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ABSTRACT. In this study, extended two-stage stochastic programming with fuzzy variables is developed for water resources manage-
ment under uncertainty. First, the problem is formulated and solved by an extended interval-parameter two-stage stochastic programming 
(ITSP) approach for retrieving water shortages. To this end, some alternatives are considered to retrieve the difference between the 
quantities of promised water-allocation targets and the actual allocated water. An extended ITSP is then developed for the problem under 
the fuzzy uncertainty by using fuzzy variables and solved using fuzzy chance-constrained programming based on the idea of possibility 
theory. Furthermore, an illustrative example is also given to clarify the methods discussed in this paper. 
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1. Introduction 

In recent decades, problems including the efficient allo- 
cation of water supplies have been of increasing interest for 
water resource managers. In water resources management, the 
conflict-laden issues of water allocation among competing mu- 
nicipal, industrial and agricultural interests have intensified 
(Huang and Chang, 2003; Wang et al., 2003). 

Furthermore, the growing population shifts cause a quick 
development in agriculture systems which leads to the shortage 
of water resources. In other words, increasing demand for water 
resources, shrinking water supplies, development of industries 
and agricultural interests specify the requirement of an efficient 
method for allocating water to multiple users. 

Numerous mathematical optimization techniques (Li et al., 
2007; Guo et al., 2010; Wang et al., 2011; Wang and Huang, 
2011) have been developed to analyse the water resource allo-
cation systems. For instance, Wang et al. (2011) proposed an 
interval-valued fuzzy linear programming with infinite α-cuts 
method for environmental management under uncertainty. Hu 
et al. (2012) proposed an inexact fuzzy two-stage program- 
ming approach for supporting multi-water resources manage- 
ment under multi-uncertainties. Another inexact two-stage sto- 
chastic partial programming method is proposed by Fan et al. 

(2012) for tackling uncertainties presented in form of intervals 
and partial probability distributions as an application to water 
resources management under uncertainty. Recently, Wang and 
Huang (2015) have presented a multi-level Taguchi-factorial 
two-stage stochastic programming approach for supporting wa-
ter resources management under parameter uncertainties and 
their interactions.  

Two-stage stochastic programming (TSP) is an effective 
technique for the analysis of problems in which an examination 
of policy scenarios is desired and the system data is character- 
rized by uncertainty. In TSP, an initial decision must be made 
before values of random variables are known, and then a cor- 
rective action can be taken after random variables have taken 
place. 

TSP has been widely studied over the past decades (Wang 
and Adams, 1986; Birge and Louveaux, 1988; Eiger and Sha- 
mir, 1991; Ruszczynski and Swietanowski, 1997; Ferrero et al., 
1998; Huang and Loucks, 2000; Maqsood et al., 2005; Guo et 
al., 2008; Wang and Huang, 2011). It has also been successfully 
applied to water resource management problems. Maqsood et 
al. (2005) offered an interval-parameter fuzzy two-stage sto- 
chastic program for water resources management. Guo et al. 
(2010) proposed a two-stage programming approach for water 
resources management under randomness and fuzziness. Fur- 
thermore, an interactive two-stage stochastic fuzzy program- 
ming (ITSFP) for water resources management was presented 
by Wang and Huang (2011).  

Interval mathematical programming deals with uncertain- 
ties expressed as intervals with definite lower and upper bounds. 
Interval-parameter two-stage stochastic programming (ITSP) 
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was presented due to insufficiencies of TSP (Huang and Loucks, 
2000; Maqsood et al. 2005; Li and Huang, 2008). For instance, 
Huang (1996) employed an interval-parameter model for water 
quality management and provided its application to a case stu- 
dy of water pollution control planning within an agricultural 
system. For water resources management under uncertainty, Li 
et al. (2006) presented an interval-parameter multi-stage sto- 
chastic programming model, and more recently, Li and Huang 
(2008) proposed an interval-parameter two-stage stochastic 
nonlinear programming.  

ITSP could not only tackle uncertainties expressed as ran- 
dom variables and intervals but also investigate a variety of po-
licy scenarios. However, this method has remarkable limita- 
tions in handling possibilistic uncertainty or indicating the risk 
of violating the constraints of the problem.  

In most real-world problems, the parameters may often be 
given as subjective information expressed as fuzzy sets, and 
several new methods have been developed to solve the prob- 
lems with fuzzy parameters. Jairaj and Vedula (2000) optimi- 
zed a multi-reservoir system using fuzzy programming and 
Maqsood et al. (2005) proposed a model derived by incorpo- 
rating the concepts of interval-parameter and fuzzy program- 
ming techniques within a two-stage stochastic optimization 
framework. Jiménez et al. (2007) proposed an interactive fuzzy 
resolution method for solving linear programming problems 
with fuzzy parameters and Nie et al. (2007) introduced a hybrid 
interval-parameter fuzzy robust programming approach for 
waste management planning under uncertainty. 

For water resources management, Wang and Huang (2011) 
proposed ITSFP through incorporating an interactive fuzzy res-
olution method within an inexact two-stage stochastic pro- 
gramming framework. ITSFP could handle dual uncertainties 
expressed as fuzzy boundary intervals that exist in the objective 
function and the left- and right-hand sides of constraint and an-
alyse a variety of policy scenarios with different levels of eco-
nomic penalties when the promised policy targets are violated. 
A new class of fuzzy stochastic optimization models presented 
by Wang and Watada (2011) is two-stage fuzzy stochastic pro-
gramming with Value-at-Risk criteria. 

