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ABSTRACT. Interval recourse linear programming (IRLP) is proposed for mitigating constraint violation problems in resources and 

environmental systems management (REM) under interval uncertainties. Based on a review of interval linear programming (ILP) and its 

significances to REM, two linear programming sub-models are employed to initialize a decision space in IRLP. The causes of constraint 

violation are examined based on identification of a violation criterion. Contraction ratios are defined after revelation of violation ranges 

of constraints. As a recourse measure to resolve constraint violation problems, another two linear programming sub-models are 

constructed given a series of contraction ratios. A hypercube decision space where infeasible solutions are excluded is obtained. A post-

optimality analysis is conducted to deal with the barriers for applying the IRLP approach to address real-world REM problems under 

interval uncertainties. A selected REM problem is introduced to demonstrate the procedures and effectiveness of the IRLP approach. 

Comparisons with existing ILP methods reveal that the IRLP approach is effective at avoiding constraint violation, reproducing the 

largest decision space which does not include infeasible solutions, and enhancing the reliability of decision support for REM. 
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1. Introduction 

It is common that properties of elements or influencing fa- 

ctors of resources and environmental management (REM) sys- 

tems are of interval uncertainties. Effective reflection of this sy- 

stem complexity in the decision support process is desired for 

assuring reliability of suggested management schemes and avo-

iding penalties to socio-economic and eco-environmental pro-

fits. One of representative approaches for achieving it is inter-

val linear programming (ILP). In the past decades, a number of 

ILP models which were mixtures of linear programming mode-

ls and interval-set coefficients were developed (e.g., Soyster, 

1973; Moore, 1979; Steuer, 1981; Huang et al., 1992; Sengupta 

and Pal, 2000; Sengupta et al., 2001; Hladık, 2012). Among 

them, the first ILP model that could reflect multiplicities of de-

cision alternatives under interval uncertainties was developed 

by Huang et al. (1992). Due to higher robustness than others in 

terms of approaching realities, it has been applied to many real-

world REM problems such as waste management (Chang et al., 

1997; Pires et al., 2011; Wu et al, 2015), water resources alloca-  
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tion (Maqsood et al., 2005; Li et al., 2008; Lv et al., 2010; Ni- 
koo et al., 2012), energy systems management (Lin et al., 2005; 
Cai et al., 2009; Dong et al., 2012; Li et al., 2014), and water 

quality management (Zeng et al., 2000; Guo et al., 2003; Jin et 
al., 2004; Qin et al., 2009; Nikoo et al., 2012; Hu et al., 2013; 
Liu et al., 2015). However, the effectiveness of the ILP method 
(Huang et al., 1992) is dependent with solution methods. 

Previously, many methods (e.g., Charnes et al., 1977; Ishi-
buchi and Tanaka, 1990; Huang et al., 1992; Tong, 1994; Inui-
guchi and Sakawa, 1995, 1997; Chanas and Kuchta, 1996; Sen-
gupta and Pal, 2000; Chinneck and Ramadan, 2000; Ben-Tal 
and Nemirovski, 2002; Inuiguchi et al., 2003; Bertsimas and 
Sim, 2004; Ben-Tal et al., 2009; Bertsimas and Brown, 2011; 
Gabrel et al., 2014) were developed for solving the ILP model 
(Huang et al., 1992). For instance, an ILP model could be equi-
valent to a robust linear programming (RLP) problem; a robust 
solution of which performances remained relatively unchanged 
when exposed to uncertain conditions (Beyer and Sendhoff, 
2007) could be obtained from a robust counterpart of the RLP 
model. Tong (1994), Levin (1994) and Chinneck and Ramadan 
(2000) proposed methods that could obtain the most optimistic 
decision scheme from a best-case sub-model and the most con-
servative one from a worst-case sub-model. These methods we-
re challenged by lack of abundant alternatives for decision ma-
king under interval uncertainties. To mitigate this challenge, 
Huang et al. (1992) proposed a two-step approach (TSA) in whi-
ch a continuous decision space could be provided for decision 
makers based on two correlated linear programming sub-mo-
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dels (denoted as ILP1 and ILP2). 

Zhou et al. (2008) pointed out that constraints might be 

violated by solutions in the decision space for TSA. According- 

ly, a modified interval linear programming (MILP) method, a 

three-step (ThS) method and a robust two-step (RTS) method 

were contributed by Zhou et al. (2008), Huang and Cao (2011) 

and Fan and Huang (2012), respectively, to deal with such a di-

fficulty and eliminate unexpected infeasibilities. In MILP, an 

additional constraint was coupled with constraints of sub-mo-

del ILP2 for avoiding violation of constraints. In the ThS me-

thod, another sub-model was constructed to constrict the initial 

decision space obtained from sub-models ILP1 and ILP2. Para-

meters constricting ratios of decision variables were introduced 

to reflect constricting ranges of initialized interval-set solu-

tions. They were optimized through the third sub-model subject 

to avoidance of constraint violation. In the RTS method, sub-

model ILP2 that focused on conservative schemes was solved 

prior to sub-model ILP1. A group of additional constraints was 

incorporated into the original sub-model ILP1 for avoiding oc-

currence of constraint violation. 

However, the constraint-violation problem of the TSA app- 

roach is not effectively resolved yet. Methods of MILP, ThS 

and RTS cannot reproduce the largest decision space which 

does not include infeasible solutions. Part of decision alternati- 

ves are neglected due to ineffectiveness of these methods. As 

one of representative strengthens of the TSA approach, a hyper- 

cube decision space that covers most alternative schemes for 

ILP problems under interval uncertainties can be identified. 

Failures to remain such strengthen as well as others may reduce 

reliability of optimization efforts, neglect desired schemes for 

decision makers of diverse preferences, and sacrifice potential 

optimality of real-world REM systems.  

Therefore, an interval recourse linear programming (IRLP) 

approach will be proposed in this study for mitigating cons-

traint violation and enhancing reliability of decision support for 

REM under interval uncertainties. In Section 2, a review of ILP 

models, the TSA approach and their significances to REM prob- 

lems will be conducted. As the first stage of IRLP, two linear 

programming sub-models ILP1 and ILP2 in TSA will be emp- 

loyed to initialize a decision space. Causes of constraint viola- 

tion will be examined based on identification of a violation cri- 

terion in Section 3. Contraction ratios will be defined after reve- 

lation of violation ranges of constraints. As a recourse measure 

to constraint violation problems, two linear programming sub-

models (ILP3 and ILP4) will be constructed in Section 4 given 

a series of contraction ratios. A hypercube decision space whe- 

re infeasible solutions are excluded through sub-models ILP3 

and ILP4 will be obtained for decision makers. Post-optimality 

analysis in Section 5 will help enhance adaptability of the IRLP 

approach to interval linear REM problems of various complexi-

ties. In Section 6, an REM problem that can be characterized as 

an ILP model will be introduced to demonstrate procedures and 

effectiveness of the proposed IRLP approach. Strengthens of 

the IRLP approach for REM problems will be revealed from 

comparisons with existing ILP methods in Section 7. Its short-

comings and potential solution strategies will also be exami-

ned. 

2. Review of Interval Linear Programming 

2.1. Characterization of REM systems 

Properties of elements or influencing factors in real-world 

REM systems may be of uncertainties due to ineffectiveness of 

estimation techniques, inaccuracy of data monitoring, vague- 

ness of subjective evaluation, unpredictability of system noises, 

or other potential causes. One of possible cases is that the only 

reliable estimation of these properties is a series of fluctuation 

ranges of which the distributional information is unknown. For 

example, rates of nitrogen use in Canada ranged from 25 to 225 

kg/ha in 2000 (http://www.fao.org), and the growth of energy 

demand in Canada will range from 0.3 to 1.4% per year as esti-

mated by the National Energy Board (http://www.neb-one.gc.c 

a/index-eng.html). 

These properties of interval uncertainties can be expressed 

as interval sets (Huang et al., 1992) that are defined as closed 

and bounded sets of real numbers. One representative characte-

ristic is that the distributional information is unknown for any 

real number in interval sets. Reflection of these properties in 

other forms, e.g., real numbers, random variables, fuzzy sets or 

their combinations, would decrease robustness of the construc- 

ted programming model. Simplification of interval sets into 

constants may lead to loss of valuable information (i.e., bounda- 

ries of properties). Other uncertainty analysis methods such as 

stochastic analysis and fuzzy set theory can barely reflect these 

properties. Artificially assumed information that does not exist 

would be adulterated into the optimization process if interval 

uncertainties are interpreted as random variables with probabi- 

lity density functions, fuzzy sets with membership functions, or 

more complex forms such as random fuzzy sets or fuzzy ran- 

dom variables. 

Coupling interval sets with linear programming models 

leads to a range of interval linear programming (ILP) models 

(Steuer, 1981; Huang et al., 1992; Sengupta and Pal, 2000; Sen-

gupta et al., 2001; Hladık, 2012). Coefficients in both the objec-

tive function and constraints of ILP models can be interval sets. 

It is of low reliability that a deterministic solution is provided 

for decision making under interval uncertainties. The solution 

can hardly reflect the trade-off between system optimality and 

constraint-violation risks. A solution which is a set of interval 

sets is desired for ILP problems. Accordingly, a generalized ILP 

model is an LP model where both coefficients and decision va- 

riables are interval sets. The first generalized ILP model is pro- 

posed by Huang et al. (1992) based on interval analysis. Accor- 

ding to (Huang et al., 1992), an ILP model can be formulated 

as: 

 
Max F± = C±X±          (1-1) 
 
subject to 
 
A±X± ≤ b±           (1-2) 
 
X± ≥ 0           (1-3) 
 

where X± = {xj
±}n×1, C± = {cj

±}1×n, A± = {ai j
±}m×n, b± = {bi

±}m×1; 
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positive integers n and m are numbers of decision variables 

{xj
±} and constraints (1-2), respectively; for any i ∈ {1, 2, …, 

m} and j ∈ {1, 2, …, n}, coefficients cj
±, ai j

± and bi
± are interval 

sets of which values range from a real-valued lower bound to a 

real-valued upper bound without distribution information (Hu- 

ang et al., 1992); the lower and upper bounds of interval sets 

are denoted as symbols − and +, respectively; decision variables 

{xj
± | j = 1, 2, …, n} as well as the objective function value (F±) 

are also interval sets due to interval uncertainties of coefficien- 

ts; 0 = {0}n×1; and the programming objective is to maximize 

the value range of objective function F±. 

 

2.2. Principle of ILP Solution Algorithm 

Suppose s± = [s−, s+] be any interval set. Any real value be- 

longing to s±, e.g., s ∈ [s−, s+], is defined as a whitened value of 

s± (Huang et al., 1992). Any interval-set coefficient (e.g., cj
±, ai j

± 

or bi
±) in ILP model (1) can be whitened as any real value wi- 

thin its boundaries. For any combination of whitened values of 

interval-set coefficients (abbreviated as whitened coefficients), 

there might be an optimal solution that can optimize objective 

function (1-1) subject to whitened constraints. Infiniteness of 

parameter combinations leads to that of optimal solutions. All 

optimal solutions constitute a decision space which is denoted 

as DILPMax. For any solution in DILPMax, it is optimal for at 

least one combination of whitened coefficients. All decision al- 

ternatives for management under interval uncertainties are lo- 

cated in DILPMax. However, DILPMax is an irregular space 

which is hardly intuitive for decision makers. There are compli- 

cated interactive relationships among best solutions of all deci- 

sion variables. In contrast, a hypercube decision space in which 

alternatives of any decision variable fluctuate within a range 

and are independent with that of other decision variables is of 

higher applicability for engineering practices.  

Potential methods are to contract or extend DILPMax to a 

hypercube space. Let the hypercube space obtained from two 

operations be denoted as DILPHL and DILPHU, respectively. 

