Monthly 
Time Scales  

Sub-basin 
Modeling
time scale 

Mother
wavelet 

Input variables* Structure** 
DC RMSE (normalized) 

Cal. Test Val. Cal. Test Val. 

Delaney 
Creek 

Daily Haar Qd2,Qd3,Qd4,Qa,Qt, (5,9,1) 0.90 0.82 0.84 0.090 0.014 0.015 

db2 Qa,Qd4,Qd3,Qt, (4,8,1) 0.86 0.83 0.84 0.015 0.017 0.017 

db4 Qd4,Qd2,Qd3,Qd5,Qt, (5,9,1) 0.95 0.92 0.94 0.008 0.010 0.009 

Monthly Haar Qa,Qd3,Qd1,Pd2 (4,4,1) 0.92 0.86 0.87 0.010 0.014 0.013 

db2 Qd3,Qa,Qd1 (3,5,1) 0.93 0.89 0.88 0.008 0.013 0.012 

db4 Qd2,Qd3,Qd1 (3,5,1) 0.95 0.90 0.89 0.008 0.011 0.011 

Payne 
Creek 

Daily Haar Qd2,Qd3,Qd4,Qa,Qt, (5,11,1) 0.87 0.82 0.83 0.014 0.017 0.017 

db2 Qa,Qd3,Qd5,Pd2 (4,8,1) 0.85 0.82 0.82 0.016 0.018 0.019 

db4 Qd3,Qd2,Qd4,Qa,Qt, (5,7,1) 0.92 0.89 0.91 0.010 0.011 0.010 

Monthly Haar Qd3,Qd2,Pd2 (3,4,1) 0.87 0.81 0.83 0.013 0.014 0.013 

db2 Qa,Qd2,Qd1 (3,6,1) 0.91 0.86 0.85 0.011 0.013 0.014 

db4 Qd2,Qd3,Qd1 (3,5,1) 0.91 0.85 0.86 0.011 0.015 0.015 
*Qt+1 is output variable. 
** Best result has been presented among several structures. 

Table 8. Results of Multi-step-ahead EWANN Modeling for the Delaney Creek and Payne Creek Sub-basins in Daily Time
Scale

Sub-basin 
Output varia-
ble* Structure** 

DC RMSE (normalized) 

Cal. Test Val. Cal. Test Val. 

Delaney Creek Qt+2 4-7-1 0.69 0.65 0.66 0.0191 0.0203 0.0201 

Qt+3 4-5-1 0.65 0.60 0.62 0.0201 0.0211 0.0208 

Qt+4 4-7-1 0.81 0.80 0.79 0.0182 0.0184 0.0186 

Qt+6 4-6-1 0.64 0.61 0.59 0.0197 0.0209 0.0212 

Qt+8 4-5-1 0.81 0.75 0.76 0.0185 0.0194 0.0193 

Qt+12 4-6-1 0.61 0.58 0.58 0.0200 0.0209 0.0208 

Qt+16 4-8-1 0.79 0.76 0.78 0.0188 0.0193 0.0191 

Payne Creek Qt+2 4-4-1 0.68 0.63 0.65 0.0193 0.0207 0.0204 

Qt+3 4-7-1 0.61 0.59 0.60 0.0202 0.0205 0.0204 

Qt+4 4-4-1 0.82 0.76 0.79 0.0181 0.0191 0.0188 

Qt+6 4-5-1 0.63 0.60 0.58 0.0207 0.0209 0.0211 

Qt+8 4-8-1 0.81 0.77 0.78 0.0189 0.0194 0.0191 

Qt+12 4-4-1 0.63 0.61 0.59 0.0205 0.0206 0.0207 

Qt+16 4-6-1 0.79 0.75 0.74 0.0187 0.0190 0.0192 
* The input variables for all of the models are identical (i.e., Qa, Qd2, Qd3 and Qd4). 
**The result has been presented for the best structure. 
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Qd2 and Qa in their input layer, they were the most dominant 
sub-series to develop daily model of the process. In other words, 

Qa (trend or approximation sub-series), Qd2 (22
 = 4 days) and 

Qd3 (23 = 8 days, approximately weekly) modes as dominant  

Figure 4. Uncertainty analysis to compare the structural features of seasonal models. 