In this paper, new extended methods are presented to solve 
the problems of water shortages. These methods include some 
alternatives such as other reservoirs to retrieve water shortages 
to reach the water allocation target. The main aim of this paper 
is to introduce new approaches for the problem, in a way that 
optimizes the system net benefit and gives optimal solutions 
that also choose proper alternatives for retrieving water shor- 
tages. 

This paper presents two extended approaches. First, an ex- 
tended ITSP approach is presented to water resources mana- 
gement for retrieving water shortages. Then, the extended ITSP 
is developed considering fuzzy parameters for the problem un-
der fuzziness. The advantage of these extended approaches 
over the conventional type is considering some alternatives for 
retrieving water shortages when the water demands are not 
completely satisfied by seasonal flows which cause irreparable 
damages especially to industries, and users have to either ob- 

tain water from higher-priced resources or curtail their deve- 
lopment plans. 

The remainder of this paper is organized as follows. Sec- 
tion 2 proposes an extended ITSP approach for retrieving water 
shortages. In Section 3, an extended ITSP model with fuzzy 
variables is presented, and new methods are proposed to solve 
it. In Section 4, our computational results are reported and an 
illustrative example is also solved and analysed to clarify the 
described methods. Finally, Section 5 contains conclusions and 
discussions of future research. 

2. An Extension of ITSP 

In this section, a basic study is discussed to pave the way 
for presenting an extended approach for water resources prog- 
ramming under uncertainty. Indeed, we introduce a new exten- 
ded approach under uncertain framework to retrieve the water 
shortages of users.  

The problem of water resources management concerns 
with effective allocation of water resources among competing 
multiple users: an agricultural sector, a municipality and an in- 
dustrial unit, and the main objective is to maximize the system 
benefit. In such problem, a prescribed quantity of water is pro- 
mised to each user according to the average amount of water 
usage in past years and the water flow levels are uncertain, ex-
pressed as random variables with a known probabilistic distri-
bution. 

This problem consists of two stages. In the first stage, a 
decision must be undertaken before the values of random va- 
riables are defined, and then in the second stage, a corrective 
action can be taken after the disclosure of random variables and 
this leads to a TSP approach. 

Thus, the real amount of the allocated water differs from 
the optimized water-allocation target promised to each user and 
the water demands may not thoroughly be satisfied. The shor- 
tage amount will be the optimized water-allocation target mi- 
nus the actual allocation amount. 

To solve the problem through the linear programming 
method, the distribution of total seasonal flow is approximated 
by discrete values jq with probabilities ( 1, ..., ).jp j n  There-
fore, this problem is formulated as a TSP model as follows: 

 
Maximize 
 

1 1 1

m m n

i i j i ij
i i j

f NBW p C S
  

    (1 )  

 

subject to 
 

1

( )(1 ) ,
m

i ij j
i

W S q j


     (2 )  

 

max , ,ij i iS W W i j    (3 )  

 
0, ,ijS i j   (4 )  
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where f  system benefit ($); iNB  net benefit to user i per m3 
of water allocated ($/m3); iW water-allocation target that is 
promised to user i (m3) (first-stage decision variables); iC 
shortage cost to user i per m3 of water shortage ($/m3); ijS   
shortage of water to user i when the seasonal flow is jq (m3) 
(second-stage decision variables);   rate of water loss dur-
ing transportation; jq  seasonal flow with probability jp ;

maxiW   maximum allowable allocation amount for user i (m3); 
n  total number of flow levels; m  total number of water us-
ers; i  water user, 1, 2, 3i  ,where 1i  for the municipality, 

2i  for the industrial user, and 3i   for the agricultural sec-
tor.  

The seasonal water flows that will be available for allo- 
cation are uncertain, so it seems difficult to suppose a definite 
amount for shortages, costs, benefits and other parameters. In 
addition, a manager is not able to promise a certain amount of 
water allocation to each user and in most cases, definition of 
the parameters with a probabilistic distribution seems impos- 
sible since they did not obey a known distribution. In the ITSP 
approach, parameters/variables are expressed as intervals de- 
fined by upper and lower bounds. Consider the following for- 
mulation of the problem as an ITSP model:  
 
Maximize 
 

1 1 1

m m n

i i j i ij
i i j

f NB W p C S    

  

    (5)  

 

subject to 
 

1

( )(1 ) ,
m

i ij j
i

W S q j   



     (6)  

 

max , ,ij i iS W W i j      (7)  
 

0, ,ijS i j    (8)  
 

where iNB , iW  , iC  , ijS  ,   and maxiW  are interval parame-
ters/variables. A number with a known upper and lower bound 
but with unknown distribution information is defined as an in-
terval (Maqsood et al., 2005). For example, ijS  is an interval 
decision variable and ijS   and ijS  	are upper and lower bounds 
of ijS  , respectively, and [ , ]ij ij ijS S S   . 