We have DILPHL ⊆ DILPMax and DILPMax ⊆ DILPHU. Let 

the difference between decision spaces DILPMax and DILPHU 

be denoted as DILPMU. For any solution in DILPMU, there 

does not exist a combination of whitened coefficients for which 

it is the optimal solution. Equivalently, it may be a conservative 

solution that correspond to over-satisfaction of constraints and 

waste of optimality. It may also be a radical solution that imp- 

lies violation of constraints and potentials of penalties. Local 

optimality is disabled for solutions in DILPMU. They should 

be excluded from the final decision space. In comparison, any 

solution in decision space DILPHL remains being optimal for 

at least one combination of whitened coefficients. Contraction 

of DILPMax to a hypercube space is more desired for real-wor- 

ld REM problems. 

As the first attempt to obtain a hypercube decision space 

for ILP problems through contraction of DILPMax, Huang et 

al. (1992) developed a two-step approach (TSA). Prior to pre- 

sentation of formulations of TSA in the next sub-section, mul- 

tiple assumptions on which reliability of the TSA approach re- 

lies and which are inherent with most real-world ILP systems 

are summarized as follows. These assumptions are also requi- 

red for the proposed IRLP approach. 

Assumption 1: Zero is not included in all interval coeffi- 

cients such as {cj
± | j = 1, 2, …, n}, {ai j

± | i = 1, 2, …, m; j = 1, 

2, …, n} and {bi
± | i = 1, 2, …, m} unless it is the lower or upper 

bound. Namely, the product of bounds of any interval coeffici- 

ent is not less than zero. 

Assumption 2: Values of any decision variable are none- 

gative. It holds for all interval sets that the lower bound is not 

greater than the upper bound. Thus, we can have both the lower 

bound and the upper bound of interval-valued decision variable 

xj
± (j = 1, 2, …, n) are not less than zero as stated by constraints 

(1-3). 

Assumption 3: Let the set of all interval coefficients in 

ILP model (1) be denoted as IC, i.e., IC = {cj | cj
− ≤ cj ≤ cj

+; j = 

1, 2, …, n} ∪ {ai j | ai j
− ≤ ai j ≤ ai j

+; i = 1, 2, …, m; j = 1, 2, …, 

n} ∪ {bi | bi
− ≤ bi ≤ bi

+; i = 1, 2, …, m}. For any two different 

elements in IC, they would fluctuate within corresponding in- 

terval bounds independently. 

Assumption 4: There is at least one optimal solution for 

any combination of all coefficients in ILP model (1) as the fluc- 

tuation of coefficients within interval bounds. This is equiva- 

lent to the existence of at least one feasible solution for any 

combination of coefficients {ai j
± | i = 1, 2, …, m; j = 1, 2, …, 

n} and {bi
± | i = 1, 2, …, m} in constraints (1-2) subject to con- 

straints (1-3). 

Assumption 5: It holds for interval coefficients in the ob- 

jective function (1-1) that cj
± ≥ 0 (for j = 1, 2, …, k) and cj

± < 0 

(for j = k + 1, k + 2, …, n) where k ∈ {1, 2, …, n}. This could 

be achieved by reordering decision variables and correspond- 

dingly coefficients if this assumption cannot be directly satis- 

fied. 

 

2.3. Initialization of Decision Space 

Based on analysis of interactions among decision varia- 

bles, coefficients and the objective function under interval un- 

certainties, two interactive LP sub-models, as an equivalence 

of the initial ILP model, are constructed on the basis of assum- 

ptions 1 to 5. The first sub-model (denoted as ILP1) can be for- 

mulated as: 

 

max F+ = ∑ j ∈ J₁ (cj
+∙xj

+) + ∑ j ∈ J₂ (cj
+∙xj

−)      (2-1) 

 

subject to 

 

∑ j ∈ J₁ (sign(ai j
±)∙|ai j

±|−∙xj
+)  

+ ∑ j ∈ J₂ (sign(ai j
±)∙|ai j

±|+∙xj
−)        (2-2) 

≤ bi
+ for any i ∈ I   

 

xj
+ ≥ 0 for any j ∈ J₁         (2-3) 

 

xj
− ≥ 0 for any j ∈ J₂         (2-4) 

 

where symbols − and + denote the lower and upper bounds of 

interval sets, respectively; I = {1, 2, …, m}, J₁ = {1, 2, …, k}, 
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J₂ = {k + 1, k + 2, …, n}, and J = {1, 2, …, n}; sign function 

sign(ai j
±) equals to 1 if and only if ai j

+ ≥ ai j
− ≥ 0, and equals to 

−1 if and only if ai j
− < ai j

+ < 0; |ai j
±| is the absolute value of 

interval coefficient ai j
± (i ∈ I; j ∈ J); |ai j

±| = [ai j
− , ai j

+] if ai j
+ ≥ 

ai j
− ≥ 0, and |ai j

±| = [−1·ai j
+ , −1·ai j

−] if 0 ≥ ai j
+ ≥ ai j

−; decision 

variables are upper bounds of the first k interval decision vari- 

ables in ILP model (1), i.e., xj
+ (j ∈ J₁), as well as lower bounds 

of the latter (n − k) ones, i.e., xj
− (j ∈ J₂). 

Model ILP1 is a crisp linear programming model. All coe- 

fficients in either the objective function (2-1) or constraints (2-

2) are constants instead of interval sets. The simplex method 

(Dantzig, 1963), as an efficient algorithm for linear program- 

mming problems, is employed to solve LP model ILP1. Let the 

optimum values of decision variables be denoted as xjopt
+ (j ∈ 

J₁) and xjopt
− (j ∈ J₂). The corresponding objective function va- 

lue (denoted as Fopt
+) can be obtained by Fopt

+ = ∑ j ∈ J₁ (cj
+∙xjopt

+) 

+ ∑ j ∈ J₂ (cj
+∙xjopt

−). Solutions of model ILP1 are preferred by opti- 

mistic decision makers who pursue higher system optimality 

while taking higher constraint-violation risks. Based on solu- 

tions xjopt
+ (j ∈ J₁) and xjopt

− (j ∈ J₂), the second sub-model (de- 

noted as ILP2) can be formulated as: 

 

max F− = ∑ j ∈ J₁ (cj
−∙xj

−) + ∑ j ∈ J₂ (cj
−∙xj

+)        (3-1) 

 

subject to  

 

∑ j ∈ J₁ (sign(ai j
±)∙|ai j

±|+∙xj
−)  

+ ∑ j ∈ J₂ (sign(ai j
±)∙|ai j

±|−∙xj
+)        (3-2) 

≤ bi
− for any i ∈ I   

 

xjopt
+ ≥ xj

− ≥ 0 for any j ∈ J₁       (3-3) 

 

xj
+ ≥ xjopt

− for any j ∈ J₂        (3-4) 

 

where symbols − and +, sign functions sign(ai j
±), and absolute 

values of interval coefficients (i.e., |ai j
±|) are defined as that in 

model ILP1; decision variables are lower bounds of the first k 

interval decision variables in ILP model (1), i.e., xj
− (j ∈ J₁), as 

well as upper bounds of the latter n − k ones, i.e., xj
+ (j ∈ J₂).  

The connection between models ILP1 and ILP2 is reflec- 

ted by constraints (3-3) and (3-4). For any interval-valued deci- 

sion variable xj
± (j ∈ J), the lower bound (xj

−) cannot be greater 

than the upper one (xj
+) although they are obtained from two 

separate models. This connection is necessary for guaranteeing 

continuity of the initial decision space. Model ILP2 is also a 

deterministic linear programming model without interval coe- 

fficients. The simplex method (Dantzig, 1963) is employed 

again for obtaining the optimum values of decision variables. 

Let them be denoted as xjopt
− (j ∈ J₁) and xjopt

+ (j ∈ J₂). Let the 

resulting objective function value be denoted as Fopt
−. It equals 

to ∑ j ∈ J₁ (cj
−∙xjopt

−) + ∑ j ∈ J₂ (cj
−∙xjopt

+). These solutions represent 

lower system optimality and lower constraint-violation risks, 

thus they are pursued by conservative decision makers. 

Coupling optimal solutions of sub-models ILP1 and ILP2 

leads to the optimum interval-set solution (denoted as xjopt
± whe- 

re j ∈ J) of decision variables. For any j ∈ J, we can have xjopt
± 

= [xjopt
−, xjopt

+] where xjopt
− and xjopt

+ are obtained from interact- 

tive LP models ILP1 and ILP2. For example, x1opt
± = [x1opt

−, 

x1opt
+] where x1opt

− and x1opt
+ are obtained from ILP2 and ILP1, 

respectively. For ILP model (1), the initial decision space ob- 

tained from models ILP1 and ILP2 is {(x1, x2, …, xn) | xj ∈ [xjopt
−, 

xjopt
+] for j ∈ J}. Let it be denoted as IDS. 

 

2.4. Significance of ILP 

Due to high reliability on providing desired decision sche- 

mes for ILP problems, the ILP model and the TSA approach ha- 

ve been extended to planning of a large number of resources 

and environmental programming problems under interval un- 

certainties and other system complexities. Among them, repre- 

sentative ones included, but not limited to, the followings: 

(a) Waste management (Huang et al., 1992; Chang et al., 

1997; Maqsood and Huang, 2003; Huang et al., 2005a; Huang 

et al., 2005b; Pires et al., 2011; Sun et al., 2013; Wu et al, 2015; 

Xu et al., 2014),  

(b) Water resources allocation (Chang et al., 1997; Wu et 

al., 1997; Huang and Loucks, 2000; Maqsood et al., 2005; Li et 

al., 2008; Lv et al., 2010; Zhang et al., 2011; Nikoo et al., 20- 

12; Miao et al., 2014),  

(c) Energy systems management (Lin et al., 2005; Cai et 

al., 2009; Dong et al., 2012; Li et al., 2014; Hu et al., 2014),  

(d) Air quality control (Huang, 1992; Liu et al., 2003; Li 

et al., 2006; Lu et al., 2008; Qin et al., 2010; Wang and Huang, 

2013; Shao et al., 2014),  

(e) Flood mitigation (Xia et al., 2001),  

(f) Water quality management (Huang, 1996; Zeng et al., 

2000; Guo et al., 2003; Jin et al., 2004; Qin et al., 2009; Nikoo 

et al., 2012; Hu et al., 2013; Liu et al., 2015),  

(g) Eutrophication control (Huang et al., 2012),  

(h) Land-use planning (Huang et al., 1998; Han et al., 20- 

13; Xu et al., 2014; Ni et al., 2014; Zhang et al., 2014),  

(i) Resources management (Xia et al., 2001; Nasiri and 

Huang, 2007; Li et al., 2011; You et al., 2014; Wang et al., 

2014; Niu et al., 2014),  

(j) Carbon dioxide trading planning (Li et al., 2011; Chen 

et al., 2013; Zhu et al., 2015), and  

(k) Transportation planning (Nasiri et al., 2009; Yan et al., 

2010; Tan et al., 2011). 

The initial decision space (IDS) is an n-dimension hyper- 

cube. It is supposed that there is at least one combination of 

whitened coefficients, i.e., an element {C, A, b} of set {{{cj}
1×n, 

{ai j}
m×n, {bi}

m×1} | cj
− ≤ cj ≤ cj

+ for j ∈ J; ai j
− ≤ ai j ≤ ai j

+ for i ∈ I 

and j ∈ J; bi
− ≤ bi ≤ bi

+ for i ∈ I}, such that X0 is the optimal 

solution for max{CX | AX ≤ b; X ≥ 0} where X0 is any combi- 

nation of decision variables belonging to IDS. This can be defi- 

ned as continuity of the initial decision space. In comparison 

with discrete interval linear programming (DILP) methods 

(e.g., robust linear programming) where only one or two discre- 

te decision schemes could be obtained, more alternatives can 

be provided by the initial continuous decision space for deci- 
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sion making under interval uncertainties. One-sidedness of a 

single decision scheme in DILP can be avoided through intro- 

duction of interval-set decision variables and proposition of the 

TSA approach. This is helpful for increasing reliabilities of ILP 

methods for real-world ILP problems in which decision makers 

are diversified in preferences. In addition, evaluation of appli- 

cation efficiencies indicates that the ILP model is capable of 

effectively reflecting interval uncertainties in ILP problems, in- 

corporating them into the optimization process, and enhancing 

robustness of related modeling efforts.  

