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ABSTRACT.  The frequency and magnitude of hydrologic extreme events is critical to water resources management. Traditional 
hydrologic frequency analysis approaches rely on the inappropriate assumption that hydrology is stationary. To tackle the non- 
stationarity in the streamflow records, we proposed a hydrologic risk analysis framework for the Xiangxi River, one of the largest 
tributaries of the Three Gorge Region, China. The year 1989 was identified as the change point of the 50-year flow records through a 
CUSUM approach combined with a Bootstrap test. Annual peak flow frequency analyses were then carried out for the 50-year time 
series and the records after the identified change point, respectively. The results revealed that, by taking into consideration 
nonstationarity, the return period of high peak flood at the Xingshan Station would actually increase. Bayesian inference combined 
with a MCMC sampling algorithm was also conducted to address uncertainties in parameter estimation and translate them to flow 
quantile estimates. It was found that the uncertainty in parameter estimation greatly affected the hydrologic design. To better support 
the associated risk assessment, two risk concepts, the exceedance risk and the occurrence risk, were proposed and analyzed. The results 
provided important insights into hydrologic nonstaionarity and uncertainty, and the proposed framework can provide scientific bases 
for engineering design and risk management in many other rivers in China and around the world. 
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1. Introduction 

Hydrologic frequency analysis is of great importance to 
the design and operation of hydraulic infrastructure for strea- 
ms and rivers (Machado et al., 2015; Sraj et al., 2015). Flow 
regime analysis can relate the magnitude of extreme events to 
their frequency of occurrence and thus provide support for the 
determination of hydrologic design scale (Liu et al., 2015). 
Traditional hydrologic frequency analysis approaches rely on 
the attendant stationarity of hydrologic data series (Milly et al., 
2008; Gul et al., 2014; Yilmaz and Perera, 2014). However, 
changing climatic conditions and human disturbances is chal- 
lenging the assumption of stationarity (Kiang et al., 2011; Jor- 
dan et al., 2014; Ma et al., 2014; Madanian et al., 2014). How 
to reflect the changing probability distribution of hydrologic 
events and thus address the nonstationarity for hydrologic de- 
sign and water resources management has been widely studi- 
ed over the past decades (Ouarda and El-Adlouni, 2011). 

The Three Gorges Dam is the largest hydropower station 
worldwide. It is located on the upstream of the Yangtze River 
in China, impounding a total area of 59,900 km2 (Han et al.,  
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2014a). It has a significant effect on approximately 660 km of 
the Yangtze River and a total of more than 16 million people. 
Due to its substantial alteration to the environment of the Yan- 
gzte River’s upstream watersheds as well as its significance to 
China’s economic ascension, many studies have been conduc- 
ted to investigate the climatic and hydrologic trends in the 
Three Gorges Region (Xiong and Guo, 2004; Zhang et al., 
2006; Mei et al., 2015). Xiong and Guo (2004) analyzed the 
annual discharge changes of the Yangtze River during 1882 ~ 
2001. Zhang et al. (2006) investigated the temporal trends and 
frequency changes of annual maximum water level and maxi- 
mum streamflow at three major stations of Yangtze River 
during the past 130 years. Mei et al. (2015) analyzed the 
Three Gorges Dam’s effects on downstream hydrological be- 
havior. Many researchers studied the hydrologic alterations 
resulted from the climate change and human disturbances in 
this area. However, there were very few studies that focused 
on their effects on frequency estimates and the associated 
hydrologic risks. Particularly, most hydraulic infrastructure of 
the tributaries in the middle reaches of the Yangtze River were 
built in the 1950s and 1960s, before hydrologic alterations 
were observed. There are no scientific calculations to support 
the upgrade of the aging infrastructure and to cope with the 
changes in the flow regime.  