Now, the conventional ITSP is developed and a corrective 
method is presented to satisfy water shortages that users and 
managers face with them. As said before, water shortages occur 
when the seasonal water flows do not suffice the promised wa-
ter-allocation target to each user, which means that promised 
amount for water allocation exceeds the available water. In 
such cases, users will have to utilize supplementary resources 
to satisfy their water needs. In the following problem, an ex- 
tended ITSP method is proposed to retrieve water shortages:  

 
Problem 1 
 
Maximize 

1 1 1

1 1 1

m m n

i i j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W p C S

p E T x

    

  

 

  

 

 

 

 
 (9)  

 

subject to 
 

Water availability constraints: 
 

1

( )(1 ) ,
m

i ij j
i

W S q j   



     (10) 

 
Allowable water allocation constraints: 
 

max , ,ij i iS W W i j      (11) 
 

Constraints that prevent users to exceed capacity of alternatives: 
 

1

1, ,
n

ijk
j

x i k


   (12) 

 
Constraints for retrieving water shortages: 
 

1

, ,
l

ik ijk ij
k

T x S i j 



    (13) 

 

Non-negativity constraints: 
 

0, ,ijS i j    (14) 

 
Binary constraints for using alternatives: 
 

{0,1}, , ,ijkx i j k   (15) 

 
where ikE   cost of increasing 1 m3 water for user i while using 
alternative k ($/m3); l  total number of alternatives; ikT  
available amount of water for user i by using alternative k (m3); 

ijkx is a binary decision variable that takes value 1 if user i uses 
alternative k when the seasonal flow is j. 

Furthermore, the other parameters and variables of this 
problem are similar to those of the problem formulating based 
on the ITSP approach. 

 
2.1. Solution Method 

According to Huang (1996), problem 1 is divided into two 
deterministic mixed integer programming (MIP) sub-models. 
In the first sub-model, the goal is to reach the upper bound of 
the objective-function value ( )f  , so the parameters and vari- 
ables are set in their lower or upper bounds in a way that the 
upper bound for the objective function occurs. Conversely, the 
second sub-model is based on the lower bound of the objective-
function value ( )f  .	According to Huang and Loucks (2000), 

iW   is converted to a deterministic value derived from iW    
,i i iW W z   where i i iW W W    ， [0,1]iz  and iz are deci- 

sion variables that are used to determine iW  .  
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The first sub-model corresponding to f  can be formula- 
ted as follows: 
 

Problem 2 
 

Maximize 
 

1 1 1

1 1 1

( )
m m n

i i i i j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W W z p C S

p E T x

    

  

 

  

   

 

 

 
 (16) 

 

subject to 
 

1

( ) ,
j

m

i i i ij
i

W W z S q j  



      (17) 

 

max , ,ij i i i iS W W z W i j        (18) 
 

1

1, ,
n

ijk
j

x i k


   (19) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (20) 

 

0, ,
ij

S i j    (21) 
 

{0,1}, , ,ijkx i j k   (22) 
 

0 1,iz i    (23) 
 

where ijS  , iz and ijkx are decision variables. Let ij optS  , i optz and 

( )ijk opt fx  are the optimal solutions of the first sub-model. Then, 
the optimized water-allocation targets can be obtained by cal- 
culating i opt i i i optW W W z    .  

According to Huang (1996), the sub-model corresponding 
to f  can be formulated as follows in which the calculated 
amounts of ij optS  , i optz and ( )ijk opt fx  are used:  
 

Problem 3 
 

Maximize 
 

1 1 1

1 1 1

( )
m m n

i i i i opt j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W W z p C S

p E T x

    

  

 

  

   

 

 

 
 (24) 

 

subject to 
 

1

( ) ,
m

i i i opt ij j
i

W W z S q j  



      (25) 

 

max , ,ij i i i opt iS W W z W i j        (26) 
 

1

1, ,
n

ijk
j

x i k


   (27) 

1

, ,
l

ik ijk ij
k

T x S i j 



    (28) 

 

0, ,ijS i j    (29) 
 

( )
, , ,ijk ijk opt f

x x i j k   (30) 

 

, ,ij ij optS S i j    (31) 
 

{0,1}, , ,ijkx i j k   (32) 
 

where ijS  and ijkx  are decision variables. Problems 2 and 3 are 
deterministic MIP problems and the optimal solutions of prob-
lem 1 are: 
 

[ , ], ,ij opt ij opt ij optS S S i j     (33) 
 

[ , ]opt opt optf f f    (34) 
 

where ij optS  , optf  are the optimal solution of problem 2, and 
ij optS  , optf  are those of problem 3. Therefore, the actual allo- 

cated water scheme supplied by seasonal flows may be calcu- 
lated as follows:  
 

, ,ij opt i opt ij optA W S i j      (35) 
 

To handle the uncertainty of parameters of the water re-
source management problem which has imprecise and vague 
properties and interval variables cannot explain this uncertainty, 
an extended fuzzy approach will be introduced based on possi- 
bility theory.  

3. An Extended ITSP with Fuzzy Variables 

Fuzzy optimization is a flexible method, which can deal 
with the real-world problems in the existence of indistinct in- 
formation. For the problem under fuzzy uncertainty, an exten- 
ded ITSP is developed by fuzzy variables (called fuzzy exten- 
ded ITSP) and solved by applying fuzzy chance-constrained 
programming (FCCP) based on the idea of possibility theory. 

In this section, a new TSP model is introduced in which 
the parameters are fuzzy numbers and the decision variables 
will be obtained as intervals. The rate of loss and the flow levels 
with probability jp are fuzzy numbers. Furthermore, the differ- 
rence between the promised water-allocation targets and the ac-
tual allocated water is retrieved by some alternatives. 

By an explanation of Puri and Ralescu (1986), LR fuzzy 
number A is defined by the following membership function: 

 

0
0 0

0 1

1
1 1

1

A x
L if A A x A

A

A X if A x A

x A
R if A x A A

A







  
    

 
  
        

  (36) 
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where 0 1[ , ]A A denotes the peak of fuzzy number and ,A A

indicate the left and right spread respectively; , :[0,1]L R   
[0,1] with (0) (0) 1L R   and (1) (1) 0L R   are strictly de-
creasing, continuous functions. The LR fuzzy number may also 
be represented as  0 1, , ,

LR
A A A A A  . 

