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ABSTRACT. In this work, the problem of variable selection for regression is investigated in order to improve the forecasting accuracy. 
To that effect, the support vector regression (SVR) and the random forests (RF) are used to assess the variable importance. Then, a step-
wise algorithm is built to select the best subset of predictors. An intensive comparative study is conducted on simulated and real datasets. 
The real datasets expose the problem of particulate matter concentration forecasting in two monitoring stations from Tunisia. We have 
proposed a combined approach using SVR and RF for variable importance assessment and for variable selection. We have achieved a 
significant improvement in forecasts accuracy for the two stations when using only a reduced number of selected predictors. 
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1. Introduction 

Air pollution is a fundamental problem in many parts of 
the world. It is usually caused by energy production from power 
plants, industrial processes, residential heating, fuel burning ve- 
hicles, natural disasters, etc. Consequently, there is a growing 
interest, in day-to-day, in air quality surveillance. Especially, at- 
mospheric pollutants concentration forecasting is evermore an 
important issue in air quality monitoring. 

Naturally, humans are constantly exposed to many dange- 
rous pollutants and it is often hard to know exactly which pollu- 
tants are responsible for causing sickness. Indeed, air pollution 
is responsible for major health effects and diseases and for in- 
creases in mortality rates (Ortiz-García et al., 2010). However, 
it is almost impossible to isolate pollutants but we can reduce 
their harmful effects by modeling and forecasting them in order 
to take necessary precautions. 

 
1.1. General Overview on PM10 

Specifically, particulate matter (PM) is a widespread air 
pollutant, consisting of a mixture of solid and liquid particles 
suspended in the air. The mass concentration of particles with 
a diameter of less than 10 μm is commonly noticed by PM10 
and of particles with a diameter of less than 2.5 μm is common- 
ly called PM2.5. The particles PM2.5, often called fine particulate 
matter, also comprises ultrafine particles having a diameter of  
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less than 0.1 μm. 

Particles can either be directly emitted into the air (primary 
PM) or be formed in the atmosphere from gaseous precursors 
such as sulfur dioxide, oxides of nitrogen, ammonia and non- 
methane volatile organic compounds (secondary particles). Pri- 
mary PM and the precursor gases can have both man-made (an- 
thropogenic) and natural (non-anthropogenic) sources. Secon- 
dary particles are formed in the air through chemical reactions 
of gaseous pollutants. They are products of atmospheric trans- 
formation of nitrogen oxides (mainly emitted by traffic and 
some industrial processes) and sulfur dioxide resulting from the 
combustion of sulfur-containing fuels. Secondary particles are 
mostly found in fine PM. 

Particulate matter PM10 is one of the pollutant that have 
harmful effects on human health and environment. PM10 is co- 
mmonly considered as one of the major factors that contributes 
to air pollution problems (Pope III, 2000; Moshammer and 
Neuberger, 2003; Hauck et al., 2004). It is well established now- 
adays that short and long term exposure to high particulate ma- 
tter concentrations causes adverse health effects and reduction 
in population's life expectancy in both developed and develo-
ping countries. A number of toxicological and epidemiological 
studies reported that exposure to particulate matter can cause 
health problems ranging from respiratory to cardiovascular ill- 
nesses (Pope III and Dockery, 2006; Perez et al., 2009; Russell 
and Brunekreef, 2009). 

 

1.2. Related Works 

To forecast pollution concentrations often are used: statis- 
tical models, methods based on reasoning rules, neural networks, 
filtering of time series, support vector machines, clustering ana- 
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lysis, etc. These methods have the possibility of discovering 
new dependencies between data gathered in sets. However, in 
the recent years, pollution concentrations forecasts are more of- 
ten based on the data mining methods. 