Meanwhile, there are many uncertainties in modeling 
processes that can affect hydrologic design and risk assess- 
ment (Huang et al., 2014; Miao et al., 2014). Parameter uncer-  
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tainty is a major source of uncertainties in the estimations of 
flow quantiles and flooding risks (Yang and Yang, 2014; N. 
Zhang et al., 2014). In the classic frequency analysis approach, 
distribution parameters are typically estimated using frequen- 
tist approaches, such as maximum likelihood estimation (ML- 
E), moment matching estimation (MME) and maximum good- 
ness-of-fit estimation (MGE), where objectively fixed para- 
meters can be generated. The uncertainty of the frequency es- 
timation in the classic process is ultimately dependent on the 
parameter uncertainty (Huard et al., 2010; Assumaning and 
Chang, 2014). Compared to traditional approaches, Bayesian 
methods allow a richer and more complete representation of 
the uncertainties in flow records (Reis Jr and Stedinger, 2005). 
They have been proven as effective methods for hydrologic 
frequency analysis, particularly when the sample size is small 
(Liang et al., 2012). However, very few studies on the appli- 
cation of Bayesian methods in the Three Gorges Region tribu- 
taries have been reported. Estimates of the precision of the 
flow quantiles, which can be obtained through Bayesian in- 
ferences, are desired for a comprehensive uncertainty evalua- 
tion and risk assessment in the Three Gorges Region. 

Therefore, the objective of this study is to propose a fra- 
mework for hydrologic frequency analysis and risk assess- 
ment with considerations of nonstationarity and uncertainty. 
The Xiangxi River watershed, a representative watershed of 
the Three Gorges Region, has been selected to demonstrate 
the proposed framework. Streamflow statistics of the Xiangxi 
River during 1961 ~ 2010 will be investigated and a cumuli- 
tive sum chart approach combined with a Bootstrap test will 
be used to detect the hydrologic change points and address 
nonstationarity during the studied period. The 50-year nonsta- 
tionary streamflow records and the relatively stationary flow 
records posterior to the detected change point will be analyzed 
to investigate the effects of nonstationarity. Then Bayesian 
analysis combined with Markov Chain Monte Carlo sampling 
will be conducted to generate the posterior distributions of di- 
stribution models, flow quantiles and flood risk, and parame- 
ters of the Gamma distribution. This study will reflect the 
nonstationarity and uncertainty in historic flow records and 
provide robust decision support for hydrologic quantile esti- 
mation and the associated risk assessment. 

2. Methodology 

2.1. Change Point Analysis 

The traditional method for hydrologic frequency analysis 
is based on the assumption that extreme events arise from a 
stationary distribution (Xiong et al., 2015). However, the as- 
sumption of stationarity has been called into question in the 
recent years (Lee and You, 2013; Ma et al., 2014). Many stu- 
dies that the hydrologic patterns no longer conform to a sta- 
tionary and identically distributed random process due to cli- 
mate change and human interferences (Sang et al., 2010). To 
reflect the nonstationarity and to identify a relatively statio- 
nary recent time series for more reliable hydrologic frequency 
and risk analysis, a cumulative sum charts (CUSUM) app- 
roach combined with a Bootstrap test was adopted for change 

point analysis.  

The CUSUM approach combined with Bootstrap test was 
first proposed by Taylor (2000). It has been widely used for 
abrupt change point detection (Smadi and Zghoul, 2006; Ren- 
ner and Bernhofer, 2011; Tao et al., 2011; Chu et al., 2012). 
Let 1 2{ } { , ,..., }i Ia a a a  represent I data samples of a variable, 
with the sample mean of a and the sample variance of 

2. Let the cumulative sum started with 0 0,S  then it can be 
calculated as 1 ( ),  1, 2, ... , .i i iS S a a i I    The changes in 
cumulative sums can help identify shifts in the sample ave- 
rage. For a single change point model, the potential change 
point k* can be identified as the point that returns the maxi- 
mum cumulitive sum, i.e., *| |kS  max | |, 1, 2, ... , .iS i I   

The confidence level of the change point analysis can be 
determined by conducting bootstrap analysis, which can be 
performed as below (Tao et al., 2011): 

1) Calculate max( ) min( ),  1, 2, ..., ;i iS S S i I     

2) Generate a bootstrap sample set of I samples, presen- 
ted as 0 0 0 0

1 2{ } { , ,..., };i Ia a a a  

3) Calculate the cumulative sums of the bootstrap sam- 
ples (i.e., 0 0 0 0

1 ( ),  1,2,...,i i iS S a a i I    ), as well as 
the corresponding 0;S  

4) Compare the values of S and 0;S  

5) Iterate Steps 2) to 4) for N times;  

6) Record n as the number of bootstraps where 0;S S   

7) The confidence level (CL) of the identified change po- 
int can be calculated as / 100%CL n N  . 