Table 9. Comparison of Best Results Obtained by Different Models for Daily and Monthly Modeling of Delaney Creek and 
Payne Creek Sub-basins 

Sub-basin Modeling 
time scale 

Name and type of mode* Epoch 
No. 

Structure** DC RMSE (normalized) 

Cal. Test Val. Cal. Test Val. 

Delaney 
Creek 

Daily ARIMAX Linear -- (3, 0, 1)P(t) 0.76 0.68 0.69 0.021 0.022 0.022 

FFNN Non-linear 280 (3,8,1) 0.89 0.80 0.82 0.017 0.018 0.018 

WANN Seasonal 
non-linear 

770 (16,35,1) 0.93 0.83 0.88 0.008 0.017 0.015 

EWANN Optimum 
seasonal 
non-linear 

220 (5,9,1) 0.95 0.92 0.94 0.008 0.010 0.009 

Monthly ARIMAX Linear -- (3, 1, 2)P(t) 0.78 0.66 0.65 0.017 0.022 0.023 

FFNN Non-linear 170 (1,4,1) 0.81 0.73 0.73 0.018 0.019 0.019 

WANN Seasonal 
non-linear 

470 (8,18,1) 0.83 0.80 0.84 0.014 0.019 0.018 

EWANN Optimum 
seasonal 
non-linear 

210 (3,5,1) 0.95 0.90 0.89 0.008 0.011 0.011 

Payne 
Creek 

Daily ARIMAX Linear -- (3, 0, 1)P(t) 0.72 0.64 0.63 0.022 0.023 0.025 

FFNN Non-linear 320 (3,9,1) 0.77 0.73 0.74 0.019 0.019 0.019 

WANN Seasonal 
non-linear 

730 (16,38,1) 0.88 0.84 0.86 0.014 0.018 0.017 

EWANN Optimum 
seasonal 
non-linear 

230 (5,7,1) 0.92 0.89 0.91 0.010 0.011 0.010 

Monthly ARIMAX Linear -- (2, 1, 1)P(t) 0.63 0.55 0.54 0.021 0.023 0.023 

FFNN Non-linear 190 (1,3,1) 0.70 0.63 0.64 0.019 0.020 0.019 

WANN Seasonal 
non-linear 

380 (8,14,1) 0.87 0.81 0.83 0.014 0.018 0.017 

EWANN Optimum 
seasonal 
non-linear 

190 (3,5,1) 0.91 0.85 0.86 0.011 0.015 0.015 

*Qt+1 is output variable. 
** Best result has been presented among several structures.
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daily frequencies of the process, were more suitable than other 
sub-series to be used as input variables. It was remarkable that, 
Qd1 (21 = 2 months) and Qd3 (23 = 8 months) modes were re- 
cognized as dominant monthly frequencies of the process. It is 
also inferred from Table 7 that almost all of dominant inputs 
are belonged to the runoff sub-series. 

In order to evaluate the ability of EWANN method in long- 
term prediction horizon, the multi-step-ahead approach was 
also attached to EWANN model for both study areas. Accord-
ing to the climatic similarity of the study areas, the maximum 
reduction rate method determined Qa, Qd2 (22 = 4 days), Qd3 
(23 = 8 days) and Qd4 (24 = 16 days) modes sub-series as do- 
minant inputs of EWANN model among all potential sub-series 
resulted in wavelet-based decomposition utilizing Haar mother 
wavelet and decomposition level 7 (for instance) for daily data. 
To evaluate the authority of MI-based feature extraction me- 
thod in long term prediction, the determined dominant sub- 
series were imposed as inputs of multi-step-ahead EWANN 
model; and to survey the ability of the approach for detecting 
the frequencies involved in rainfall-runoff process, various lead 
time steps in runoff values were assumed as outputs of the mo- 
del. The values of efficiency criteria presented in Table 8 re-
confirm 4, 8 and 16 days modes as dominant daily frequencies 
of the process for both study areas as obtained in the multi- 
step-ahead FFNN modeling (see section 4.1). Comparison of 
the results tabulated in Tables 7 and 8 reveals that although 
the multi-step-ahead EWANN could increase the prediction 
horizon with regard to the FFNN model (see Table 3), the va-
lues of DC were deteriorated with regard to the single-step- 
ahead EWANN modeling. 