In environmental sciences, a lot of research efforts go to- 
wards the understanding of air quality phenomenon and the 
ability to forecast it. In the recent years, various parametric and 
nonparametric statistical models have been developed to analy- 
ze and predict PM10 emission and dispersion. First of all, neu- 
ral networks are the most frequently used to produce forecasts 
of PM10 concentration (Kukkonen et al., 2003; Paschalidou et 
al., 2009; Carnevale et al., 2011). Therefore, multiple linear re- 
gression modeling was also employed as in the studies of Stad- 
lober et al. (2008), Cordelino et al. (2001) and Paschalidou et al. 
(2009). Moreover, Chaloulakou et al. (2003) and Grivas and 
Chaloulakou (2006) compared the performance of neural net- 
works and multiple regression model to forecast the daily ave- 
rage of PM10 concentration. Corani (2005) used local polyno- 
mial based nonparametric approach to estimate a nonlinear re- 
gression model in Milan where the PM10 pollution is important. 
Hoi et al. (2009) proposed a time varying autoregressive model 
with exogenous input based on a Kalman filter in order to pre- 
dict daily PM10 concentration. In the work of Slini et al. (2006) 
three approaches were compared for PM10 forecasting namely, 
the linear regression models, the Classification and Regression 
Trees (CART) and the artificial neural networks. More recently, 
PM10 concentration was predicted using cluster-wise linear mo- 
dels in the studies of Sfetsos and Vlachogiannis (2010), and Po- 
ggi and Portier (2011). A bit further, a combination of Mesosca- 
le Model (MM5) and Community Multi-scale 3-D Air Quality 
modeling system was employed to investigate the PM10 pollu- 
tion issue in Beijing, China (Huang et al., 2010; Zhou et al., 20-
12). The authors have focused on the effects of different restric-
tion policies implemented during and after the 2008 Olympic 
Games, and investigated the PM10 source apportionment. 

Although a variety of statistical tools have been used in 
previous studies to forecast the PM10 concentration, few resear- 
chers have focused on the explanatory variables significance. 
However, the PM10 concentration is influenced by many meteo- 
rological factors and primary pollutants, while the influence 
ability and the influence degree are uncertain. More broadly, un- 
derstanding, modeling and forecasting the PM10 concentration 
is difficult due to the distinctive influence of the area topogra- 
phy, geomorphology, emission source location, discharged rate 
and meteorological factors. Moreover, the forecasting difficulty 
is principally due to the complex characteristics of data. The 
works of Antanasijević et al. (2013) and Qin et al. (2014) are 
among the few studies that address the variable importance issue. 
In the first work, the authors constructed a nonlinear predictive 
model based on gray correlation analysis (GCA), Ensemble 
Empirical Mode Decomposition (EEMD), Cuckoo search (CS) 
and Back-propagation artificial neutral networks (BPANN) to 
identify the pertinent predictors giving rise to an accurate model 
to forecast the PM10 concentrations in different climatic and en- 
vironmental areas. Variable importance evaluation was done 
using some kind of linear correlation coefficient. Their analysis 

results indicate that air pollutants are more closely related to 
PM10 than to meteorological factors. Yang (2014) disagreed 
with these results and argued that emission sources and meteo- 
rological conditions can strongly govern the spatial and tempo- 
ral variability of air pollutant concentration and its daily move- 
ment. The second work is quite different from the first one. In- 
deed, Antanasijević et al. (2013) developed an artificial neural 
network (ANN) model for the forecasting of annual PM10 emi- 
ssions at the national level, using economical/industrial pa- 
rameters as explicative variables. It was shown that the selec- 
tion of inputs, based on smoothing factor calculated by genetic 
algorithm, provides much accurate forecasts in comparison wi- 
th conventional models. 

More recently, Wang et al. (2015) proposed a hybrid meth- 
odology based on ANN and support vector machines (SVM) 
coupled with the Taylor expansion forecasting model. The pro- 
posed hybrid method shows superior accuracy in PM10 and SO2 
forecasting results. Without performing variable selection in 
their work, they stated that more complete input variables are 
required to obtain more accurate results, and the selection of 
the input variables influences the accuracy of forecasting. 

 

1.3. Objectives and Outline of This Work 

This research is mainly motivated by the desire to fill the 
existing literature lack on variable selection issue for PM10 con- 
centration forecasting. Indeed, we used machine learning appr- 
oaches to assess variable importance and to overcome the com- 
plex characteristics of data. To this end, we compare two popu- 
lar statistical learning approaches: the support vector regre- 
ssion and the random forests (respectively, SVR and RF hen- 
ceforth). The random forests are nowadays one of the most po- 
werful learning methods, and the support vector regression 
approach has been successfully used in a wide variety of appli- 
cations. Also, we use a sequential strategy to select the most 
important variables firstly on toy data, and then to identify the 
most explicative predictors on two real datasets involving daily 

PM10 concentration. 