 

3. Violation Analysis 

3.1. Violation Criterion and Ranges 

As stated above, two optimal solutions are obtained from 

the simplex method on two correlated LP sub-models. The ini- 

tial decision space (i.e., IDS) is constructed by coupling them 

together. In addition to the two solutions, infinite solutions are 

included in IDS. It is possible that constraints of either sub-mo- 

del are violated by solutions in IDS, of which the occurrence 

likeliness varies with sub-models ILP1 and ILP2. Sub-model 

ILP1 aims to obtain an optimistic solution of ILP model (1) un- 

der continuity of the initial decision space and intervalness of 

system properties. The solution is preferred by decision makers 

who pursue high system profits under high risks of constraint 

violation. In contrast, sub-model ILP2 is developed for identi- 

fying a scheme desired for conservative decision makers who 

prefer to mitigate constraint violation risks at the cost of high 

system profits. A few of solutions in IDS may violate constrain- 

ts of sub-model ILP1, which may lead to high penalties because 

of optimism of ILP1. As for sub-model ILP2, constraint viola- 

tion may hold for more solutions in IDS, and the average penal- 

ty is lower than sub-model ILP1 due to conservativeness of su- 

b-model ILP2. High penalties from constraint violation of sub-

model ILP1 are usually unaffordable in real-world manage- 

ment problems under interval uncertainties. Therefore, the cri- 

terion of constraint violation of ILP model (1) is identified as 

violation of constraints of sub-model ILP1 in this study. The 

criterion can be others such as violation of constraints that cor- 

respond to the highest system optimality or security, which will 

be examined in future studies. 

Assumption 6: The criterion of constraint violation of ILP 

model (1) is violation of constraints of sub-model ILP1 for all 

solutions in the initial decision space.  

Let the left-hand side of sub-model ILP1 (2) be abbrevia- 

ted as (Ai
±X±)C, i.e., (Ai

±X±)C = ∑ j ∈ J₁ (sign(ai j
±)∙|ai j

±|−∙xj) + ∑ j ∈ J₂ 

(sign(ai j
±)∙|ai j

±|+∙xj) for any i ∈ I. Inequalities (2-2) are equiva- 

lent to (Ai
±X±)C ≤ bi

+ for any. Let SIGp() and SIGn() be sign fun- 

ctions of coefficients ai j
± (i ∈ I and j ∈ J). For any i ∈ I and j ∈ 

J, SIGp(ai j
±) = 1 and SIGn(ai j

±) = 0 if ai j
± ≥ 0, and SIGp(ai j

±) = 

0 and SIGn(ai j
±) = −1 if ai j

± < 0. Inequalities (2-2) are equivalent 

with ∑ j ∈ J₁ (SIGp(ai j
±)∙|ai j

±|−∙xj
+) + ∑ j ∈ J₁ (SIGn(ai j

±)∙|ai j
±|−∙xj

+) + 

∑ j ∈ J₂ (SIGp(ai j
±)∙|ai j

±|+∙xj
−) + ∑ j ∈ J₂ (SIGn(ai j

±)∙|ai j
±|+∙xj

−) ≤ bi
+ for 

any i ∈ I. With fluctuation of decision variables within initial 

decision space IDS, i.e., {(x1, x2, …, xn) | xj ∈ [xjopt
−, xjopt

+] for j 

∈ J}, the left-hand side of inequalities (2-2) can be maximized 

at ∑ j ∈ J₁ (SIGp(ai j
±)∙|ai j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn(ai j

±)∙|ai j
±|−∙ xjopt

−) + 

∑ j ∈ J₂ (SIGp(ai j
±)∙|ai j

±|+∙xjopt
+) + ∑ j ∈ J₂ (SIGn(ai j

±)∙|ai j
±|+∙ xjopt

−) whe-

re i ∈ I. Namely, Max{∑ j ∈ J₁ (SIGp(ai j
±)∙|ai  j

±|−∙xjopt) + ∑ j ∈ J₁ (SIGn 

(ai j
±)∙|ai j

±|−∙xjopt) + ∑ j ∈ J₂ (SIGp(ai j
±)∙|ai j

±|+∙xjopt) + ∑ j ∈ J₂ (SIGn(ai j
±) 

∙|ai j
±|+∙xjopt) | (x1, x2, …, xn) ∈ IDS} = ∑ j ∈ J₁ (SIGp(ai j

±)∙|ai  j
±|−∙xjopt

+) 

+ ∑ j ∈ J₁ (SIGn(ai j
±)∙|ai j

±|−∙xjopt
−) + ∑ j ∈ J₂ (SIGp(ai j

±)∙|ai j
±|+∙xjopt

+) + 

∑ j ∈ J₂ (SIGn(ai j
±)∙|ai j

±|+∙xjopt
−) for any i ∈ I. Therefore, violation 

of the ith (i ∈ I) constraint of model ILP1 is equivalent with ∑ 

j ∈ J₁ (SIGp(ai j
±)∙|ai j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn(ai j

±)∙|ai j
±|− ∙xjopt

−) + ∑ j ∈ J₂ 

(SIGp(ai j
±)∙|ai j

±|+∙xjopt
+) + ∑ j ∈ J₂ (SIGn(ai j

±)∙|ai j
±|+∙ xjopt

−) > bi
+. 

Let violated constraints be denoted as a set IV = {i(1), i(2), 

…, i(V)} where V ∈ V and V = {1, 2, ..., m}. For any v ∈ V, the 

i(v)th constraint in the first sub-model (2) is violated. Equiva- 

lently, we have ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn 

(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
−) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙xjopt

+) + ∑ j ∈ J₂ 

(SIGn(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) > bi(v)

+ for any v ∈ V. 

Definition 1: The violation range of the i(v)th constraint, 

denoted as VRi(v), is the range of the right-hand coefficient (i.e., 

bi(v)
+) being violated by the maximum value of (Ai

±X±)C. It equa-

ls to VRi(v) = ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn(ai(v)j

±) 

∙|ai(v)j
±|−∙xjopt

−) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
+) + ∑ j ∈ J₂ (SIGn 

(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) − bi(v)

+ for any v ∈ V. 

 

3.2. Contraction Ranges 

To mitigate the problem of constraint violation in the ini- 

tial decision space, violation range VRi(v) should be contracted 

as zero for any v ∈ V. This can be achieved through contraction 

of four groups of decision variables, i.e.: i) the upper bound of 

the first k interval decision variables with non-negative techni- 

cal coefficients (i.e., xjopt
+ where j ∈ J₁ and ai(v)j

± ≥ 0); ii) the lo- 

wer bound of the first k interval decision variables with nega- 

tive technical coefficients (i.e., xjopt
− where j ∈ J₁ and ai(v)j

± < 0); 

iii) the upper bound of the last n − k interval decision variables 

with non-negative technical coefficients (i.e., xjopt
+ where j ∈ J₂ 

and ai(v)j
± ≥ 0); and iv) the lower bound of the last n − k interval 

decision variables with negative coefficients (i.e., xjopt
− where j 

∈ J₂ and ai(v)j
± < 0). For the convenience of expression in the 

followings, the first and fourth groups of decision variables are 

denoted as type-II decision variables, and the other two groups 

as type-I decision variables.  

Let solutions after contraction be denoted as xjopt*
± (j ∈ J). 

The i(v)th (v ∈ V) constraint in model ILP1 is not violated if 

and only if ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt*
+) + ∑ j ∈ J₁ (SIGn(ai(v)j

±) 

∙|ai(v)j
±|−∙xjopt*

−) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt*
+) + ∑ j ∈ J₂ (SIGn 

(ai(v)j
±)∙|ai(v)j

±|+∙xjopt*
−) ≤ bi(v)

+. Therefore, the overall contraction 

range of the second and third groups of decision variables in 

(Ai(v)
±X±)C, denoted as SRi(v)1, equals to ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|− 

∙(xjopt
− − xjopt*

−)) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+ − xjopt*

+)). The 

maximum value of SRi(v)1, i.e., the type-I maximum contraction 

range of (Ai(v)
±X±)C (abbreviated as MSR1i(v)), is MSR1i(v) = ∑ j ∈ J₁ 

(SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
− − xjopt

+)) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+ 

∙(xjopt
+ − xjopt

−)). Similarly, the overall contraction range of the 

first and fourth groups of decision variables in (Ai(v)
±X±)C, deno-
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ted as SRi(v)2, equals to ∑ j ∈ J₁ (SIGp( ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
+ − xjopt*

+)) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
− − xjopt*

−)). Its maximum value 

is ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙ (xjopt
+ − xjopt

−)) + ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙ 

|ai(v)j
±|+∙(xjopt

− − xjopt
+)), which is named as the type-II maximum 

contraction range of (Ai(v)
± X±)C and abbreviated as MSR2i(v). 

Proposition 1: 

(a) VRi(v) ≤ MSR1i(v) for any v ∈ V; 

(b) VRi(v) = MSR1i(v) if and only if (Ai(v)
±X±)C = bi(v)

+ (v ∈ V); 

(c) SRi(v)1 + SRi(v)2 ≥ VRi(v) for any v ∈ V; 

(d) SRi(v)1 ≤ MSR1i(v) for any v ∈ V; and 

(e) SRi(v)2 ≤ MSR2i(v) for any v ∈ V. 

Proof:  

(a) For any v ∈ V, MSR1i(v) − VRi(v) = {∑ j ∈ J₁ (SIGn(ai(v)j
±)∙ 

|ai(v)j
±|− ∙(xjopt

− − xjopt
+)) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙(xjopt

+ − xjopt
−) 

)} − {∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt)
+ + ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|− 

∙xjopt
−) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙xjopt

+) + ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙ 

|ai(v)j
±|+∙xjopt

−) − bi(v)
+} that can be simplified as bi(v)

+ − ∑ j ∈ J₁ (SIGp 

(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+) − ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|−∙ xjopt

+) − ∑ j ∈ J₂ 

(SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) − ∑ j ∈ J₂ (SIGn(ai(v)j

±)∙ |ai(v)j
±|+∙xjopt

−). 

Since the i(v)th constraint is violated for initialized solutions, 

we have ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙ 

|ai(v)j
±|−∙xjopt

+) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) + ∑ j ∈ J₂ (SIGn 

(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) ≤ bi(v)

+. Equivalently, VRi(v) ≤ MSR1i(v) for 

any v ∈ V. 

(b) For any v ∈ V, it is equivalent with VRi(v) = MSR1i(v) that 

∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+) + ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|−∙ 

xjopt
+) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙xjopt

−) + ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙ 

|ai(v)j
±|+∙xjopt

−) = bi(v)
+. From formulations of (Ai(v)

±X±)C, we can 

have that (Ai(v)
±X±)C = bi(v)

+. 

(c) For any v ∈ V, SRi(v)1 + SRi(v)2 − VRi(v) = {∑ j ∈ J₁ (SIGn 

(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
− − xjopt*

−)) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+ 

− xjopt*
+))} + {∑ j ∈ J₁ (SIGp(ai(v)j

±)∙|ai(v)j
±|−∙(xjopt

+ − xjopt*
+)) + ∑ j ∈ J₂ 

(SIGn(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
− − xjopt*

−))} − {∑ j ∈ J₁ (SIGp(ai(v)j
±)∙ 

|ai(v)j
±|−∙xjopt

+) + ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
−) + ∑ j ∈ J₂ (SIGp 

(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
+) + ∑ j ∈ J₂ (SIGn(ai(v)j

±)∙|ai(v)j
±|+∙xjopt

−) − bi(v)
+} 

which is equivalent with bi(v)
+ − [∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|−∙ 

xjopt*
−) + ∑ j ∈ J₁ (SIGp(ai(v)j

±)∙|ai(v)j
±|−∙xjopt*

+) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙ 

|ai(v)j
±|+∙xjopt*

+) + ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙xjopt*
−)]. From the 

definition of solutions after contraction (i.e., {xjopt*
±}1×n), we ha- 

ve ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt*
+) + ∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|− 

∙xjopt*
−) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙xjopt*

+) + ∑ j ∈ J₂ (SIGn(ai(v)j
±) 

∙|ai(v)j
±|+∙xjopt*

−) ≤ bi(v)
+ for any v ∈ V. Thus, SRi(v)1 + SRi(v)2 ≥ VRi(v) 

holds for any v ∈ V. 