A fuzzy extended ITSP model for the water resources man-
agement problem is presented by the following problem: 
 

Problem 4 
 

Maximize 
 

1 1 1

1 1 1

m m n

i i j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W p C S

p E T x

  

  



  

 

 

 

 

 


 (37) 

 

subject to 
 

1

( )(1 ) ,
m

i ij j
i

W S q j 



       (38) 

 

max , ,ij i iS W W i j      (39) 
 

1

1, ,
n

ijk
j

x i k


   (40) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (41) 

 

{0,1}, , ,ijkx i j k   (42) 
 

0, ,
ij

S i j    (43) 
 

where 0 1( , , , ) ,LR     0 1( , , , ) ,i i i i i LRNB NB NB    (iC   
0 1, , , ) ,i i i i LRC C   0 0( , , , )j j j j j LRq q q    and 0 1( , , ,ik ik ik ikE E E   
)ik LR are LR fuzzy numbers. 

 

3.1. Fuzzy Chance-constrained Programming 

According to Huang and Loucks (2000), let i iW W   
,i iW z where i i iW W W    and [0,1]iz  , and iz are deci- 

sion variables that are used for identifying an optimized set of 
target values ( iW  ). Based on the method presented by Huang 
(1996), problem 4 may be divided into two sub-models. The 
first sub-model corresponding to the upper bound of the object- 
tive function ( f  ) is formulated as follows:  
 

Problem 5 
 

Maximize 
 

1 1 1

1 1 1

( )
m m n

i i i i j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W W z p C S

p E T x

  

  



  

   

 

 

 

 


 (44) 

 

subject to 

1

( )(1 ) ,
m

i i i ij j
i

W W z S q j 



         (45) 

max , ,ij i i i iS W W z W i j        (46) 
 

1

1, ,
n

ijk
j

x i k


   (47) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (48) 

 

{0,1}, , ,ijkx i j k   (49) 
 

0, ,ijS i j    (50) 
 

0 1,iz i    (51) 
 

The objective function and the first constraint of problem 
5 contain fuzzy parameters and hence have fuzzy properties. 
The rest of constraints are identical to constraints of the ex-
tended ITSP problem. The way for transforming this problem, 
which is a fuzzy programming model, to a deterministic MIP 
model is using possibility measures to the objective function 
and the constraints. 

As the problem 5 is not well defined, a lower bound will 
be considered to the objective function and a degree of possi- 
bility is defined to the constraints whose coefficients are fuzzy 
variables. Then, we use a FCCP method based on the possibi- 
lity theory to maximize the lower bound of the objective func- 
tion subject to the constraints. 

From extension principle of Zadeh, f f  is a fuzzy ev- 
ent defined on the possibility space ( , ( ), )p Pos  , whose pos- 
sibility is: 
 

    
1 2

1 2 1 2
,
sup min ( ), ( ) |

f f
y y

Pos f f y y y y  
 


  

  (52) 

 

where Pos represents possibility.  

Furthermore,
1
( )(1 )

m
i i i ij ji

W W z S q 


       is a fuzzy 
event defined on ( , ( ), )p Pos  , whose possibility is:  
 

  
1 2

1

1 2 1 2
,

( )(1 )

sup min ( ), ( ) |

ij

jj

m

i i i j

i

qa
y y

Pos W W z S q

y y y y



 

 





      
 

 





 
 (53) 

 

where
1
( )(1 )

m
j i i i iji

a W W z S   


      . 

By using the idea of FCCP based on possibility measures, 
a possibility-based model of problem 5 can be defined as fol- 
lows:   
 

Problem 6 
 

Maximize f   (54) 
 

subject to 
 

 Pos f f     (55) 



J. Nematian / Journal of Environmental Informatics 27(2) 72-84 (2016) 

 

77 

1

( )(1 ) ,
m

i i i ij j
i

Pos W W z S q j  



 
       

 
    (56) 

 

max , ,ij i i i iS W W z W i j        (57) 
 

1

1, ,
n

ijk
j

x i k


   (58) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (59) 

 

{0,1}, , ,ijkx i j k   (60) 
 

0, ,ijS i j    (61) 
 

0 1,iz i    (62) 
 

where the lower bound f  is maximized and the possibility 
measures in Equations (55) and (56) are used to fuzzy events 
of problem 5. Furthermore,  is a permissible possibility level. 

In what follows, we try to transform Equations (55) and 
(56) into deterministic constraints and obtain the following the-
orem: 
 

Theorem 1: 
 

For any decision vector, it holds that: 
 

 
1 *

1

0 *

1 1

0 *

1 1 1

)

( ( ) )( )

( ( ) )

( ( ) )

m

i i i i i
i

m n

j i i ij
i j

m n l

j ik ik ik ijk
i j k

I Pos f f

NB R W W z

p C R S

p E R T x f



 

 

 

 







 

 

  

 

   

  

    





 



 (63) 

 

1

0 * 1 *

1

) ( )(1 )

( )(1 ( ) ) ( )

m

i i i ij j
i

m

i i i ij j j
i

Pos W W z S q h

W W z S L h q h

I

R

I 

  

 



 



       
 

       





 
 (64) 

 

where *L and *R are pseudo inverse functions defined as *( )L 
sup{ | ( ) }t L t   , *( ) sup{ | ( ) }R t R t   . The proof of this 

theorem is given in Appendix. 