4.3. Comparison of the Models 

In order to evaluate the efficiency of the proposed daily 
and monthly models, a comparison among the best results of 
EWANN, classic FFNN, ad hoc WANN (without screening 
step) and classic ARIMAX(p,dd,q)P(t) models was also con-
ducted for both sub-basins and the results presented in Table 9. 

In this study, precipitation (P(t)) and antecedents of runoff 
data were used as inputs to predict future runoff as the output, 
moreover various values were examined as the ARIMAX para- 
meters p, q and d. Like other models, the ARIMAX model was 
first calibrated using the calibration and test data sets, and the 
calibrated model was then verified using the validation data. 
As an example, the ARIMAX(3, 0, 1)P(t) refers to a model 
that contains p = 3 autoregressive parameter and q = 1 moving 
average parameter, which were computed for the time series 
after it was differenced d = 0 times.  

Tabulated results in Table 9 indicate that the ARIMAX 
model, due to its linear inherence, was unable to reliably han-
dle complex non-linear rainfall-runoff process. Although ad 
hoc FFNN model was more efficient than the ARIMAX model, 
it only considers short term autoregressive features of the pro- 
cess and could not capture long-term frequency. Therefore it 
led to lower performance with compared when the FFNN was 
linked to wavelet and feature extraction concepts as EWANN 
model. 

According to the results presented in Table 9, because of 
several saasonalities involved in rainfall-runoff process, the 
structure of EWANN model is slightly complex than ad hoc 
FFNN model. Such complexity is acceptable since according 
to Table 9 drastically increased the values of DC and RMSE 
with regard to FFNN model. Furthermore, the basic superiority 
of the proposed EWANN approach over the WANN model is 
the optimum structure (the number of epochs and the neurons 
of input and hidden layers) of the model and thereinafter is the 
reduced numbers of modeling parameters (weights and bias). 
The other superiorities of the EWANN in comparison with cla- 
ssic WANN model are no necessity to the time consuming trial- 
error procedure to extract dominant sub-series and significant 
reduction in the noise of model due to the ability of entropy to 
detect the redundant information. 

As a statistical clarification on the structural optimization 
occurred in the EWANN approach over the classic WANN mo- 
del, an uncertainty analysis was performed on the best archite- 
ctures of models presented in Figure 4 (utilizing the outcomes 
of db4 mother wavelet for instance). According to Figure 4 al- 
though WANN models led to extensive limitation of confidence 
band, EWANN models could reach more performance with 
less input and hidden neurons (optimized structure). Figure 4 
clearly presents that confidence band of EWANN and WANN 
approaches overlap when the total numbers of input and hidden 
neurons were considered between 17 and 26. In such overlap-
ping limitation, lower confidence band of proposed EWANN 
was slightly better than mean of WANN outcomes, the fact di- 
rectly denote to the superiority of EWANN over WANN appr- 
oach. Furthermore, WANN because of high number of input 
layer (16 sub-series in the current study) could not reach sim-
ple structures.   

Although the study areas are climatically similar, the topo- 
graphy of the watersheds are markedly distinct (see section 
2.4). Therefore as tabulated in Table 7, the proposed EWANN 
method could handle the properties of the flat sub-basin (Dela- 
ney Creek) slightly accurately than the wild watershed (Payne 
Creek). EWANN models contain dominant MI-based sub-series 
as input neurons of model to have insight into physics of rain- 
fall-runoff process. Therefore Table 7 illustrates that in contrast 
to FFNN model (see Table 2) where the approach led to almost 
unreliable efficiency criteria for a sloppy and wild watershed 
(Payne Creek), the proposed EWANN approach could effecti- 
vely decrease undesirable effects of topographic variety of the 
study area. Consequently the extracted features of process (do- 
minant sub-series) could implicitly represent the physical con- 
ditions of the watersheds via a black box framework and cope 
with the topographic distinctions of the watersheds. 