(d) For any v ∈ V, MSR1i(v) − SRi(v)1 = {∑ j ∈ J₁ (SIGn(ai(v)j
±)∙ 

|ai(v)j
±|−∙(xjopt

− − xjopt
+)) + ∑ j ∈ J₂ (SIGp(ai(v)j

±)∙|ai(v)j
±|+∙(xjopt

+ − 

xjopt
−))} − {∑ j ∈ J₁ (SIGn(ai(v)j

±)∙|ai(v)j
±|−∙(xjopt

− − xjopt*
−)) + ∑ j ∈ J₂ 

(SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+ − xjopt*

+))} which is equivalent with 

∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt*
− − xjopt

+)) + ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙ 

|ai(v)j
±|+∙(xjopt*

+ − xjopt
−)). Since xjopt*

− ∈ [xjopt
−, xjopt

+] as well as 

xjopt*
+ ∈ [xjopt

−, xjopt
+] for any j ∈ J, xjopt*

− ≤ xjopt
+ and xjopt*

+ ≥ xjopt
−. 

Based on definitions of sign functions SIGp() and SIGn(), we 

have ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt*
− − xjopt

+)) + ∑ j ∈ J₂ (SIGp 

(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt*
+ − xjopt

−)) ≥ 0. Accordingly, SRi(v)1 ≤ 

MSR1i(v) for any v ∈ V. 

(e) Similarly, inequality SRi(v)2 ≤ MSR2i(v) can be deduced 

from the relationship between xjopt
± and xjopt*

± and definitions of 

sign functions.               

 

3.3. Contraction Ratios 

For any violated constraint (v ∈ V), the overall contraction 

range of four groups of decision variables, i.e., SRi(v)1 + SRi(v)2, 

should be greater than or equal to violation range VRi(v). It is 

implied that the violation problem of any single constraint (v ∈ 

V) can be mitigated by infinite alternatives. There is a tradeoff 

between contraction ranges SRi(v)1 and SRi(v)2 for any violated 

interval-coefficient constraint. The number of possible contrac- 

tion schemes for all violated constraints further increases with 

V exponentially. Therefore, an index named as contraction ra- 

tio is proposed to eliminate differences of violation ranges be-

tween violated constraints. It is defined as normalization of con- 

traction ranges. 

Definition 2: For any v ∈ V, the contraction ratio of type-

I decision variables is SRAi(v)1 = SRi(v)1 / VRi(v), while that of ty-

pe-II decision variables is SRAi(v)2 = SRi(v)2 / VRi(v). 

The contraction ratio can be defined as other forms. Defi -

nition 2 is aimed to intuitively reflect the relationship between 

parameter values (0/1) and contributions (zero/full) of contrac- 

tion range for violation range and to avoid complicated sub-

models. This is helpful for facilitating engineering practices. 

Besides, the value range of contraction ratios ri(v) (v ∈ V) is a 

closed interval [1 − MSR2i(v) / VRi(v), 1] if MSR2i(v) ≤ VRi(v); other- 

wise, it equals to [0, 1]. According to the definition of contrac- 

tion ratios, we can have the following corollary. 

Corollary 1: If any violated constraint v ∈ V is satisfied 

after contraction, then 

(a) 0 ≤ SRAi(v)1 ≤ 1 if (Ai(v)
±X±)C = bi(v)

+; 

(b) 0 ≤ SRAi(v)2 ≤ MSR2i(v)/VRi(v); and 

(c) SRi(v)2 ≥ VRi(v)∙(1 − r) if SRAi(v)1 ≥ r (r ∈ [0, 1]).   

Proof: Straightforward from definitions of parameters su- 

ch as SRAi(v)1, SRAi(v)2, MSR1i(v), MSR2i(v), VRi(v), SRi(v)1 and SRi(v)2 

and their relationships as stated in proposition 1. 

 

4. Contraction of Initial Decision Space 

4.1. Contraction of Optimistic Solutions 

Given a set of minimum contraction ratios ri(v) for violated 

constraints (v ∈ V), the satisfaction of violated constraints after 

contraction is equivalent with the following inequalities: (a) 

SRAi(v)1 ≥ ri(v) for any v ∈ V, (b) SRAi(v)2 ≥ 1 − ri(v) for any v ∈ V, 

(c) xjopt*
± ∈ xjopt

± for any j ∈ J, and (d) xjopt*
− ≤ xjopt*

+ for any j ∈ 

J. A linear programming sub-model (denoted as ILP3) that is 

aimed to achieve contraction of type-I decision variables is for- 

mulated as: 

 
max F*

+ = ∑ j ∈ J₁ (cj
+∙xj*

+) + ∑ j ∈ J₂ (cj
+∙xj*

−)     (4-1) 
 
subject to 
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SRAi(v)2 ≥ 1 − ri(v) for any v ∈ V       (4-2) 

 

xj*
+ ∈ xjopt

± for any j ∈ J₁        (4-3) 
 

xj*
− ∈ xjopt

± for any j ∈ J₂        (4-4) 
 

where xj*
+ (j ∈ J₁) and xj*

− (j ∈ J₂) are decision variables; 

SRAi(v)2 (v ∈ V) are contraction ratios for any violated cons- 

traint; xjopt
± (j ∈ J) are interval-set solutions obtained from sub-

models ILP1 and ILP2. Based on formulations of contraction 

ratios, contraction ranges and maximum contraction ranges, sub- 

model ILP3 can be re-formulated as: 

 

max F*
+ = ∑ j ∈ J₁ (cj

+∙xj*
+) + ∑ j ∈ J₂ (cj

+∙xj*
−)     (5-1) 

 

subject to 
 

∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙(xj*
+ − xjopt

+∙ri(v)))  

+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
−∙(1 − ri(v))) 

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
+∙(1 − ri(v)))      (5-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙(xj*
− − xjopt

−∙ri(v)))  

≤ bi(v)
+∙(1 − ri(v)) for any v ∈ V    

 

xj*
+ ≥ xjopt

− and xj*
+ ≤ xjopt

+ for any j ∈ J₁     (5-3) 
 

xj*
− ≥ xjopt

− and xj*
− ≤ xjopt

+ for any j ∈ J₂.      (5-4) 
 

Model (5) is a linear programming model where all coeffi- 

cients are deterministic rather than interval sets. The simplex 

method (Dantzig, 1963) is employed again for solving LP mo- 

del (5). Let the obtained solutions be denoted as xjopt*
+ (j ∈ J₁) 

and xjopt*
− (j ∈ J₂). The objective function (5-1), denoted as 

Fopt*
+, equals to Fopt*

+ = ∑ j ∈ J₁ (cj
+∙xjopt*

+) + ∑ j ∈ J₂ (cj
+∙xjopt*

−). Ac-

cordingly, the optimistic solution is contracted from xjopt
+ (j ∈ 

J₁) and xjopt
− (j ∈ J₂) to xjopt*

+ (j ∈ J₁) and xjopt*
− (j ∈ J₂). The ma- 

ximum objective function value under optimism decreases from 

∑ j ∈ J₁ (cj
+∙xjopt

+) + ∑ j ∈ J₂ (cj
+∙xjopt

−) to ∑ j ∈ J₁ (cj
+∙xjopt*

+) + ∑ j ∈ J₂ (cj
+∙ 

xjopt*
−) for mitigating violation of constraints (2-2) to (2-4).  

 

4.2. Contraction of Conservative Solutions 

Based on solutions from the third sub-model, another sub-

model (denoted as ILP4) for contracting conservative solutions 

obtained from the second sub-model (ILP2) can be formulated 

as follows: 

 

min F*
− = ∑ j ∈ J₁ (cj

−∙xj*
−) + ∑ j ∈ J₂ (cj

−∙xj*
+)     (6-1) 

 

subject to 
 

SRAi(v)1 ≥ ri(v) for any v ∈ V        (6-2) 
 

xj*
− ∈ xjopt

± for any j ∈ J₁        (6-3) 
 

xj*
+ ∈ xjopt

± for any j ∈ J₂        (6-4) 
 

xj*
− ≤ xjopt*

+ for any j ∈ J₁        (6-5) 

xj*
+ ≥ xjopt*

− for any j ∈ J₂        (6-6) 

 

where xj*
− (j ∈ J₁) and xj*

+ (j ∈ J₂) are decision variables and 

SRAi(v)1 (v ∈ V) are contraction ratios for any violated constraint. 

Equivalently, sub-model ILP4 can be formulated as: 

 

min F*
− = ∑ j ∈ J₁ (cj

−∙xj*
−) + ∑ j ∈ J₂ (cj

−∙xj*
+)     (7-1) 

 

subject to  
 

∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
+∙ri(v)) 

+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
−∙ri(v) − xjopt

− + xj*
−)) 

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+∙ri(v) − xjopt

+ + xj*
+))    (7-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−∙ri(v)) 

≤ bi(v)
+ ∙ri(v) for any v ∈ V     

 

xjopt
− ≤ xj*

− ≤ xjopt*
+ for any j ∈ J₁       (7-3) 

 

xjopt
+ ≥ xj*

+ ≥ xjopt*
− for any j ∈ J₂.       (7-4) 

 

The simplex method (Dantzig, 1963) is employed again to 

solve LP model (7). Let the obtained solutions be denoted as 

xjopt*
− (j ∈ J₁) and xjopt*

+ (j ∈ J₂). The objective function (Fopt*
−) 

equals to ∑ j ∈ J₁ (cj
−∙xjopt*

−) + ∑ j ∈ J₂ (cj
−∙xjopt*

+). As a result, the con- 

servative solution is contracted from xjopt
− (j ∈ J₁) and xjopt

+ (j ∈ 

J₂) to xjopt*
− (j ∈ J₁) and xjopt*

+ (j ∈ J₂). As another cost of miti-

gating constraint violation of ILP models, the maximum objec- 

tive function value under conservative conditions decreases from 

∑ j ∈ J₁ (cj
−∙xjopt

−) + ∑ j ∈ J₂ (cj
−∙xjopt

+) to ∑ j ∈ J₁ (cj
−∙xjopt*

−) + ∑ j ∈ J₂ 

(cj
−∙xjopt*

+). 

 

4.3. Finalization of Decision Space 

Corresponding to a given set of contraction ratios, inter- 

val-set solutions are obtained through combining crisp solu-

tions from the third and fourth linear programming sub-models, 

i.e., {xjopt*
± | xjopt*

± = [xjopt*
−, xjopt*

+]; j ∈ J}. The range of objective 

function Fopt*
± is a closed interval [Fopt*

−, Fopt*
+]. Let the final 

decision space after contraction be denoted as CDS. We can ha- 

ve CDS = {xjopt*
 | xjopt* ∈ [xjopt*

−, xjopt*
+]; j ∈ J}. 

The decision space (CDS) is projected as an interval (i.e., 

[xjopt
−, xjopt

+]) on the jth (j ∈ J) dimension. In engineering prac-

tices, this interval can provide decision makers with an initial 

estimation of desired ranges of the jth decision (i.e., the jth deci- 

sion variable xj) in a visualized way. As stated in section 2, the 

largest continuous decision space (DILPMax) of ILP models is 

an irregular multi-dimension space. It is not easily visualized 

by decision makers especially when a number of decision vari- 

ables are involved. In comparison with CDS, less valuable in- 

formation can be provided from DILPMax for decision makers 

even when only a few of decision variables are involved. Ano- 

ther potential substitute of IDS and DILPMax is the hypercube 

space that can cover DILPMax and of which the projection on 

any dimension is an interval. Let it be denoted as IDSMax. Ho-

wever, decision space IDSMax may involve many absolutely 

infeasible solutions that are infeasible for any combination of 

coefficients. The stability of real-world management systems 
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corresponding to ILP models is decreased if management sche- 

mes are determined on the basis of IDSMax. 