As a direct result of theorem 1, problem 6 is equivalently 
written as follows: 
 

Problem 7 

1 *

1

0 *

1 1

0 *

1 1 1

Maximize   ( ( ) )( )

( ( ) )

( ( ) )

m

i i i i i
i

m n

j i i ij
i j

m n l

j ik ik ik ijk
i j k

NB R W W z

p C R S

p E R T x

 

 

 







 



  

  

  

   





 

 (65) 

subject to 
 

0 * 1 *

1

( )(1 ( ) ) ( ) ,
m

i i i ij j j
i

W W z S L q R j     



         (66) 

 

max , ,ij i i i iS W W z W i j        (67) 
 

1

1, ,
n

ijk
j

x i k


   (68) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (69) 

 

{0,1}, , ,ijkx i j k   (70) 
 

0, ,ijS i j    (71) 
 

0 1,iz i    (72) 
 

In the above problem, ijS  , iz and ijkx are decision variables 
and the optimal water-allocation targets are determined by 

i i i iW W W z    . The optimal solutions of problem 7, shown 
by ij optS  , i optz , ijk optx are used to write the second sub-model of 
problem 4.  

According to Huang (1996), the second sub-model corres- 
ponding to the lower bound of the objective function value ( f  ) 
is formulated by the following problem: 
 

Problem 8 
 

Maximize 
 

1 1 1

1 1 1

( )
m m n

i i i i opt j i ij
i i j

m n l

j ik ik ijk
i j k

f NB W W z p C S

p E T x

  

  



  

   

 

 

 

 


 (73) 

 

subject to 
 

1

( )(1 ) ,
m

i i iopt ij j
i

W W z S q j 



         (74) 

 

max , ,ij i i i opt iS W W z W i j        (75) 
 

1

1, ,
n

ijk
j

x i k


   (76) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (77) 

 

( )
, , ,ijk ijk opt f

x x i j k   (78) 
 

, ,ij ij optS S i j    (79) 
 

{0,1}, , ,ijkx i j k   (80) 
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where ijS  and ijkx are decision variables. In problem 8, f f 
and

1
( )(1 )

m
i i i opt ij ji

W W z S q 


        are fuzzy events de- 
fined on possibility spaced, whose possibility are defined as: 
 

    
1 2

1 2 1 2
,
sup min ( ), ( ) |

f f
y y

Pos f f y y y y  
 


  

  (81) 

 

  
1 2

1

1 2 1 2
,

( )(1 )

sup min ( ), ( ) |

ij

jj

m

i i i opt j
i

qa
y y

Pos W W z S q

y y y y



 

 





      
 

 





 
 (82) 

 

where 
1
( )(1 )

m

j i i i opt iji
a W W z S   


      . 

Like the first sub-model, by using the idea of FCCP based 
on possibility measures, a possibility-based model of problem 
8 is defined as follows: 
 

Problem 9 
 

Maximize f   (83) 
 

subject to 
 

 Pos f f     (84) 
 

1

( )(1 ) ,
m

i i i opt ij j
i

Pos W W z S q j  



        
 
    (85) 

 

max , ,ij i i i opt iS W W z W i j        (86) 
 

1

1, ,
n

ijk
j

x i k


   (87) 

1

, ,
l

ik ijk ij
k

T x S i j 



    (88) 

 

( )
, , ,ijk ijk opt f

x x i j k   (89) 

 

, ,ij ij optS S i j    (90) 
 

{0,1}, , ,ijkx i j k   (91) 
 

In order to transform Equations (84) and (85) into linear 
constraints, we obtain the following corollary: 
 

Corollary 1: 
 

For any decision vector, it holds that: 
 

 
1 *

1

0 *

1 1

0 *

1 1 1

)

( ( ) )( )

( ( ) )

( ( ) )

m
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

 

 

 

 







 

 

  

 

   

  
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

 



       
 

     

 





 

 (93) 

 

Consequently, from corollary 1, problem 9 is equivalently 
transformed to the following problem: 
 

Problem 10 
 

1 *

1

0 *

1 1

0 *

1 1 1
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 (94) 

 

subject to 
 

0 * 1 *

1

( )(1 ( ) ) ( )
m

i i i opt ij j j
i

W W z S L q R     



        (95) 

 

max , ,ij i i i opt iS W W z W i j        (96) 
 

1

1, ,
n

ijk
j

x i k


   (97) 

 

1

, ,
l

ik ijk ij
k

T x S i j 



    (98) 

 

( )
, , ,ijk ijk opt f

x x i j k   (99) 
 

, ,ij ij optS S i j    (100) 
 

{0,1}, , ,ijkx i j k   (101) 
 

Problems 7 and 10 are deterministic MIP problems which 
can be solved by one of the MIP solvers. The optimal solutions 
of problem 4 are: 
 

[ , ], ,ij opt ij opt ij optS S S i j     (102) 
 

[ , ]opt opt optf f f    (103) 
 

where ij optS  and optf  are the solutions of problem 7, and ij optS  and
optf  are those of problem 10. As said before, the actual allocated 

water scheme may be calculated as: 
 

, ,ij opt i opt ij optA W S i j      (104) 
 

In our extended approaches, the shortage amount, which 
is the difference between the promised water allocation target 
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and the actual allocated water, can be also retrieved by some 
supplementary reservoirs distinguished by ijk optx . 

In the following steps, we summarize an algorithm for sol- 
ving the problem discussed in this section: 

Algorithm 1 

Data Entry: 

Step 0. Define fuzzy parameters of problem 4 by using 
information of experts or decision makers. 

Model structure: 

Step 1. According to Huang (1996): 
Convert problem 4 to sub-problems 5 and 8.  