 

2.2. Hydrologic Frequency Analysis Model 

The classic hydrologic frequency analysis approach is to 
determine a distribution function to fit the observation data. 
Identifying the type of distribution is crucial for calculating 
the nonexceedance probability that can later be used as the 
inputs of hydrologic risk assessment (Gebregiorgis and Hos- 
sain, 2012). Generalized extreme value (GEV), Gamma, Pear- 
son Type III (P-III), and Log-normal distributions are com- 
monly adopted distribution functions for fitting the annual pe- 
ak flow series (Wang et al., 2001; Sudheer et al., 2003; Q. 
Zhang et al., 2014). In this study, the Gamma distribution was 
chosen because it was wide applied to hydrologic frequency 
analysis and it was recommended by the Chinese Ministry of 
Water Resources (Yue et al., 2001; Liu et al., 2011). 

Suppose x1, x2, … , xn is a time series of annual peak flow. 
For a large n, we have: 

 

Pr{ } ( )nx z H z   (1) 

 
where: 
 

1

0

1
( ) , 1

( )

xz
a b

a
H z x e dx a

a b

 
  (2) 

 
( )H z is called the Gamma model, where a and b are the 
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shape and scale parameters, respectively. It can be used to fit 
the observation data of annual peak flow for hydrologic fre- 
quency analysis. 

 

2.3. Bayes' Theorem  

Bayesian inference provides an alternative for parameter 
estimation, which allows probability to represent subjective 
uncertainty or subjective belief (Eshky, 2008). In the Bayes’ 
theorem, parameters are treated as random variables and the 
corresponding likelihood is described with probability density 
functions (PDF) (Sang et al., 2010). The PDF can be obtained 
by starting with a prior distribution and then converting it into 
a posterior distribution through the inclusion of additional in- 
formation provided by observation data. Since additional ob- 
servation is added to the prior knowledge available, the pos- 
terior distribution can give a more complete representation 
than traditional estimators (Hao et al., 2015). This is of parti- 
cular importance to extreme value analysis of flow records, 
where the analysis is usually subjected to the scarcity of ob- 
servation data. The Bayes’ theorem can be outlined as fol- 
lows: 

 
( | ) ( )

( | )
( | ) ( )

p x P
P x

p x P d

 
  






 (3) 

 
where parameter is the parameter to be estimated, ( )P   is 
the PDF of the prior distribution for , ( | )p x  is the like- 
lihood function, is the parameter space of , and ( | )P x is 
the PDF of the posterior distribution for .  

To estimate the PDFs of the posterior distributions for pa- 
rameters a and b in the Gamma model, the prior distributions 
were first defined as normal distributions based on the know- 
ledge obtained from MLE, MME and MGE. The prior distri- 
butions can be given as follows: 
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where a and b are the means of a and b’s prior distri- 
butions, respectively. Then the likelihood function is given by: 
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 (6) 

 
Accordingly, the equation of the posterior distribution 

can be obtained by substituting Equations 4 to 6 into Equ- 
ation 3. In this study, instead of solving the equation analytic- 
cally, an empirical estimate of the posterior distribution was 

generated using statistical inferences based on a Markov Ch- 
ain Monte Carlo (MCMC) technique. 

 

2.4. Metropolis-Hastings Algorithm 

The MCMC approach with Metropolis-Hastings (MH) 
steps were adopted to simulate a Markov chain with equi- 
librium distribution of the posterior distribution of the target- 
ed parameter , named ( )  (Kastner et al., 2013). An MH 
algorithm can be summarized as follows: 

1) Set an initial parameter value 0 ; 

2) Identify a proposal function *
1( )iq    , where 1i   

is the current state of the chain, and * is the new state; 

3) Propose a new parameter value 

*  based on 1i  and the 
probability density function; 

4) Compute the acceptance probability *
1( | ) minia     (1, 

A), where * * *
1 1 1[ ( ) ( )] [ ( ) ( )]i i iA q q            ; 

5) Draw a random number C from the uniform distribu- 
tion U(0,1), and compare the C value with the accep- 
tance probability obtained in Step 4. If *

1( | ) ,ia C     
accept the proposed value and let *,i  otherwise 
reject * and let 1i i   ; 

6) Iterate Steps 2) to 5) to generate more samples for the 
chain. 