The decision space after contraction provides a potential 

to analyze the tradeoff between system optimality and cons- 

traint violation of ILP models. The existence of this tradeoff is 

due to interval uncertainties of inexact coefficients. Decisions 

approaching (x1opt
+, x2opt

+, …, xkopt
+, x(k+1)opt

−, x(k+2)opt
−, …, xnopt

−) 

in CDS would lead to high system profits while taking high 

chances of constraint violation as the fluctuation of interval co- 

efficients. If decisions around (x1opt
−, x2opt

−, …, xkopt
−, x(k+1)opt

+, 

x(k+2)opt
+, …, xnopt

+) in CDS are executed the likeliness of cons- 

traint violation would decrease at the cost of decreased system 

profits. A quantitative analysis of this tradeoff may be enabled 

through Fourier amplitude sensitivity test (Saltelli and Bolado, 

1998), factorial analysis (Jaccard, 1998), multi-criteria assess- 

ment (Linkov et al., 2006), or other post-optimality techniques 

in the future studies. The most desired deterministic decision 

scheme which may be located at a balanced point in CDS will 

be provided for decision makers for whom acceptance levels of 

system optimality and constraint violation are varied. 

To sum up, the proposed IRLP approach consists of three 

steps as presented in the Figure 1. An initial interval-set solution 

of ILP model (1) is obtained through two correlated linear pro- 

gramming sub-models. Violation analysis is conducted to iden- 

tify violated constraints. Given a set of constraint contraction 

ratios, two linear programming sub-models are formulated. The 

simplex method is employed twice for obtaining interval-set 

solutions as a contraction of initialized solutions. 

 

5. Post-Optimality Analysis 

5.1. Analysis of Interactions  

As a resource measure to eradicate constraint violation 

problems of initial solutions from sub-models ILP1 and ILP2, 

sub-models ILP3 and ILP4 are proposed in the IRLP approach. 

The two sub-models can avoid high penalties resulting from vi- 

olation of constraints in sub-model ILP1 while remaining opti- 

mality of decision alternatives after resource. This capability 

relies on designs of sub-models ILP3 and ILP4. Constraints of 

both sub-models reflect the target of mitigating constraint vio- 

lation through contracting the initial decision space, and object- 

tive functions aim to maximize the final decision space after 

contraction and avoid neglecting potential decision alternatives 

and resultant system optimality. It should be noted that formu- 

lations of the two sub-models can be in other forms. For ins- 

tance, sub-models ILP3 and ILP4 can be constructed as: 

 
min F*

− = ∑ j ∈ J₁ (cj
−∙xj*

−) + ∑ j ∈ J₂ (cj
−∙xj*

+)     (8-1) 
 
subject to  
 
∑ j ∈ J₁ (SIGp(ai(v)j

±)∙|ai(v)j
±|−∙xjopt

+∙ri(v)) 

 

Simplex method 

ILP model Sub-model ILP1 Sub-model ILP2 

xjopt
+ (j = 1, 2, …, k) 

xjopt
- (j = k+1, k+2, …, n) 

Solution 
xjopt

- (j = 1, 2, …, k) 
xjopt

+ (j = k+1, k+2, …, n) 
Solution 

xjopt
± (j = 1, 2, …, k) 

xjopt
± (j = k+1, k+2, …, n) 

Interval 
solution 

Simplex method Initialization  
of decision  

space 

Violation 
analysis 

Recourse 
analysis 

Decision  
support 

Constraints of sub-model ILP1 Violation criterion 

  V = 0? No violation  End 
Yes 

Violation  Recourse 
No 

Contraction ratios ri(v) Sub-model ILP3 Sub-model ILP4 

VRi(v) (v = 1, 2, ..., V) Violation ranges 

Simplex method 

xjopt*
+ (j = 1, 2, …, k) 

xjopt*
- (j = k+1, k+2, …, n) 

Solution 
xjopt*

- (j = 1, 2, …, k) 
xjopt*

+ (j = k+1, k+2, …, n) 
Solution 

xjopt*
± (j = 1, 2, …, k) 

xjopt*
± (j = k+1, k+2, …, n) 

Interval 
solution 

Simplex method 

Decision criteria 

High system profits 
for optimistic DMs 

Low system profits 
for pessimistic DMs 

Large decision 
space 

Others 

Monotonicity between programming objective 
boundaries and contraction ratios 

Average relative contraction ratio of initial 
decision space 

Analysis of correspondence between DMs’ 
preferences and contraction ratios 

Sub-model ILP4  
(ri(v) = 1 for any v) 

Sub-model ILP3  
(ri(v) = 0 for any v) 

Sub-model ILP3  
(ri(v) = 0 for any v) 

 

Sub-models ILP3 and ILP4 
given ri(v) (v = 1, .., V) 

Basis of transformation Intermediate models 

Interval solutions through 
simplex method 

Resources and environmental systems management  
under interval uncertainties 

 

                     Figure 1. Structure and procedures of the IRLP approach for ILP models. 
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+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
−∙ri(v) − xjopt

− + xj*
−)) 

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+∙ri(v) − xjopt

+ + xj*
+))   (8-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−∙ri(v)) 

≤ bi(v)
+ ∙ri(v) for any v ∈ V     

 

xjopt
− ≤ xj*

− ≤ xjopt
+ for any j ∈ J₁       (8-3) 

 

xjopt
+ ≥ xj*

+ ≥ xjopt
− for any j ∈ J₂       (8-4) 

 

and 

 

max F*
+ = ∑ j ∈ J₁ (cj

+∙xj*
+) + ∑ j ∈ J₂ (cj

+∙xj*
−)     (9-1) 

 

subject to 

 

∑ j ∈ J₁ (SIGp(ai(v)j
±)∙|ai(v)j

±|−∙(xj*
+ − xjopt

+∙ri(v))) 

+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
−∙(1 − ri(v))) 

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
+∙(1 − ri(v)))      (9-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙(xj*
− − xjopt

−∙ri(v)))  

≤ bi(v)
+∙(1 − ri(v)) for any v ∈ V    

 

xjopt*
− ≤ xj*

+ ≤ xjopt
+ for any j ∈ J₁       (9-3) 

 

xjopt
− ≤ xj*

− ≤ xjopt*
+ for any j ∈ J₂       (9-4) 

 

respectively, where x1opt*
−, x2opt*

−, …, xkopt*
−, x(k+1)opt*

+, x(k+2)opt*
+, 

…, and xnopt*
+ are optimal solutions of LP model (8) through the 

simplex method (Dantzig, 1963). The above formulations of 

sub-models ILP3 and ILP4 can also effectively resolve cons- 

traint violation problems of the TSA approach through contrac- 

tion of the initial decision space. It is possible that solutions of 

models (8) and (9) are identical with those of models (5) and 

(7). On the other hand, it may hold in some cases that optimal 

values of objective functions F*
− and F*

+ in models (8) and (9) 

are decreased in comparison with Fopt*
− and Fopt*

+ in models (7) 

and (5). Potentially high system profits may be neglected al- 

though the constraint violation risk is decreased simultaneous- 

ly. Results of models (8) and (9) are relatively conservative. 

Formulating sub-models ILP3 and ILP4 as models (8) and (9) 

is preferable for decision makers who do not pursue the highest 

system profit. Based on the assumption that provision of the hi- 

ghest system profit is desired for most decision makers, sub-

models ILP3 and ILP4 are formulated as models (5) and (7) in 

this study, respectively. 

Proposition 2: If SRi(v)1 = VRi(v) for any v ∈ V, then Fopt*
+ 

= Fopt
+; if VRi(v) ≤ MSR2i(v) and SRi(v)2 = VRi(v) for any v ∈ V, then 

Fopt*
− = Fopt

−. 

Proof: Since the formulation of SRAi(v)1, we have SRAi(v)1 = 

1 if SRi(v)1 = VRi(v) for any v ∈ V. From SRAi(v)1 + SRAi(v)2 ≥ 1, 

we have SRAi(v)2 ≥ 0. Sub-model ILP3 is simplified as Max F*
+ 

= ∑ j ∈ J₁ (cj
+∙xj*

+) + ∑ j ∈ J₂ (cj
+∙xj*

−) subject to SRAi(v)2 ≥ 0 for any v 

∈ V, xj*
+ ∈ xjopt

± for any j ∈ J₁, and xj*
− ∈ xjopt

± for any j ∈ J₂. It 
is equivalent with maximizing {F*

+ = ∑ j ∈ J₁ (cj
+∙xj*

+) + ∑ j ∈ J₂ (cj
+∙ 

xj*
−) | xj*

+ ∈ xjopt
± for any j ∈ J₁; xj*

− ∈ xjopt
± for any j ∈ J₂} due 

to non-negativity of SRAi(v)2 according to its definition. The op- 

timal solution of the simplified crisp model is {x1opt
+, x2opt

+, …, 

xkopt
+, x(k+1)opt

−, x(k+2)opt
−, …, xnopt

−} and we can have Fopt*
+ = ∑ j ∈ J₁ 

(cj
+∙xjopt

+) + ∑ j ∈ J₂ (cj
+∙xjopt

−). From the formulation of Fopt
+, we 

have Fopt*
+ = Fopt

+. Similarly, sub-model ILP4 is equivalent with 

minimizing {F*
− = ∑ j ∈ J₁ (cj

−∙xj*
−) + ∑ j ∈ J₂ (cj

−∙xj*
+) | SRAi(v)1 ≥ 0 

for any v ∈ V; xjopt
− ≤ xj*

− ≤ xjopt*
+ for any j ∈ J₁; xjopt

+ ≥ xj*
+ ≥ 

xjopt*
− for any j ∈ J₂} if VRi(v) ≤ MSR2i(v) and SRi(v)2 = VRi(v). Thus, 

Fopt*
− = ∑ j ∈ J₁ (cj

−∙xjopt
−) + ∑ j ∈ J₂ (cj

−∙xjopt
+) and Fopt*

− = Fopt
−. 

Proposition 3: Let ri(v)1 and ri(v)2 be two contraction ratios 

given for the vth violated constraint. If ri(v)1 ≤ ri(v)2, then Fopt1*
–

≤ Fopt2*
– and Fopt1*

+ ≤ Fopt2*
+ where Fopts*

– and Fopts*
+ (s = 1 or 2) 

are the lower and upper bounds of optimal objective function 

values under contraction ratio ri(v)s, respectively. 

Proof: Denote the feasible region of sub-model ILP3 as 

FR31 and FR32 corresponding to ri(v)1 and ri(v)2, respectively. We 

can have FR31 = {(x1, x2, …, xk, x(k+1), x(k+2), …, xn) | SRAi(v)2 ≥ 

1 − ri(v)1 for any v ∈ V; xj ∈ xjopt
± for any j ∈ J₁; xj ∈ xjopt

± for any 

j ∈ J₂} and FR32 = {(x1, x2, …, xk, x(k+1), x(k+2), …, xn) | SRAi(v)2 

≥ 1 − ri(v)2 for any v ∈ V; xj ∈ xjopt
± for any j ∈ J₁; xj ∈ xjopt

± for 

any j ∈ J₂}. Suppose {x11*
+, x21*

+, …, xk1*
+, x(k+1)1*

−, x(k+2)1*
−, …, 

xn1*
−} is any feasible solution of sub-model ILP3 under contrac- 

tion ratios ri(v)1. Let it be abbreviated as X1*. Equivalently, X1* 

∈ FR31. As for constraint (5-2), we have ∑ j ∈ J₁ (SIGp(ai(v)j
±)∙ 

|ai(v)j
±|−∙(xjopt

+ − xj1*
+)) + ∑ j ∈ J₂ (SIGn(ai(v)j

±)∙|ai(v)j
±|+∙(xjopt

− − xj1*
−)) 

≥ VRi(v) − VRi(v)∙ri(v)1. Since 0 ≤ ri(v)1 ≤ ri(v)2 ≤ 1 and VRi(v) ≥ 0, we 

have VRi(v) − VRi(v)∙ri(v)1 ≥ VRi(v) − VRi(v)∙ri(v)2. Accordingly, ∑ j ∈ J₁ 

(SIGp(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
+ − xj1*

+)) + ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+ 

∙(xjopt
− − xj1*

−)) ≥ VRi(v) − VRi(v)∙ri(v)2. We can have X1* ∈ FR32 

since the only difference of constraints between feasible regions 

FR31 and FR32 is constraint (5-2). Thus, FR31 ⊆ FR32. Accor-

dingly, we can have Fopt1*
+ ≤ Fopt2*

+ because of the enlarged fea-

sible region under contraction ratio ri(v)2. Similarly, we can have 

the feasible region of sub-model ILP4 is shrunk as the contrac-

tion ratio increases from ri(v)1 to ri(v)2. Thus, the optimality of ob- 

jective function (6-1) or (7-1) is reduced. Accordingly, we have 

Fopt1*
– ≤ Fopt2*

–. 