Step 2. Apply the FCCP method based on possibility 
measures:  
Convert sub-problems 5 and 8 to problems 6 and 9, res- 
pectively. 

Step 3. Obtain theorem 1and corollary 1.  
Convert problem 6 to problem 7 (use theorem 1).  
Convert Problem 9 to problem 10 (use corollary 1). 

Solution Procedure: 

Step 4. Solve the obtained MIP problems by one of the 
MIP solvers. Then, the optimal solution of problem 4 is 
obtained by [ , ],ij opt ij opt ij optS S S   ij opt i opt ij optA W S    and 

i opt i i i optW W W z    . 

4. Illustrative Example 

4.1. Problem Definition 

To emphasize the implementation of this study, an illu- 
strative example of the water resources management in Tabriz 
city, an urban area in the north-western of Iran, has been consi- 
dered. All data has been collected through a survey of experts 
or decision makers of water resources management. In this pro- 
blem, the water resources manager is responsible for allocating 
water resources between three users: a municipality, an indus-
trial unit, and an agricultural sector (as shown in Figure 1) in 
an area of Tabriz city. It is assumed that seasonal flows, which 
vary within low to high, are uncertain with known probabilities. 
The boundary intervals for the seasonal flows under different 
probability levels are presented in Table 1. Moreover, Table 1 
shows the maximum allowable water allocation, the water-  
allocation target, the net benefit to user i per m3 of water allo-

cated and the shortage cost to user i per m3 of water not deliv-
ered.  

If the seasonal flows are insufficient and the whole allo- 
cation target for promised water is not delivered, users will 
have to use water stores of three neighbour areas. By using 
these alternatives, the cost of increasing 1 m3 of water for user 
i and available amount of water for user i are given in Table 2. 
In Figure 1, “     ” indicates water allocated by alternatives 
and “     ” indicates actual allocated water ijA , 1,2,3i  sup- 
lied by seasonal flows.   

The problem is how to effectively allocate the water sup-
ply to multiple users to maximize system net benefit and obtain 
optimal solutions for choosing the most proper alternative. 

 
Figure 1. Diagram of water-allocation to multiple users. 
 
Table 1. Related Economic Data ($/m3) and Seasonal Flows 
(103 m3) under Different Probability 

 Users 
Municipal 
(i = 1) 

Industrial 
(i = 2) 

Agricultural 
(i = 3) 

Net benefit for water 
allocation ( )iNB   [85, 105] [40, 50] [23, 30] 

Water-allocation target 
( )iW   [1, 2.5] [2, 4] [3.5, 6] 

Maximum allowable 
water allocation  

max( )iW   
8 8 8 

Shortage cost ( )iC   [20, 32] [21, 26] [23, 40] 

 
Flow level 

Low 
(j = 1) 

Medium 
(j = 2) 

High 
(j = 3) 

Seasonal flow ( )jq  [3.2, 4.2] [7, 11] [14, 18] 

Probability  0.2 0.6 0.2 

Table 3. Fuzzy Parameters of Economic Data ($/m3) and Seasonal Flows (103 m3). 

  Users 
Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3) 

0 1( , , , )i i i i i LRNB NB NB    (85, 105, 10, 15)LR (40, 50, 5, 6)LR (23, 30, 4, 7)LR 
0 1( , , , )i i i i i LRC C C    (20, 32, 1.5, 1.25)LR (21, 26, 0.3, 0.2)LR (23, 40, 0.8, 1)LR 

 Flow level   
Low (j = 1) Medium (j = 2) High (j = 3) 

0 1( , , , )j j j j j LRq q q    (3.2, 4.2, 0.5, 1)LR (7, 11, 0.5, 1)LR (14, 18, 0.25, 1)LR 

  User   
Alternative Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3) 

0 1( , , , )ik ik ik ik ik LRE E E    
k = 1 (12, 20, 0.3, 0.4)LR (10, 25, 0.12, 0.3)LR (8, 25, 0.2, 0.6)LR 

k = 2 (20, 40, 0.7, 0.8)LR (25, 38, 0.25, 0.5)LR (20, 45, 0.35, 0.8)LR 

k = 3 (10, 20, 0.2, 0.1)LR (10, 18, 0.7, 0.25)LR (5, 15, 0.25, 0.3)LR 
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Table 2. Cost of Increasing 1 m3 of Water ($/m3) and Availa-
ble Amount of Water (103 m3) for Users by Using Alternatives 

 
 Users 

Alternative Municipal 
(i = 1) 

Industrial 
(i = 2) 

Agricultural 
(i = 3) 

ikE   

k = 1 [12, 20] [10, 25] [8, 25] 

k = 2 [20, 40] [25, 38] [20, 45] 

k = 3 [10, 20] [10, 18] [5, 15] 

 User 

 Alternative Municipal 
(i = 1) 

Industrial 
(i = 2) 

Agricultural 
(i = 3) 

ikT   

k = 1 [1, 3] [0.5, 2] [2, 3] 

k = 2 [1, 3] [1, 3.5] [3, 4.2] 

k = 3 [2, 5] [3, 4.5] [0.5, 1.5] 

 
Consider the same case, but suppose that the parameters 

have a high level of uncertainty which is not proper to define 
them as interval variables. In this situation, parameters of this 
problem have uncertain properties determined by fuzzy vari- 
ables and all of the elements of uncertain parameters are given 
in Table 3. Suppose that ( ) ( ) 1 ,R x L x x   (0.07,0.15,   
0.01,0.03)LR and 0.7  . 