On the other hand, time of concentration as a hydrologic 
quantity depends on physical parameters of catchment. It seems, 
time of concentration in both catchments (i.e., Delaney Creek 
and Payne Creek) have direct relation with the lag times of in- 
put time series in FFNN models, and applied subseries, which 
are indicators of frequencies in structure of rainfall and runoff 
time series, in inputs of EWANN models. It is expected that 
according to fairly similar time of concentration at both sub- 
basins (i.e., 230 minutes for Delaney Creek and 250 minutes 
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for Payne Creek), FFNN and EWANN models’ inputs for effi- 
cient DC criterion are the same, which the results in Tables 2 
and 7 admit this expectation. It is noted that since in black box 
rainfall-runoff modeling elimination of base flow from runoff 
hydrograph or calculation of excess rainfall is not needed, so 
that the proportion of times of concentrations for the catch-
ments in this study is determinant. If the modeling procedure 
is performed for an event of rainfall that excess rainfall hyeto- 
graph as well as direct runoff hydrograph have been computed, 
the lag times of models should be the same as concentration 
time not the proportion of concentration times.  

 

 
Figure 5. Validation daily data of dominant sub-series (derived 
by db4 mother wavelet and decomposition level 7) utilized in 
the EWANN model for the Delaney Creek Sub-basin. 

 
The obtained results also indicated the sufficiency of pro- 

posed wavelet-based feature extraction method using MI with 
regard to other used criteria (i.e., H, E and CC) to select domi- 
nant input variables for FFNN modeling of rainfall-runoff pro- 
cess. The nature of MI is similar to FFNN models; supervised 
and non-linear. CC is also a supervised criterion but can only 
detect linear correlation among data and is more appropriate 
for the linear models. Thus, in wavelet-based dominant feature 

extraction for FFNN-based rainfall-runoff modeling, CC could 
not perform as well as MI but slightly reliable than unsupervi- 
sed E and H criteria. 

Besides, it could be deduced that although the data pre- 
processing procedure by the wavelet transform can improve 
the performance of EWANN models in both time scales with 
regard to classic FFNN model, the percentage of this impro- 
vement is more considerable in monthly scale modeling for 
both study areas (as presented in Table 9, percentage of the im- 
provement in the EWANN modeling with regard to the FFNN 
approach is up to 23% for daily data and up to 35% in monthly 
time scale). Such outcome is reasonable since the autoregressive 
feature is more significant in the daily modeling whereas the 
frequency feature is dominant factor in the monthly modeling. 

The most effective result of EWANN model in daily mo- 
dels (for instance) was obtained via db4 mother wavelet, de-
composition level 7 and for the Delaney Creek Sub-basin with 
calibration, testing and validation DC values equal to 0.95, 0.92 
and 0.94, respectively. Figure 5 presents extracted dominant 
sub-series of validation data for the mentioned model (i.e., Qa, 
Qd2, Qd3 and Qd4) also the computed and observed runoff 
time series of the model for calibration, test and validation data 
sets have been presented in Figure 6. Furthermore, Figure 7 sh- 
ows the scatter plot of observed and computed runoff values. 
Both figures denote the good agreement between the observed 
and computed runoff values using the proposed EWANN mo- 
del. 

To evaluate the performance of FFNN and EWANN mo- 
dels in multi-step-ahead modeling of the process, tabulated re- 
sults in Tables 3 and 8 were compared. The link of wavelet and 
entropy concepts via the structure of multi-step-EWANN mo- 
del could represent the properties of watersheds and rainfall- 
runoff process and yielded to improved values of efficiency 
criteria with regard to multi-step-FFNN approach. Therefore, 
the multi-step-EWANN could efficiently cope with the frequ- 
encies involved in rainfall-runoff process.  