 

5.2. Tradeoff Analysis 

In the proposed IRLP approach, potential violation of con- 

straints of sub-model ILP1 is mitigated through contracting op- 

timistic decisions from sub-model ILP1 or conservative deci- 

sion from sub-model ILP2. Contraction of either group of deci-

sions is helpful for coping with constraint-violation problems. 

There is a tradeoff between contraction ranges of two groups of 

decisions. The tradeoff is reflected as values of contraction ra- 

tios. Under higher contraction ratios, mitigation of constraint 

violation is contributed more by contraction of conservative de- 

cisions. Namely, more conservative decisions in the initial de- 

cision space are eradicated, and optimistic decisions are remai- 

ned. This strategy is preferable for optimistic decision makers 

other than conservative ones. In contrast, as contraction ratios 

decrease from one to zero, contraction ranges of optimistic de- 

cisions climb while those of conservative decisions drop. Miti- 

gation of constraint violation is achieved more by contraction 

of optimistic decisions. Retention of more conservative deci- 

sions can help conservative decision makers identify a more de- 

sired management scheme although this is beyond expectations 

of optimistic decision makers. The IRLP approach can be simp- 
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lified under particular scenarios due to diversity of preferences 

of decision makers. 

For the most optimistic decision makers, contraction ratio 

ri(v) approaches 1 for all violated constraints. In this case, there 

are only three sub-models, i.e., ILP1, ILP2 and ILP4. In this ca- 

se, sub-model ILP4 can be simplified as: 

 
min F*

− = ∑ j ∈ J₁ (cj
−∙xj*

−) + ∑ j ∈ J₂ (cj
−∙xj*

+)    (10-1) 
 
subject to 
 
∑ j ∈ J₁ (SIGp(ai(v)j

±)∙|ai(v)j
±|−∙xjopt

+) 

+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙(xjopt
− − xjopt

− + xj*
−)) 

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙(xjopt
+ − xjopt

+ + xj*
+))   (10-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
−) 

≤ bi(v)
+ for any v ∈ V      

 
xjopt

− ≤ xj*
− ≤ xjopt

+ for any j ∈ J₁      (10-3) 
 
xjopt

+ ≥ xj*
+ ≥ xjopt

− for any j ∈ J₂      (10-4) 
 

where xj*
− (j ∈ J₁) and xj*

+ (j ∈ J₂) are decision variables and 

xjopt
± (j ∈ J) are initialized interval-set solutions obtained from 

sub-models ILP1 and ILP2. However, the initial decision space 

composed of xjopt
± (j ∈ J) may be wasted in some cases. Assume 

the first k interval-set coefficients in the i(v)th (v ∈ V) cons- 

traint, i.e., ai(v)1
±, ai(v)2

±, ... and ai(v)k
±, are negative; the last n − k 

interval-set coefficients, i.e., ai(v)(k + 1)
±, ai(v)(k + 2)

±, ... and ai(v)n
±, 

are nonnegative; and (Ai(v)
±X±)C ≤ bi(v)

+. We have SIGp(ai(v)j
±) = 

0 and SIGn(ai(v)j
±) = −1 hold for any j ∈ J₁, and SIGp(ai(v)j

±) = 1 

and SIGn(ai(v)j
±) = 0 hold for any j ∈ J₂. The final interval-set 

solution (IFS1i(v)
±) after contraction through the first method is 

degenerated into a vector of real numbers, i.e., (x1opt
+, x2opt

+, ..., 

xkopt
+, x(k + 1)opt

−, x(k + 2)opt
−, ..., xnopt

−)T. The degenerated solution 

corresponds to the upper bound of optimal objective-function 

values, i.e., F+ = ∑ j ∈ J₁ (cj
+∙xj

+) + ∑ j ∈ J₂ (cj
+∙xj

−). It can only be 

provided for optimistic decision makers other than conservati- 

ve ones, since undertaking high constraint-violation risks is ne- 

cessary. 

On the other hand, the most conservative decision makers 

may expect that contraction ratio ri(v) equals to 0 for any viola- 

ted constraint v ∈ V. In this case, sub-model ILP4 would be eli- 

minated. There would be just sub-models ILP1, ILP2 and ILP3. 

Sub-model ILP3 is equivalent to the following linear progra- 

mming model: 

 
max F*

+ = ∑ j ∈ J₁ (cj
+∙xj*

+) + ∑ j ∈ J₂ (cj
+∙xj*

−)    (11-1) 
 
subject to  
 
∑ j ∈ J₁ (SIGp(ai(v)j

±)∙|ai(v)j
±|−∙xj*

+)  

+ ∑ j ∈ J₁ (SIGn(ai(v)j
±)∙|ai(v)j

±|−∙xjopt
−)  

+ ∑ j ∈ J₂ (SIGp(ai(v)j
±)∙|ai(v)j

±|+∙xjopt
+)       (11-2) 

+ ∑ j ∈ J₂ (SIGn(ai(v)j
±)∙ |ai(v)j

±|+∙xj*
−)  

≤ bi(v)
+ for any v ∈ V       

 

xj*
+ ≥ xjopt

− and xj*
+ ≤ xjopt

+ for any j ∈ J₁    (11-3) 

 

xj*
− ≥ xjopt

− and xj*
− ≤ xjopt

+ for any j ∈ J₂    (11-4) 

where xj*
+ (j ∈ J₁) and xj*

− (j ∈ J₂) are decision variables and 

xjopt
± (j ∈ J) are initialized interval-set solutions obtained from 

sub-models ILP1 and ILP2. The potential challenge is that most 

of the initial decision space may be cut. In particular cases, it 

would be degenerated into a point in an n-dimensional Eucli- 

dean space, i.e., (x1opt
−, x2opt

−, ..., xkopt
−, x(k + 1)opt

+, x(k + 2)opt
+, ..., 

xnopt
+)T. The degenerated solution which corresponds to the lo- 

wer bound of optimal objective-function values F− = ∑ j ∈ J₁ (cj
−∙ 

xj
−) + ∑ j ∈ J₂ (cj

−∙xj
+), is preferred for conservative decision ma- 

kers but not for optimistic ones. The expectation of high system 

profits can hardly be satisfied. The interval-set solution (i.e., 

IFS2i(v)
±) is conditionally feasible. It is feasible for ILP model 

(1) and can mitigate the violation problem of constraints (2-2) 

if and only if MSR2i(v) ≥ VRi(v). 

 

5.3. Dimensional Analysis of Decision Space 

It is also of possibility that decision makers prefer to a lar- 

ge decision space that includes as many alternatives as possible 

for management under interval uncertainties. This relies on pro- 

position of an index for quantifying the size of the decision spa- 

ce. Multiple conventional geometric indexes are available, e.g., 

∏X = ∏j = 1
n (xjopt*

+ − xjopt*
−) or ∑X = ∑j = 1

n (xjopt*
+ − xjopt*

−), but 

they are ineffective for the proposed IRLP approach. The jth in- 

terval-set solution, i.e., xjopt
± (j ∈ J), may be contracted to a real 

number instead of an interval set, i.e., xjopt*
+ = xjopt*

−. Accor- 

dingly, index ∏X equals to zero no matter how much value ran- 

ges of other decision variables are after contraction. As for in -

dex ∑X, it can only quantify the absolute size of the final deci- 

sion space. The connection between initial interval-set solu- 

tions, xjopt
± (j ∈ J), and final ones, xjopt*

± (j ∈ J) may be removed 

if it is employed. In consideration of the process that final solu- 

tions xjopt*
± (j ∈ J) are obtained through contraction of the initial 

interval-set solutions (xjopt
±, j ∈ J), the index of the average re- 

lative contraction ratio of the initial decision space is proposed 

for measuring the size of finalized decision space in this study. 

It is abbreviated as DSR. A higher value of DSR represents a 

broader decision space, and vice versa. 

Definition 3: DSR = ∑s=1
S ((xj(s)opt*

+ − xj(s)opt*
−) / (xj(s)opt

+ − 

xj(s)opt
−)) / S where j(s) represents type-I decision variables that 

are interval sets rather than real numbers. 

It has been proved above that, when SRi(v)1 = VRi(v) for any 

v ∈ V, we can have Fopt*
+ = Fopt

+. In this case, the contraction 

ratio equals to one for any v. Violation of constraints of sub-

model ILP1 is caused by interval-set solutions of type-I deci- 

sion variables. Mitigation of this problem is achieved through 

contracting boundaries of these decision variables while remai- 

ning those of type-II decision variables. As a result, DSR = 0 

when ri(v) = 1 for any v ∈ V, which is verified through an exam- 

ple in the next section. This implies that higher contraction ra- 

tios are preferable for decision makers who expect few alterna- 

tive management schemes. In contrast, others pursuing a large 

decision space desire as low contraction ratios as possible. Se- 

tting ri(v) as zero may be the most advisable option for them. In 

addition, due to complexities of real-world ILP problems, there 

may be many other situations such as varied preferences of con- 

traction ranges for violated constraints. It is impossible to cover 
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all of them excluding representative ones as discussed above. 

Adaptation of the proposed IRLP approach to ILP problems un- 

der diverse complexities will be examined in the future studies.  

 

6. Example of REM through IRLP 

An interval-parameter linear REM problem will be provi- 

ded to demonstrate advantages of the proposed IRLP method 

as well as the detailed procedures for the relevant algorithm. Su- 

ch a problem can be formulated as an ILP model with an object- 

tive of economic revenue, and constraints of environmental loa- 

ding capacity and resources recovery: 

 
max F± = [50, 60]∙x1

± − [70, 90]∙x2
±     (12-1) 

 
subject to  
 
[4, 6]∙x1

± + [1, 2]∙x2
± ≤ [140, 150]     (12-2) 

 
[7, 10]∙x2

± − [1, 2]∙x1
± ≥ [1, 2]      (12-3) 

 
xj

± ≥ 0 for j = 1 and 2        (12-4) 
 

where x1
± and x2

± are two interval-set decision variables of whi- 

ch the lower and upper bounds are to be determined; F± is a li- 

near function of interval-set coefficients and decision variables. 

Assumptions 1 to 6 of the IRLP approach are satisfied, e.g., ze-

ro is not included in all interval-set coefficients and all decision 

variables are non-negative.  

 

6.1. Initialization of Decision Space 

Firstly, ILP model (12) is converted to two correlated li- 

near programming sub-models. Since the objective (12-1) is to 

maximize value ranges of objective function F±, the objective 

function of the first sub-model should be maximizing the upper 

bound of objective function F±. Since [50, 60] ≥ 0, [−90, −70] 

< 0 and xj
± ≥ 0 for any j = 1 and 2, we can have the upper bound 

of F± equals to 60∙x1
+ − 70∙x2

−. Maximization of 60∙x1
+ − 70∙x2

− 

is equivalent with maximizing x1
+ as well as minimizing x2

−. 