 
4.2. Result Analysis 

Without considering alternatives to retrieve users’ water 
shortage, apply the general ITSP method to the described pro- 
blem and solve the obtained sub-problems by LINGO 8.0. The 
optimized water-allocation targets, water shortages, and water-
allocation scheme are collected in Table 4.  

 
Table 4. Optimal Solutions of the General ITSP Method un-
der Optimized Water-allocation Targets (103 m3) 

 Proba-
bility 

Muni-   
cipal 
(i = 1) 

Indus- 
trial 
(i = 2) 

Agri-  
cultural 
(i = 3) 

i optW    2.5 4 6 

ij optS  under 3 flow levels: 

Low 
(j = 1) 

0.2 2.5 4 [1.8, 2.8] 

Medium 
(j = 2) 

0.6 1.5 [0, 4] 0 

High 
(j = 3) 

0.2 0 0 0 

ijoptA  under 3 flow levels: 

Low 
(j = 1) 

0.2 0 0 [3.2, 4.2] 

Medium 
(j = 2) 

0.6 1 [0, 4] 6 

High 
(j = 3) 

0.2 2.5 4 6 

Net benefit ($103)                         
optf  = [360, 589] 

 

Then, the extended ITSP method is applied to the problem 
to retrieve the difference between the quantities of promised 
water-allocation target and the actual allocated water, and the 
obtained problems are solved. The optimal solutions of the 
problem are given in Table 5. Furthermore, Table 6 shows the 
optimal decision to choose alternatives for users under different 
levels of water flows.  
 

Table 5. Optimal Solutions of the Extended ITSP Method un-
der Optimized Water-allocation Targets (103 m3) 

 Proba-
bility 

Muni 
cipal 
(i = 1) 

Indus- 
trial 
(i = 2) 

Agri-  
cultural 
(i = 3) 

i optW    2.5 4 5.5 

ij optS  under 3 flow levels: 

Low 
(j = 1) 

0.2 [2, 2.5] [3.5, 4] 2.3 

Medium 
(j = 2) 

0.6 [1, 1.5] [0, 3.5] 0 

High 
(j = 3) 

0.2 0 0 0 

ijoptA  under 3 flow levels: 

Low 
(j = 1) 

0.2 [0, 0.5] [0, 0.5] 3.2 

Medium 
(j = 2) 

0.6 [1, 1.5] [0.5, 4] 5.5 

High 
(j = 3) 

0.2 2.5 4 5.5 

Net benefit ($103)                         
optf  = [179, 560] 

 
Table 6. Optimal Decision to Choose Alternatives for Users 
under Different Levels of Water Flows 

             Alternative (k) 

User (i) Flow level (j) k = 1 k = 2 k = 3 

Municipal 

Low (j = 1) - -  

Medium (j = 2)  - - 

High ( j= 3) - - - 

Industrial 

Low (j = 1)  -  

Medium (j = 2) -  - 

High (j = 3) - - - 

Agricultural 

Low (j=1)  -  

Medium (j = 2) - - - 

High (j = 3) - - - 
 

Finally, under fuzzy environments, apply Algorithm 1 to 
the above problem with fuzzy parameters and solve the ob- 
tained deterministic MIP problems. Its optimal solutions are re-
ported in Tables 7 and 8.  

The results of the example solved by ITSP, extended ITSP 
and fuzzy extended ITSP methods are depicted in Figures 2, 3, 
and 4. As it was shown in Figure 3, the optimized actual water 
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allocation ( ij optA ) have reached the optimized water-allocation 
targets ( i optW  ) under a seasonal high flow level. Consequently, 
under a high flow level, there would be no water shortage 
( 13 23 33 0opt opt optS S S     ) for users, water resources would be 
completely allocated to all users with a probability of 20%, and 
none of retrieving alternatives would be used.  
 

Table 7. Optimal solutions of the fuzzy extended ITSP method 
(in 103 m3) 

 Proba-
bility 

Muni- 
cipal 
(i = 1) 

Indus- 
trial 
(i = 2) 

Agri-  
cultural 
(i = 3) 

i optW    2.5 4 6 

ij optS  under 3 flow levels: 

Low 
(j = 1) 

0.2 2 4 2.28 

Medium 
(j = 2) 

0.6 1.91 0 0 

High 
(j = 3) 

0.2 0 0 0 

ijoptA  under 3 flow levels: 

Low 
(j = 1) 

0.2 0.5 0 3.72 

Medium 
(j = 2) 

0.6 0.59 4 6 

High 
(j = 3) 

0.2 2.5 4 6 

Net benefit ($103)                         
optf  = [535, 583] 

 
Table 8. Optimal decision to choose alternatives under fuzzy 
environments 

             Alternative (k) 

User (i) Flow level (j) k = 1 k = 2 k = 3 

Municipal 

Low (j = 1)   - 

Medium (j = 2) - -  
High (j = 3) - - - 

Industrial 

Low (j = 1) -   
Medium (j = 2) - - - 

High (j = 3) - - - 

Agricultural 

Low (j = 1)  -  
Medium (j = 2) - - - 

High (j = 3) - - - 
 

Similarly, under a medium flow level, the total amount of 
water allocated to the municipal sector, the industrial unit and 
the agricultural sector would be 3[1, 1.5] 10 , 3[0.5, 4] 10 , and

35.5 10 m3, respectively. Consequently, the solutions of 
12optS  3[1,1.5] 10 ,  3

22 [0, 3.5] 10optS    and 32 0optS    show 
that, under a medium flow level, there would be no water short-
age for the agricultural sector, but the industrial unit would 
have to use the second alternative with available amount of 

22T   3[1, 3.5] 10 m3, and the municipal sector also would use 
the first alternative with available amount of 3

11 [1, 3] 10T   
m3 for satisfying water needs. 