In the chain, the stochastic properties of i are indepen- 
dent of the previous states 0 1 2, , ... , i    (Hao et al., 2015). 
The posterior distributions of parameters a and b were obtain- 
ed by running the MH algorithm twice separately. 

 

2.5. Risk and Return Period Analysis 

Hydrologic risk in general is defined as the exposure to 
an extreme, dangerous, hazardous or undesired event (USA- 
CE, 1988). It is measured by probability and it can be estima- 
ted by analyzing historical flow data (USACE, 1988). This 
study focused only on risks related to hydrologic processes in 
terms of annual peak flow. According to Equations 1 and 2, 
the nonexceedance probability of a certain flow value z can be 
given by the cumulative distribution function (CDF) of the 
Gamma distribution that fits the historic annual peak flow 
data: 

 

q=Pr 1

0

1
{ } ( )

( )

xz
a b

n a
x z F z x e dx

a b

  
  (7) 

 
Return period is an important concept derived from the 

nonexceedance probability. It can be calculated as follows 
(Salas and Obeysekera, 2014): 

 
1(1 )T q    (8) 

 
Even though a flow with a return period of n years does 

not mean the maximum flow that is likely to occur during the 
n years, it is still an important criterion in hydrologic and en-   
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vironmental engineering design practice. With the probabilis- 
tic estimates regarding q provided by Bayesian inference, the 
exceedance risk that the flow volume with a return period of T 
exceeds q can be defined as follows:

  
1ER  Pr{qT} (9) 

 
where Pr{qT} can be calculated according to the sample set of 
q by drawing random values from the posterior distributions 
of parameters a and b and substituting them to Equation 7. 
Determination of the exceedance risk is useful for many engi- 
neering practices, such as the design of hydraulic infrastru- 
cture and the development of hydrologic risk management 
projects. 

Furthermore, another type of risk, which is the occurren- 
ce risk RO defined as the probability of the occurrence of a 
flow that exceeds z in n years, can be given as follows (Geb- 
regiorgis and Hossain, 2012): 

 
1 1 (1 1/ )n n

OR q T      (10) 

3. Study Area and Data Analysis 

The Xiangxi River watershed is located in Hubei Pro- 
vince, China (Figure 1). The Xiangxi River is approximately 
94 km in length from its source in the Shennongjia Forestry 
District to the mouth at Zigui County, draining an area of 

3,200 km2 into the Yangtze River. It is in the vicinity of the 
Three Gorges Dam, the largest operating hydropower facility 
over the world. The Xiangxi River watershed is a representa- 
tive watershed of the Three Gorges areas in the middle reach 
of the Yangtze River. It has a typical subtropical continental 
monsoon climate, with a mean annual temperature of 17 °C 
and an annual precipitation of 900 ~ 1,200 mm (Li et al., 
2015). Precipitation in this area is more intense in summer 
than in winter. Approximately 70% of the precipitation recei- 
ved between May and September, is rainfall. Over 80% of the 
area is mountainous, and the land cover is dominated by 
mixed needle-leaf and broad-leaf forests (Han et al., 2014b; 
Liu et al., 2014).  

Due to abundant hydropower and mineral resources in 
the Xiangxi River Watershed, the local economy experienced 
a rapid growth during the 1980s and 1990s (Li et al., 2013). 
More than 50 hydropower stations and a number of reservoirs, 
including two cascade reservoirs (i.e., Gudongkou I Reservoir 
and Gudongkou II Reservoir), were built. These intensive hu- 
man activities posed profound impacts on the hydrological 
cycle, which led to significant changes in evapotranspiration, 
precipitation and streamflow in the past decades (Seeber et al., 
2010; Han et al., 2014a). The changes in precipitation and str- 
eamflow trends usually imply that there would be flood risk 
changes supervened (Obeysekera and Salas, 2013; Liu et al., 
2014). Therefore, it is desired to re-evaluate the associated 
risks under changing hydrologic conditions, to provide relia- 
ble decision support for water resources management and 
flood control. 