5. Concluding Remarks 

In this study, the wavelet transform was used to decompose 
the Delaney Creek and Payne Creek Sub-basins rainfall and 
runoff daily and monthly time series at decomposition levels 3 
and 7, respectively. Thereafter, the sub-series were ranked via 
two statistical entropy-based criteria (MI and H) and two classic 
criteria (CC and E) to determine dominant frequencies to be 
considered as the inputs of the FFNN to forecast runoff values. 
Four different measures (i.e., H, MI, CC and E) were led to di- 
fferent dominant sub-series in feature extraction step. The re- 
sults show merit of MI criterion (non-linear and supervised) to 
select dominant wavelet-based inputs in both daily and mon- 
thly types for the non-linear FFNN rainfall–runoff modeling.  

Ad hoc neural network models may simply be unable to 
cope with non-linearity and non-stationary if wavelet-based 
pre-processing of the input is not performed. Thus, the applied 
wavelet transform not only removes probable noise as a filter, 
but also distinguishes several features and frequencies invol- 
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Figure 6. Observed and computed daily runoff values by EWANN model for the Delaney Creek Sub-basin, (a) general 
view, (b) a detailed view. 

Figure 7. Scatter plots of the EWANN model for daily data of the Delaney Creek Sub-basin in a) Calibration, and b)
Validation, steps. 

fan
矩形

fan
矩形

fan
矩形

fan
矩形

fan
矩形

fan
线条



V. Nourani et al. / Journal of Environmental Informatics 26(1) 52-70 (2015) 

 

69 

ved in the process by decomposition of time series at different 
levels (scales). 

Although the monthly EWANN showed lower performa- 
nce with compared to daily EWANN model (may be due to 
more uncertainty involved in monthly data which could be de- 
tected by the concept of entropy), implication of wavelet ana- 
lysis was more beneficial in monthly modeling than daily si- 
mulation. The reason may be due to that the frequency is the 
most governed pattern in monthly rainfall-runoff time series 
whereas the autoregressive pattern is the main trait in the
daily time series 

According to Table 9 all forecasting models which are de- 
veloped for two sub-basins of the Delaney Creek and Payne 
Creek revealed more accurate results for Delaney Creek which 
involves flat topographic condition in comparison to Payne 
Creek. Since Payne Creek sub-basin includes the sloppy topo- 
graphy and wild situation of area with regard to the Delaney 
Creek sub-basin, the underlying physical parameters that are 
involved in transformation of rainfall to runoff are more com-
plex. In as much as the approach of the black box based models 
are to extract underlying pattern in data, the more complex the 
physical parameters, the difficult the pattern extraction. Accor- 
dingly, the black box based models (i.e., ARIMAX, FFNN, 
WANN, and EWANN) could deal efficiently with the data of 
flat sub-basin than sloppy wild sub-basin. Amongst the several 
black box models of current research EWANN model revealed 
the highest efficiency, but it is considerable that although results 
of evaluation criteria in EWANN model for Delaney Creek 
sub-basin with flat topography and subsequently less physical 
complexity, is slightly good in comparison to Payne Creek, the 
difference between these two outcomes (i.e., Delany Creek 
0.95 and Payne Creek 0.92 in daily DC calibration criterion) 
is not dominant. This denotes the capability of EWANN model 
in selecting appropriate inputs to cope with the complex phy- 
sical inherent of the Payne Creek sub-basin. 

The distinctive improvement of efficiency criteria and si- 
mplified structure of the proposed EWANN model (according 
to Table 9) were illustrated as preponderances of EWANN 
(single-step and multi-step-ahead) in comparison to the conven- 
tional FFNN (single-step and multi-step-ahead) and WANN 
models, respectively. Furthermore, EWANN methodology cou- 
ld decrease the undesirable effects of topographic variety on 
the performance of model which could be cited as the other 
authority of the proposed approach with regard to both of cla- 
ssic models.  

As a research plan and due to social and economic impor- 
tance of the study areas, it is suggested to couple the proposed 
ANN-based model to a geomorphology-based rainfall-runoff 
model (e.g., TOPMODEL, Nourani and Zanardo, 2014) to ha- 
ve a comprehensive semi-distributed rainfall-runoff modeling 
for the site. 
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