Figure 2. Optimized water-allocation patterns through the 
ITSP method under low, medium and high flows. 
 

 
Figure 3. Optimized water-allocation patterns through the ex-
tended ITSP method under low, medium and high flows. 
 

 
Figure 4. Optimized water-allocation patterns through the 
fuzzy extended ITSP method under low, medium and high 
flows. 
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Finally, the solutions of 3
11 21[2, 2.5] 10 , [3.5,opt optS S     

34] 10 and 3
31 2.3 10optS    m3 to water shortage under a low 

flow level show that all users would face water shortage and 
would have to use supplementary reservoirs. This happens due 
to insufficiencies of the water flow to satisfy optimized water-
allocation target. As it was shown, a low flow level causes 
higher amounts of shortages that would force users to imple- 
ment more than one alternative. Therefore, the best decision for 
the agricultural sector is to use the first and the third alterna-
tives with available amount of 3

31 [2, 3] 10T    , 33T  
3[0.5,1.5] 10 m3. The industrial unit also would use the same 

alternatives with available amounts of 3
21 [0.5, 2] 10T    ,

3
23 [3, 4.5] 10T    m3 and the municipal sector would only use 

the third alternative with amount of 3
13 [2, 5] 10T    m3 to in-

crease water allocation amount. 
By applying the fuzzy extended ITSP method to the prob- 

lem, the results are shown in Figure 4 and Tables 7 and 8. The 
solution of 3 3

11 122 10 , 1.91 10opt optS S     and 13 0optS   m3 in-
dicate that, for the municipal sector, there would be shortages 
of 32 10 and 31.91 10 m3 under low and medium flow le- 
vels, respectively, but no water shortage under a high flow level; 
consequently the total amount of water allocation to the muni- 
cipal sector would be 30.5 10 , 30.59 10 , and 32.5 10 m3 
under low, medium and high flow levels, respectively. The mu-
nicipal sector would use the first and the second alternatives 
with available amount of 3

11 [1, 3] 10T    , 3
12 [1, 3] 10T     

m3 under a low flow level and use the third alternatives with 
available amount of 3

13 [2, 5] 10T    m3 under a medium 
flow level.  

The solutions of ( 3
21 22 234 10 , 0, 0opt opt optS S S      m3) 

and ( 3
31 32 332.28 10 , 0, 0opt opt optS S S      m3) show that, for 

the industrial unit and the agricultural sector, there would be no 
water shortage under medium and high flow levels but there 
would be water shortages under a low flow level retrieved by 
alternatives shown in Table 8.  

Under a medium flow level, only the municipal sector 
would face water shortage and could retrieve it by the third al-
ternative, but two other users would not face water shortage. 
Furthermore, under a low flow level, all users would face water 
shortage and should use supplementary reservoirs. 

As it was shown that, lower and upper bounds of water 
allocation amount are equal, so the problem gives deterministic 
solutions for interval variables. For different possibility levels, 
the results will be changed reasonably and interval values may 
be obtained.  

Figure 5 indicates a comparison of the objective function 
values obtained through the general ITSP, extended ITSP and 
fuzzy extended ITSP methods. The system net benefit would 
be $ 3[360, 589] 10 , $ 3[179, 560] 10 and $ 3[535, 583] 10  
for these methods respectively. The results reveal that the sys- 
tem net benefit decreases a little bit as using supplementary wa-
ter reservoirs for water shortages. However, as it was shown 
that in Figure 5, the fuzzy extended ITSP method leads to the 
highest mid value and the smallest interval among described 
methods in this example. 

Our fuzzy extended method has advantages in providing 
an effective approach to water resource management with un- 
certain parameters, to make appropriate decisions for retrieving 

water shortage, and to obtain optimal solutions with smaller in-
tervals than the other approaches.   

 
Figure 5. Comparison of upper and lower bounds of net bene-
fits obtained through described methods. 

5. Conclusions 

In this paper, an extended ITSP method based on retrieving 
water shortages was introduced for water resource management. 
Subsequently, a fuzzy extended ITSP method has been deve- 
loped for the problem under uncertainty. Then, a new method 
based on Huang Algorithm and FCCP method using possibility 
theory was proposed to solve the obtained problems. 

At last by using an illustrative example, the results for the 
general ITSP, extended ITSP and fuzzy extended ITSP are ob-
tained for our illustrative example to compare these results with 
each other and showed what the deference among these meth-
ods was. 

As using supplementary water reservoirs and possibility 
distribution function of parameters, our fuzzy method has a 
higher mid value and a smaller interval than the general ITSP 
in the illustrative example. By considering the results, we have 
realized that our fuzzy extended method for water resource 
management leads to optimal solutions with high mid value and 
small intervals for objective function values and can be used to 
the actual cases under uncertainty. Furthermore, in our fuzzy 
extended ITSP method, deterministic solutions were obtained 
to decision variables in the illustrative example. Also, the dif-
ference between the quantities of promised water-allocation 
targets and the actual allocated water was retrieved by our ex-
tended ITSP approach in comparison with existing ITSP meth-
ods.  

For future research, our extended approach can be deve- 
loped to other uncertain variables such as random fuzzy and 
random rough variables and new solving methods will be ob- 
tained to the water resource management under these uncer- 
tainties. Furthermore, the other complexities that exist in water 
resource systems, such as nonlinear and multi-objective issues 
can be investigated by authors as future research. 
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Appendix 
 

Proof of Theorem 1. 
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