Three Gorges Reservoir

China

Hubei Province

Xiangxi River Watershed

High: 3088

Low: 67

High: 3088 

Low: 67 

 Hubei Province

 China 

  Three Gorges Reservoir 

 
Figure 1. Location of the Xiangxi River Watershed. 
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4. Result Analysis and Discussion 

4.1. Change Point Analysis 

Streamflow statistics for each year during 1961 ~ 2010 
were calculated and the corresponding time series was gene- 
rated for change point analysis. The 29th point, i.e., 1989, was 
identified as the most probable change point in terms of twe- 
lve streamflow statistics including Qmean, Q10, Q30, Q50, Q70, 
Q90, Q7-day low, Q7-day mean, Q7-day high, Q14-day low, Q14-day mean, Q14-day 

high. The confidence levels of the tests are given in Table 1. 
The change point of Qmean, Q10, Q30, Q7-day mean, Q7-day low, Q7-day 

high and Q14-day low are at an acceptable significance level. Even 
though high confidence level values were not reached during 
the bootstrap test, 1989 is still the point that returns the maxi- 
mum cumulative sums of the other streamflow statistics. It is 
implied that significant changes of the hydrologic time series 
occurred since 1989, and thus 1989 can be considered as the 
change point of the hydrological time series (Han et al., 
2014a).  

 

Table 1. Confidence Level of the Change Point Tests 

Streamflow statistic  Confidence level 

Qmean  0.90 
Q10  0.99 
Q30  0.94 
Q50  0.58 
Q70  0.77 
Q90  0.89 
Q7-day low  0.80 
Q7-day mean  0.99 
Q7-day high  0.94 
Q14-day low  0.90 
Q14-day mean  0.89 
Q14-day high  0.60 

 
To illustrate the hydrological changes, times series of 

Qmean, Q10, Q50, and Q90 are given in Figure 2. There is a ge- 
neral decreasing tendency of the four streamflow-related sta- 
tistics. The hydrological alterations might have resulted from 
the unavoidable effects of climate change and intensive hu- 
man interferences in recent decades. Variations in the intra- 
annual precipitation disribution, which might affect the stream 
flow regime in the Xiangxi River Watershed, have been found 
in previous studies (Zhang et al., 2011). Decease of the stream 
flow statistics might also be attributed to the significant de- 
creasing trends in the evapotranspiration of the Yangtze River 
basin (Xu et al., 2006). In addition, the hydropower resources 
of the Xiangxi River were extensively exploited in the 1990s. 
Over 50 hydropower stations were constructed within the wa- 
tershed (Guo et al., 2000; Wu et al., 2009). A large portion of 
the streamflow was diverted for the purpose of electricity ge- 
neration, significantly affecting streamflow (Wu et al., 2007). 
Land use changes due to land cultivation and mining activates 
were also found during the 1990s (Seeber et al., 2010; Han et 
al., 2014a; Li et al., 2014).  
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Figure 2. Qmean, Q10, Q50, and Q90 series of the annual 
streamflow at the Xingshan Station. 

 
4.2. Frequency Analysis for Nonstationary Flow Records 

The hydrological alterations could lead to evident chan- 
ges in the probability behavior of the peak flow series. In 
order to reflect the effects of nonstationarity, frequency analy- 
sis of the peak flow records with and without the detected 
change point was conducted (Figure 3). The results demons- 
trates that cumulative probabilities of the peak flow values in- 
crease remarkably in the posterior change point time series. 
The probability changes of the middle-level peak flow values 
are the most significant. For instance, the cumulative probabi- 
lity of an annual peak flow of 477 m3/s is 0.56 in the 50-year 
time series, and it rises to 0.68 in the posterior change point 
time series with an increase of 21.75%. The cumulative pro- 
bability increases of the 438 and 456 m3/s flow records are 
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as high as 23.11 and 22.38%, respectively. It is obvious that 
the Gamma distribution that fitted the 50-year peak flow time 
series was no longer acceptable for describing the probability 
behavior of the series after the change point. Correspondingly, 
the designed peak flow values needed to be re-calculated. The 
results indicate that, taking into account the nonstationarities, 
there is an increase in return periods of floods. For instance, 
when the 50-year peak flow time series was considered as 
stationary, the return period of a 1,000 m3/s peak flow rate 
was calculated as 25 years and that of a 1,200 m3/s peak flow 
rate was 84 years. However, when the hydrologic design was 
based on the time series posterior to the change point, the 
return periods of the 1,000 m3/s and peak flow rates were 
calculated as 34 and 116 years, respectively. 