In this study, we consider PM10 daily average concentrations 
measured in Gabes and Manouba, located in Tunisia. The Tuni- 
sian authorities monitor air pollution by means of the National 
Network for Monitoring Air Quality (RNSQA, French acro- 
nym of national network for air quality monitoring). This net- 
work contains 15 fixed monitoring stations. Gabes, located in 
the southeastern Tunisia and near 406 km from the capital 
Tunis, is one of the biggest industrial cities in Tunisia. Conse- 
quently, it is one of the most polluted regions characterized by 
the massive presence of industrial sites (such as the Tunisian 
Chemical Group (GCT)) with elevated environmental impact 
activities. Otherwise, in the northeastern Tunisia, Manouba is a 
polluted urban region characterized by the presence of some in- 
dustries and important vehicular traffic. 

The main contributions of this paper are as follows. First, 
we compare recent statistical learning methods for variable im- 
portance assessment and for variable selection. Second, we pro- 
pose a mixed cooperative procedure between SVR and RF to 

determine the most explicative variables for the PM10 daily ave- 
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rage concentration in order to attenuate the selection bias. Mo- 
reover, this study is presumably the pioneering work that at- 
tempts to compare the SVR and the RF in variable selection for 
regression and uses them together to forecast the PM10 pollutant. 

The remainder of this paper is organized as follows. First, 
Section 2 presents the used models, the variable importance ass- 
essment and the variable selection strategy. Furthermore, the 
real datasets are described in Section 3. The experimental results 
on simulated and real datasets are provided in Section 4. Finally, 
Section 5 is devoted to some concluding remarks and presents 
some possible perspectives. 

2. Used Methods 

In this section we briefly describe the main characteristics 
of the statistical tools used in this work without going into too 
much technical details. We focused on two popular and compe- 
titive approaches from the statistical learning literature, namely 
support vector regression and random forests. Then we shortly 
depict some SVR scores and the RF score for the purpose of 
variable importance assessment. Finally, we present our step- 
wise algorithm. 

 

2.1. Variable Importance Using Support Vector Machines 

Support vector machines approach is a relatively popular 
computational learning algorithm based on the statistical lear- 
ning theory developed by Vapnik (1995, 1998). The foundations 
of support vector machines gained popularity due to many pro- 
mising features such as better empirical performance even on a 
limited number of learning patterns. Support vector machines 
were originally designed to solve biclass problems (Boser et al., 
1992; Cristianini and Taylor, 2000). The ingenious idea of su- 
pport vector machines has been recently extended by Vapnik et 
al. (1997) to handle regression problems. 

 

2.1.1. Support Vector Machines for Regression 

Suppose we have a given learning dataset {(x1, y1), (x2, y2), 
(x3, y3), …, (xn, yn)}X × Y where pX R is the input space, p 
is the number of explanatory variables and Y R is the output 
space. In the support vector regression formulation, the goal is 
to find a linear function ( ) ( )

H
f x b w | x in a reproducing 

kernel Hilbert space H, commonly called feature space. The 
weight vector w and the pattern ( ) x  belong to H, the real 
number b is called the bias, the operator  |  denotes the stan- 
dard inner product and the function φ: X  H is an implicit 
nonlinear mapping induced by a kernel function K satisfying 
Mercer's conditions. When the targets yi and the patterns xi are 
not linearly correlated in the input space, the kernel function K 
is used to embed the data into a higher dimensional feature space 
where in general it is guaranteed that a linear regression function 
may be found (Vapnik, 1995, 1998). That function should have 
at most ε-deviation from the real targets yi for all the mapped 
training vectors φ(xi) and at the same time is as flat as possible. 

The L2-SVR algorithm looks for minimizing the follow- 
ing regularized risk (Vapnik, 1998; Smola and Schölkopf, 1998; 

Shawe-Taylor and Cristianini, 2004): 
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where the hyperparameter C determines the tradeoff between 
the flatness of f and the amount up to which deviations larger 
than ɛ are tolerated, and ( , , )i iL x y f is the quadratic ɛ-insensitive 
loss function described by: 
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more easily in its dual formulation: 

 

1 1 , 1,

1
( ) ( ) ( )( )

2

n n n

i i i ji i i i j
i i i j

maximize y         


   

  

       
 

1
( ( , ) )i j ijK

c
x x   (1c) 

 
subject to 
 

1

( ) 0
n

i i
i

 




   (1d) 

 

0, 0, 1,2, ...,i i i n 


      (1e) 

 
where ( , ) ( ) | ( )i j i jK    x x x x is the used kernel, i and i


 

for i = 1, 2, …, n are the Lagrangian multipliers, and δij is the 
Kronecker symbol. 