Thus, decision variables in the first sub-model are the upper 

bound of x1
± and the lower bound of x2

±. According to formula- 

tions of sub-model ILP1, the first sub-model corresponding to 

model (12) can be formulated as: 

 
max F+ = 60∙x1

+ − 70∙x2
−       (13-1) 

 
subject to  
 
4∙x1

+ + 2∙x2
− ≤ 150        (13-2) 

 
10∙x2

− − x1
+ ≥ 1         (13-3) 

 
x1

+ ≥ 0 and x2
− ≥ 0.        (13-4) 

 

As presented in Figure 2, the feasible region constrained 

by inequalities (13-2) to (13-4) is the parallel-lines-filled area 

that is under the line l1 (i.e., 4∙x1
+ + 2∙x2

− = 150), above the lines 

l2 (i.e., 10∙x2
− − x1

+ = 1) and x2
− = 0, at the right of axis x1

+ = 0 

and above the axis x2
− = 0. Any combination of x1

+ and x2
− in 

this area is feasible for all constraints in model (13). To avoid 

abnormally high penalties caused by constraint violations, the 

optimum solution should be located within this area. As shown 

in Figure 2, the objective function (i.e., line l3) is maximized at 

point p1. Namely, the optimum solution of model (13) is point 

p1 where x1opt
+ = 35.67 and x2opt

− = 3.67. The upper bound of 

objective function values (denoated as Fopt
+) equals to 60∙x1opt

+ 

− 70∙x2opt
− or 1883.33, which means the optimum value of obje-

ctive function (13-1) can reach 1883.33 in the best case. 

 

 
Figure 2. Feasible region and optimum solution of the sub-

model (13). 

 

The second sub-model is formulated based on solutions of 

model (13). In contrast to the first sub-model, the objective fun- 

ction of the second one is to maximize the lower bound of obje- 

ctive function (12-1), i.e., Max F− = 50∙x1
− − 90∙x2

+. To achieve 

this, the lower bound of x1
± should be minimized, while the up- 

per bound of x2
± should be maximized. Thus, decision variables 

of the second sub-model are the lower bound of x1
± and the up- 

per bound of x2
±, which exactly counters to that in the first sub-

model (13). In accordance with the formulation of model ILP2, 

the second sub-model is formulated as follows: 

 

max F− = 50∙x1
− − 90∙x2

+       (14-1) 

 

subject to 

 

6∙x1
− + x2

+ ≤ 140         (14-2) 

 

7∙x2
+ − 2∙x1

− ≥ 2         (14-3) 

 

x1
− ≥ 0 and x2

+ ≥ 0        (14-4) 

 

x1opt
+ ≥ x1

− and x2
+ ≥ x2opt

−.       (14-5) 

 

The simplex method is employed again for solving deter- 

ministic linear programming model (14). The optimal solutions 
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are x1opt
− = 22.23 and x2opt

+ = 6.64. As shown in Figure 3, the 

feasible region constrained by inequalities (14-2) to (14-5) is 

the parallel-lines-filled area A2 that is below the line l4 (i.e., 6∙ 

x1
− + x2

+ = 140), above the line l5 (i.e., 7∙x2
+ − 2∙x1

− = 2), at the 

right of axis x1
− = 0, above the axis x2

+ = 0, above the line l7 

(i.e., x2
+ = x2opt

−) and at the left of line l8 (i.e., x1opt
+ = x1

−). The 

maximum value of objective function F− = 50∙x1
− − 90∙x2

+ (i.e., 

line l6) is obtained at the vertex of A2, i.e., point p2 (22.23, 6.64). 

The optimum lower bound of objective function Fopt
− = 514.09 

that can be reached at point p2. 

 

 
Figure 3. Feasible region and optimum solution of the sub-

model (14). 
 

As a combination of solutions from models (13) and (14), 

an initial interval-set solution of the original ILP model (12) is 

x1opt
± = [22.23, 35.67] and x2opt

± = [3.67, 6.64], leading to a rec-

tangular decision space presented as the green grid area (D) in 

Figure 4. Correspondingly, the maximum value of objective fun-

ction (12-1) ranges from the maximum objective value of (14-

1) (i.e., 514.09) to that of (13-1) (i.e., 1883.33). This implies 

that any real value between the optimum objective bounds, i.e., 

[514.09, 1883.33] for ILP model (12), can be obtained for at lea-

st one point in initial decision space D. Besides, the recommen-

ded solution of any inexact decision variable is a continuous 

value range in which most of satisfactory decisions are located. 

Compared to other potential solution formats, e.g., complex for-

mulas and discrete solutions, the interval decision space is mo-

re user-friendly and reliable for planners or engineers to guide 

programming problems especially large-scale ones of thousan-

ds of constraints and parameters. 

 

6.2. Violation Analysis 

Combining feasible regions of models (13) and (14) toge- 

ther, we can have three areas of different feasibilities.  

(a) The first one (abbreviated as R1) is the intersection of 

two feasible regions A1 and A2, i.e., R1 = A1 ∩ A2. For any ele- 

ment X (x1, x2) in area R1, we can have X ∈ A1 and X ∈ A2, and 

it is feasible for constraints of both models. Thus, R1 is defined 

as the absolutely feasible region (Huang et al., 1992) of the 

original ILP model (12). In Figure 4, it is presented as the field 

filled with grids. 

 

 
Figure 4. Interval-set solutions of ILP model (12). 

 

 
Figure 5. Constraint violation for ILP model (12). 

 

(b) The second one (abbreviated as R2) is the difference 

between region R1 and the union of two feasible regions A1 and 

A2, i.e., R2 = (A1 ⋃ A2) − R1. It holds for any element X (x1, x2) 

in the area R2 that X ∉ R1 and X ∈ A1 or A2. In other words, any 

element in region R2 is feasible for constraints of either model 

(13) or (14), but not for both models. As defined in (Huang et 

al., 1992), any solution within R2 is softly feasible for ILP mo-

del (12). In Figure 4, it is presented as the field filled with para-

llel lines. 

(c) The third one (abbreviated as R3) is the difference be- 

tween the two-dimensional real space and the union of two fea- 

sible regions A1 and A2, i.e., R3 = R − (A1 ⋃ A2) where R = {X 

(x1, x2) | xj is a real number for j = 1 and 2}. For any element (X 

(x1, x2)) in region R3, it is infeasible for either model (13) or 

(14). Therefore, region R3 is defined as the absolutely infeasible 

region (Huang et al., 1992). It is presented as the blank field 

without any pattern in Figure 4. 
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For ILP model (12), any point in the final rectangular deci- 

sion space (D) obtained from TSA is supposed to be feasible for 

at least one combination of interval coefficients’ whitened va-

lues. As presented in Figure 5, however, the top right corner 

(i.e., red region V) as a part of initial decision space D is located 

outside of softly feasible region R2. Any point in region V be-

longs to the absolutely infeasible region (R3), and violates line 

l1 which corresponds to constraint (13-2) of the first sub-model, 

i.e., 4∙x1
+ + 2∙x2

− = 150. 

Given the initial decision space (D) obtained from TSA, 

the most desired REM scheme for decision makers may corres-

pond to any point in space D. If it is located in area V, high pe-

nalties would be paid for violation of constraint (13-2). There-

fore, it is assumed that such violation should be avoided for de-

cision makers who prefer to maximize the net system profit, al-

though its occurrence probability is not significantly high. 

As fluctuation of decision variables within bounds xjopt
− 

and xjopt
+ (j = 1, 2), the maximum values of the left-hand side of 

constraints (13-2) and (13-3) in the first sub-model are 4∙ x1opt
+ 

+ 2∙x2opt
+ = 155.94, and x1opt

+ − 10∙x2opt
− = −1, respectively. 

Therefore, the first constraint (13-2) is violated. The set of in-

dexes of violated constraints is {1} in which only one element 

is included. The violation range can be obtained from 155.94 – 

150 = 5.94. 

 
6.3. Contraction of Initial Decision Space 

Referring to the classification method of decision varia-

bles in violated constraints that was previously proposed in this 

study, the second and fourth groups of decision variables are 

empty, and x1
± and x2

± belong to the first and third groups, res- 

pectively. Let the contraction ratio r of x2
+ be 0, 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1, respectively. The third sub-mo-

del in the IRLP approach can be formulated as: 

 
max F*

+ = 60∙x1*
+ − 70∙x2*

−       (15-1) 
 
subject to  
 
4∙(x1*

+ − x1opt
+∙r) + 2∙x2opt

+∙(1 − r) ≤ 150∙(1 − r)   (15-2) 
 
x1*

+ ∈ [22.23, 35.67]        (15-3) 
 
x2*

− ∈ [3.67, 6.64]         (15-4) 
 
where the upper bound (x1*

+) of x1opt
± and the lower bound (x2*

−) 

of x2opt
± are bounds of decision variables that should be adjust-

ted. The optimal solutions of linear programming model (15) 

corresponding to varied constraint contraction ratio r can be ob-

tained from the simplex method. They are presented in table 1.  

On the basis of solutions from the third sub-model, the 

fourth sub-model can be formulated as: 

 
min F*

− = 50∙x1*
− − 90∙x2*

+       (16-1) 
 
subject to 
 
4∙x1opt

+∙r + 2∙(x2*
+ − x2opt

+∙(1 − r)) ≤ 150∙r    (16-2) 
 
x1opt

− ≤ x1*
− ≤ x1opt*

+        (16-3) 

x2opt
+ ≥ x2*

+ ≥ x2opt*
−        (16-4) 

 

where the lower bound x1*
− of x1opt

± and the upper bound x2*
+ of 

x2opt
± are bounds of decision variables that should be adjusted. 

The simplex method is employed again for solving linear pro-

gramming model (16). The optimal solutions corresponding to 

varied contraction ratios are presented in Table 1. Combining 

solutions from the third and fourth sub-models together, we can 

have the final interval-set solutions under varied contraction ra-

tios as presented in Figure 6. It is indicated that the proposed 

IRLP approach enables achieving the maximal decision space 

in which infeasible solutions of sub-model ILP1 are excluded 

through sub-models ILP3 and ILP4. 

 

Table 1. Solutions of sub-models (15) and (16) 

r 
Solution of model (15) Solution of model (16) 

x1opt*
+ x2opt*

− Fopt*
+ x1opt*

− x2opt*
+ Fopt*

− 

0 34.18 3.67 1794.24  22.23  6.64  514.09 

0.1 34.33 3.67 1803.15 22.23  6.34 540.82 

0.2 34.48 3.67 1812.06  22.23  6.04 567.55  

0.3 34.63 3.67 1820.97  22.23  5.75  594.27  

0.4 34.78 3.67 1829.88  22.23 5.45  621.00 

0.5 34.92 3.67 1838.79  22.23 5.15 647.73  

0.6 35.07 3.67 1847.70 22.23 4.86  674.46  

0.7 35.22 3.67 1856.61  22.23 4.56 701.18  

0.8 35.37 3.67 1865.52  22.23 4.26 727.91  

0.9 35.52 3.67 1874.42  22.23 3.96 754.64  

1 35.67 3.67 1883.33 22.23 3.67  781.36 

 

 
Figure 6. Solutions of ILP model (12) through the IRLP 

approach. 
 
6.4. Post-optimality Analysis 

Optimistic decision makers may prefer to high system pro-

fits that can be accomplished through setting contraction ratio 

as 1. Accordingly, the optimal decision ranges x1opt*
± = [22.23, 
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35.67] and x2opt*
± = 3.67. The maximum value range of object-

tive function is Fopt*
± = [781.36, 1883.33]. For conservative de-

cision makers who expect low system profit and low constraint 

violation risk under uncertainties, the preferable solutions are 

corresponded by lowest contraction ratios. In detail, the opti-

mal decision ranges x1opt*
± = [22.23, 34.18] and x2opt*

± = [3.67, 

6.64]. The maximum objective value range is Fopt*
± = [514.09, 

1794.24]. These solutions are also of high priority for decision 

makers who desire a large decision space, if the size of decision 

space is quantified by the proposed index DSR. As for other de-

cision makers, they can be provided with interval-set solutions 

based on analysis of the correspondence between their prefe-

rences and constraint contraction ratios. 