Frequency analyses were further conducted with regard 
to the annual peak flow series posterior to the change point. 
Three parameter estimation methods, i.e., MLE, MME and 
MGE, were applied to estimate the parameters of the Gamma 
distribution. The obtained parameters estimation and calcula- 
ted peak flow values in different return periods are presented 
in Table 2. It indicates that different estimation methods resul- 
ted in varied parameter values. However, the different para- 
meterzations generated very similar modeling results of the 
nonexceedance probability. The differences among the esti- 
mators are relatively minor. The R2 value of the three models 
are 0.981, 0.981 and 0.987, respectively. This is called equi- 
finality in parameterization, which has been found in many 

empirical studies (Zak and Beven, 1999; Beven, 2006; Tang 
and Zhuang, 2008). Even though similarly good fits to the 
nonexceedance probabilities of the historic peak flow were 
obtained, the hydrologic design values in the 10-year, 50-year, 
100-year and 200-year return period would vary.  

 

4.3. Bayesian Parameter Estimation  

A total of 10,000 pairs of a and b samples were obtained 
using the Bayes' theorem and the MCMC-MH algorithm desc- 
ribed in Section 2. Visual inspection of the chains was condu- 
cted to determine when convergence is achieved (Hao et al., 
2015). It was found that the two chains mix well during the 
latter 8,000 iterations, and thus the 8,000 samples were used 
to generate the posterior distributions of Parameters a and b 
for the peak flow records at the Xingshan Station. As shown 
in Figure 4a, the mean values, the center values and the detail- 
ed shapes of parameter a’s posterior distributions under non- 
stationarity and stationarity are different. As for parameter b, 
even though the mean value under stationarity is very close to 
that under nonstationarity, the most probable values under the 
two assumptions do not coincide with each other. The joint 
probability distribution of a and b are presented in Figure 4b. 
The distribution is a complicated mixture distribution, and it 
is widely spread with two distinct peaks. It is obvious that th- 
ese uncertainties may affect the estimated quantiles and pro- 
babilistic forecast results of hydrologic design results. Thus, it  

(a) (b)

 
Figure 3. Distributions and return periods of flow under stationaritaty and nonstationarity. 

 
Table 2. Frequency Analysis Results Based on Maximum Likelihood Estimation, Moment Matching Estimation, and Maximum 
Goodness-of-fit Estimation 

Method of parameter 
estimation 

Estimated parameters Goodness-of-fit Peak flow in different return periods 

Shape Scale R2 10 years 50 years 100 years 200 years 
MLE 4.028 116.573 0.981 783 1,064 1,176 1,285 
MME 3.934 119.366 0.981 787 1,072 1,186 1,297 
MGE 5.030 89.479 0.987 719 951 1,042 1,131 
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is crucial to include parameter uncertainty in hydrologic fre- 
quency analysis and risk assessment. 

 

4.4. Frequency Analysis and Hydrologic Risk Under 
Uncertainty 

The parameter uncertainty was translated into uncertainty 
on hydrologic calculation results using an approach revised 
from the work of Coles et al. (2003). Two thousand pairs of a 
and b samples, denoted as ,m where { , },m m ma b  1, 2,m   
... , 2000, were first drawn from their posterior distributions 
using MCMC sampling. Then the peak flow quantile mq , flow 

,T mq with return period T, exceedance risk ,E mR and occurrence 
risk ,O mR were computed for each parameter sample m . Fi- 
nally, the samples of mq , ,T mq , ,E mR and ,O mR were histogram- 
med to yield the corresponding distributions (Coles et al., 
2003; Huard et al., 2010). 

By making probabilistic a and b the two parameters driv- 
ing the Gamma distribution model, the uncertainty in the non- 
exceedance probability of a certain flow volume were first 
quantified. The mean value and 95% confidence interval are 
presented in Figure 5. The range of the 95% confidence inter- 
val is the largest for the flow volume of [370, 480] m3/s, 