 

7. Discussions 

7.1. Connection with TSA Method 

The proposed IRLP approach can be taken as a supplement 

to the TSA method developed by Huang et al. (1992). The latter 

one is incorporated into the former one for initializing a deci-

sion space through sub-models ILP1 and ILP2. Effectiveness 

of TSA at obtaining a continuous decision space is remained in 

IRLP. To mitigate constraint-violation problems of TSA, the 

cause of violation is revealed in the section of violation analysis 

based on the definition of violation criterion (i.e., constraints of 

sub-model ILP1 of which violation may lead to high penalties 

to real-world ILP systems). Violation ranges of constraints are 

quantified, leading to proposition of contraction ranges and con- 

traction ratios. A series of contraction ratios are provided by de-

cision makers of diverse preferences for violated constraints of 

sub-model ILP1. As a recourse measure for constraint viola-

tion, the initial decision space is contracted through sub-models 

ILP3 and ILP4 that correspond to optimistic solutions and con-

servative ones, respectively. A continuous decision space is fi-

nalized by combining crisp solutions of two linear program-

ming sub-models. It is located within the initial decision space 

while solutions causing violation of constraints of sub-model 

ILP1 are removed. Contraction ratios can help distinguish pre-

ferences of decision makers, e.g., low values for ones who pur-

sue conservative schemes or a large decision space. Combining 

solutions under all combinations of contraction ratios for viola-

ted constraints can facilitate decision makers identifying the 

maximal decision space which is the initial one excluding in-

feasible schemes. Therefore, the proposed IRLP approach ena-

bles mitigation of constraint-violation problems while remain-

ning strengthens of TSA and adapting to decision makers of di-

verse preferences. The reliability of the optimization process 

for ILP problems is enhanced in comparison with the TSA me-

thod. 

 
7.2. Comparison with Improved ILP Methods 

The proposed IRLP approach is not the first one to exa-

mine constraint-violation problems of the TSA method. Previ-

ously, a modified interval linear programming (MILP) method, 

a three-step (ThS) method and a robust two-step (RTS) method 

were contributed by Zhou et al. (2008), Huang and Cao (2011) 

and Fan and Huang (2012), respectively. In MILP, an additional 

constraint is coupled with constraints of sub-model ILP2 for 

avoiding violation of constraints. As for ILP model (12), the 

additional constraint of sub-model (14) can be formulated as 

x2
+ − 2∙3.67 ≤ 0. The optimal solution of TSA is x1opt

± = [22.23, 

35.67] and x2opt
± = [3.67, 6.64]. It is identical with that of MILP, 

implying that constraint violation remains for MILP. In the ThS 

method, another sub-model is constructed to constrict the initial 

decision space obtained from first two sub-models ILP1 and 

ILP2. Parameters constricting ratios of decision variables are 

introduced to reflect constricting ranges of initialized interval-

set solutions. They are optimized through the third sub-model 

subject to avoidance of constraint violation. However, the sub-

model may be a nonlinear programming model which is of 

limited applicability to large-scale ILP problems. Otherwise, it 

may lead to a great waste of the initial decision space in the 

process of constricting initialized solutions synchronously. In 

the RTS method, sub-model ILP2 that focuses on conservative 

schemes is solved prior to sub-model ILP1. A group of additio-

nal constraints is incorporated into the original sub-model ILP1 

for avoiding occurrence of constraint violation. However, RTS 

is challenged by possible sacrifice of optimistic solutions that 

correspond to high system profits. RTS is only adaptive for con-

servative decision makers who concern schemes of relatively 

low risks. In contrast, the IRLP approach can help decision ma-

kers of various preferences identify desired schemes while de-

mands of conservative ones can be satisfied. The applicable 

scope of the RTS method is just a particular case of the IRLP 

approach. Moreover, all existing improved ILP methods cannot 

provide the largest decision space which does not include solu-

tions that may cause constraint violation. Part of decision alter-

natives are neglected due to ineffectiveness of these methods. 

This limitation is overcame by the IRLP approach, which is hel-

pful for enhancing reliability of the decision support for REM 

problems under interval uncertainties.  

 
7.3. Comparison with Discrete ILP Methods 

In addition to aforementioned methods (e.g., MILP, ThS 

and RTS), multiple efforts are made to solving of ILP models. 

For instance, Tong (1994), Levin (1994) and Chi-nneck and 

Ramadan (2000) proposed methods that could obtain the most 

optimistic decision scheme (denoted as Xu) of ILP model (1) 

from a best-case sub-model as well as the most conservative 

decision scheme (denoted as Xl) from a worst-case sub-model. 

Let these methods be named as discrete interval linear progra-

mming and be abbreviated as DILP in this study. These me-

thods only focus on two extreme cases corresponding to parti-

cular combinations of inexact coefficients in ILP model (1). If 

at least one optimal solution exists for the best-case sub-model, 

it can be deduced from (Tong, 1994) and (Huang et al., 1992) 

that there would be infinite possibly optimal solutions corres-

ponding to infinite combinations of coefficients. Either Xu or Xl 

is only a particular case out of infinite ones. Almost all of deci-

sion alternatives including the possibly most desired decision 

scheme that may be located between the two extreme cases are 

neglected due to discreteness of the decision space in DILP me-

thods. Furthermore, constraints may be violated for DILP me-

thods under the assumption of continuity of decision space. Let 
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the value of objective function (1-1) corresponding to Xu and 

Xl be denoted as Fuopt and Flopt, respectively. The decision space 

(denoted as DILPDS) constrained by the two most extreme 

schemes (i.e., Xu or Xl) may involve solutions that are infeasible 

for all combinations of inexact coefficients. Let the set of these 

solutions be denoted as DILPInF. Any element in DILPInF, es-

pecially ones around Xu or Xl, may lead to extremely high pe-

nalties for infeasibility, and needs to be removed from DILPDS. 

In comparison, these challenges are effectively mitigated in the 

proposed IRLP approach. 

 
7.4. Comparison with Robust Linear Programming 

The IRLP approach is developed for solving ILP models 

and guiding ILP problems. Management schemes can also be 

provided by robust linear programming (RLP) methods. The 

ILP models are equivalent with RLP problems in particular ca-

ses. An RLP model corresponding to ILP model (1) can be for-

mulated as Max {CX | AX ≤ b; X ≥ 0} where X is a n×1 vector 

of non-negative decision variables xj (j = 1, 2, …, n); 0 = {0}n×1; 

C = {cj}
1×n, A = {ai j}

m×n, and b = {bi}
m×1; positive integers n 

and m are numbers of decision variables {xj} and constraints, 

respectively; any vector or matrix of coefficients (i.e., C, A, or 

b) belongs to an uncertainty set U where U = {C = {cj}
1×n | cj

− 

≤ cj ≤ cj
+; j = 1, 2, …, n} ∪ {A = {ai j}

m×n | ai j
− ≤ ai j ≤ ai j

+; i = 1, 

2, …, m; j = 1, 2, …, n} ∪ {b = {bi}
m×1 | bi

− ≤ bi ≤ bi
+; i = 1, 2, 

…, m}. The appeal of robust linear programming is that its so-

lutions and performances remain relatively unchanged when ex- 

posed to uncertain conditions (Beyer and Sendhoff, 2007). A 

robust solution of ILP model (1) can be obtained from a robust 

counterpart of the RLP model (abbreviated as RCLP). The mo- 

del can be expressed as Max {f  | F ≤ CX; AX ≤ b; X ≥ 0; ∀ A ⊆ 

U; ∀ C ⊆ U; ∀ b ⊆ U}. As stated in (Beyer and Sendhoff, 20-

07), however, the robust solution obtained from the RCLP mo-

del is the most conservative decision scheme. Higher system 

profits are sacrificed for pursuing higher robustness of solu-

tions, which cannot be acceptable for all decision makers of di-

verse preferences in real-world programming problems, at least 

for optimistic ones who are willing to chase high profits while 

taking risks of solution infeasibility. In contrast, the IRLP ap-

proach for ILP models is of higher adaptability and enables pro- 

vision of a continuous decision space for decision making un-

der interval uncertainties.  

 

7.5. Potential Extensions 

Although the proposed IRLP approach effectively mitiga-

tes constraint violation problems in solving ILP models, it is of 

multiple limitations due to complexities of real-world resources 

and environmental management systems. For instance, contra-

ction ratios are introduced to reflect preferences of decision 

makers, and they should be determined prior to contraction of 

the initial decision space. There is still a lack of scientific tool 

to help decision makers identify the desired values of these ra-

tios. Elaboration of penalties of constraint violation may be he-

lpful for achieving it. In this study, the criterion of constraint 

violation is assumed to be constraints of sub-model ILP1 due 

to relatively high penalties. Effectiveness of the IRLP approach 

relies on the assumption. As a result, it is still possible that the 

obtained solutions lead to violation of constraints under other 

criteria such as constraints of sub-model ILP2. In these cases, 

the IRLP approach should be corrected to reflect realities of re-

al-world ILP problems. The IRLP approach is dependent with 

assumptions 1 to 6 that hold for most resources and environ-

mental management problems. Nonetheless, it is possible that 

these assumptions do not hold for some cases. Corresponding 

revisions are desired for avoiding ineffectiveness of the IRLP 

approach. The suggested solution of the IRLP approach is a se-

ries of interval sets. It provides a decision space of which any 

solution may be the desired scheme for decision makers. How-

ever, the feasibility and optimality of any solution is connected 

with whitened values of interval-set coefficients in ILP models. 

To facilitate decision makers identifying the most desired sche-

me, analysis of the correspondence between them may be de-

manded from the viewpoint of applicability. In addition, there 

may be a number of other complexities in ILP systems, e.g., mu-

ltiple objectives, nonlinear relationships, discrete alternatives, 

parameter interactions, subjective information, random distur-

bances, and joint uncertainties. Coupling IRLP with other opti-

mization methods deserves an attempt to reflect these comple-

xities and provide reliable decision support for engineering pra-

ctices. Therefore, a lot of efforts will be made in the following 

studies to overcome these challenges, enlarge adaptability of 

the IRLP approach, enhance reliability of decision support pro-

cesses, and promote effective management of resources and en-

vironmental systems. 

 

8. Conclusions 

An IRLP approach was proposed in this study. Based on a 

review of ILP models, the TSA approach and their significances 

to REM problems, sub-models ILP1 and ILP2 in TSA were em-

ployed to initialize a decision space for IRLP. Causes of cons-

traint violation were examined based on identification of a vio-

lation criterion. Contraction ratios were defined after revelation 

of violation ranges of constraints. As a recourse measure to con- 

straint violation problems, two linear programming sub-models 

(ILP3 and ILP4) were constructed given a series of contraction 

ratios. A hypercube decision space where infeasible solutions 

were excluded through sub-models ILP3 and ILP4 was obtain-

ned for decision makers. Post-optimality analysis was conduc-

ted to deal with barriers in applying the IRLP approach to real-

world ILP problems. An ILP problem was introduced to de-

monstrate procedures and effectiveness of the IRLP approach. 

Strengthens and shortcomings of the IRLP approach were re-

vealed from comparisons with existing ILP methods. 

Results indicated that the IRLP approach was effective at 

resolving the constraint-violation problem of the TSA approa-

ch, reproducing the largest decision space which did not inclu-

de infeasible solutions and enhancing reliability of decision su-

pport for REM. A hypercube decision space that covered most 

alternative schemes could be provided for facilitating REM un-

der interval uncertainties. Demands of decision makers of di-

verse preferences could be satisfied by adjusting values of con-

traction ratios, e.g., low values for ones who pursued conserva-
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tive schemes or a large decision space. The reliability of the op-

timization process for ILP problems was enhanced in compare-

son with existing ILP methods. 

Complexities of real-world REM problems may require 

further improvements of the IRLP approach in the future stu-

dies. For instance, elaboration of penalties of constraint viola-

tion is helpful for identifying the desired values of contraction 

ratios. The IRLP approach should be corrected to adapt to vari-

ous constraint-violation criteria. Corresponding revisions are 

desired for avoiding ineffectiveness of the IRLP approach when 

related assumptions do not hold. To facilitate decision makers 

identifying the most desired scheme, analysis of the correspon- 

dence between solutions and coefficient combinations may be 

demanded from the viewpoint of applicability. Coupling IRLP 

with other optimization methods deserves an attempt to reflect 

diverse complexities (e.g., multiple objectives, nonlinear rela-

tionships, discrete alternatives, parameter interactions, subject-

tive information, random disturbances, and joint uncertainties) 

and provide reliable decision support for REM.  
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