where the diameter of the interval is higher than 0.2. The 95% 
peak flow quantile with a confidence level of 95% is approxi- 
mately [840, 1,000] m3/s. Furthermore, the 95% confidence 
interval of the flow volume with a return period T were ob- 
tained, as given in Figure 6a. It is indicated that the longer the 
return period, the higher the designed peak flow. It is also im- 
plied that the parameter uncertainty as well as the probabili- 
stic cumulative probability estimate would lead to uncertain- 
ties in designed peak flow volume. The uncertainty would be 
more significant for the flow volume with a longer return pe- 
riod. For instance, the 95% confidence interval of the peak 
flow with a return period of 100 years would range from 
1,081 to 1,274 m3/s; that of the peak flow with a return period 
of 1,000 years would range from 1,416 to 1,644 m3/s. Mean- 
while, the uncertainties in the return period estimation of high 
flow volume would be enormous. For instance, the return pe- 
riod of a peak flow of 1,400 m3/s would vary from 200 years 
to as long as 1,000 years, not to mention the peak flow of 
1,500 m3/s or higher. To reflect the uncertainty in the esti- 
mation of the designed values, the probability that the flow 
with a return period of T exceeds a certain value is proposed 
as the exceedance risk. The exceedance risk of flow qT with a 
return period of T is illustrated in Figure 6b.  
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Figure 4. Posterior distributions of parameters a and b (a) and their joint probability distribution (b). 
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Figure 5. Cumulative probability of flow under uncertainty. 
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Figure 6. Exceedance risk of flow qT with a return period of 
T. 
 

The occurrence risk of flooding depends on the designed 
life time of the dam or hydraulic structure, which is usually 
expected to be 100 years or longer (Nagy et al., 2013). There- 
fore, occurrence risk of flood at the Xingshan Station for a de- 
signed period of 100 years was analyzed. Figure 7a demons- 
trates that the higher designed flood value, the lower the risk. 
The designed flood of 1,500 m3/s takes the occurrence risk of 
13.2%. With the probabilistic peak flow quantiles generated 
by Bayesian inference, the confidence levels of the occurrence 
risk were further obtained as shown in Figures 7a and 7b. The 

 

95% confidence interval of occurrence risk for the designed 
flow of 1,500 m3/s is 5.2 to 22.0%. It is difficult to determine 
an exact acceptable threshold for the occurrence risk. How- 
ever, in engineering practice, it is recommended to keep the 
risks as low as possible for the purpose of ensuring safety and 
maintaining economic feasibility (Gebregiorgis and Hossain, 
2012). The occurrence risk and its probability distribution can 
help the designer minimize the associated risks.  
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Figure 7. Occurrence risk of flow with a designed period of 
100 years. 
 

5. Conclusions 

This study proposed a framework for hydrologic frequency 
analysis and risk assessment with consideration to both non- 
stationarity and uncertainty. The proposed approach was ap- 
plied to the Xiangxi River in China. Nonstationarity analysis 
was first conducted through a CUSUM approach combined 
with Bootstrap test. The year 1989 was identified as the chan- 
ge point of the 50-year Qmean, Q10, Q30, Q7-day mean, Q7-day low, 
Q7-day high and Q14-day low time series with acceptable signify- 
cance level. The annual peak flow frequency analyses were 
then carried out for the 50-year time series and the records 
after the identified change point, respectively. The results in- 
dicated that, the Gamma model that fitted the 50-year peak 
flow time series was not acceptable for describing the pro- 
bability behavior of the series after the change point. It was 
also revealed that when taking nonstationarity into conside-  
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ration, the return period of high peak flood at the Xingshan 
Station would actually increase, which should be considered 
for future hydrologic design. 

Furthermore, uncertainty analysis regarding the flow re- 
cord posterior to the change point was conducted based on 
Bayesian inference and MCMC sampling. It was found that 
the uncertainty in parameter estimation greatly affected the es- 
timation of the hydrologic design values. The effects on the 
estimated return periods of high flow volumes were parti- 
cularly significant. In addition, two risk concepts were propo- 
sed to support hydrologic risk assessment. The exceedance 
risk was defined as the probability that the flow with a return 
period of T years exceeds a certain volume, and the occur- 
rence risk was defined as the probability that a flow high than 
z occurs in a n-year period. The results provided important in- 
sights into the hydrologic nonstaionarity and uncertainty of 
the Xiangxi River. They also provided scientific bases for 
robust flood frequency analysis and risk assessment for local 
water managers. The proposed approaches are generic and 
direct and thus can be further applied to engineering design in 
many other rivers in China and around the world, to support 
policy revisions based on the re-calculation of hydrologic fre- 
quency and the re-assessment of hydrologic risks. However, 
this study focused on the uncertainty associated with para- 
meters were considered. It can be further improved by inclu- 
ding more uncertainty sources, such as input uncertainty and 
model structure uncertainty.  
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