The solution of this quadratic convex problem can be ob- 
tained by means of Lagrangian theory and it gives rise to the 
following expansion: 
 

, 1
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 w x   (1f) 

 
Hence, we arrive at the SVR function given by: 

 

, 1

( ) ( ) ( , )
n

i i i
i j

f x K b 




   x x   (1g) 

 

The two widely used families of kernels are the polynomial and 
the Gaussian. 

 

2.1.2. Variable Importance in SVR 

The statistical theoretical wealth and the structure of su- 
pport vector machines for classification allow to estimate their 
generalization performance from bounds on the leave-one-out 
error, which is known to be an almost unbiased estimator of the 
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expected generalization error. The two most frequently used 
bounds are the so-called radius-margin bound established by 
Vapnik (1998) and the span-bound given by Vapnik & Chapelle 
(2000). 

For the regression framework, Chang and Lin (2005) have 
extended these results for SVR. More recently, Rakotomamonjy 
(2007) derived from these bounds some criteria for variable im- 
portance assessment purpose. 

For the sake of being self-contained and concise at the same 
time, we only summarize here the different criteria that will be 
used for the sequel of the paper. For more mathematical details 
about the scores computations by means of derivatives, we su- 
ggest the reader to refer to the works of Chang and Lin (2005) 
and Rakotomamonjy (2007). 

In our application part, the following four criteria will be 
used. The two first criteria are bounds on the leave-one-out error 
so they are directly related to the predictive performance of the 
SVR: 

 Radius-margin bound: 2

1
( , ) ( )

n
iR ii

G R  
 


   where 

R2 is the radius of the smallest sphere containing the set of 
mapped patterns {φ(xi)}i = 1, 2, …, n. 

 Span-bound:
~

2

1
( , ) ( )

n
iS i ii

G S 
 


   , where

~
2
iS is the 

regularized version of the squared distance of φ(xi) to the 
span of all other support vectors. 

The coming two criteria are not bounds, but they were 
proposed by Rakotomamonjy (2007) as a supplementary crite- 
ria for variable ranking because they are relatively cheaper to 
compute: 

 1ˆ ˆ( , ) ( )n
i i iG      : is a principal term involved in 

both radius-margin and span estimate bounds. 

   , 1ˆ ˆ ˆ( )( )( ( , ) / )n
W i j i i j j i j ijG K C         x x : is 

the norm of the regression function f in the feature space 
H. 

The four scores derived from these criteria will be denoted 
in this work by ∂GR, ∂GS, ∂Gα and ∂GW, respectively. Each 
score may be computed from an SVR model learned from the 
available dataset. To get better estimates of the scores, we com- 
puted for them a bootstrap estimate in a way similar to that in 
the bagging method (Breiman, 1996). Bootstrapping the scores 
seems to be more robust to data variation and attenuates the 
effect of selection bias (Ambroise and McLachlan, 2002; Ben 
Ishak and Ghattas, 2005). Once the scores are computed, all the 
variables may be ranked in a decreasing order of importance. 

 

2.2. Random Forests 

Random Forests, introduced by (Breiman, 2001), are now- 
adays one of the most popular and successful learning methods 
in both classification and regression. They received much atten- 
tion due to their computational fastness and remarkable empiri- 
cal success. In this work, we will focus on random forests for 
regression. 

 

2.2.1. Model Presentation 

A forest is an ensemble of trees like in real life. Breiman 

(2001) introduced the general concept of random forests based 
on binary decision trees (Classification And Regression Trees, 
CART, (Breiman et al., 1984)). 

Rather than using a single tree, random forests construct 
an ensemble predictor by averaging over a collection of binary 
trees. A forest is random in two ways: (i) each tree is grown from 
an independent bootstrap sample of the data, and (ii) at each 
node of the tree a randomly selected variables are chosen as can- 
didate variables to split on. The two main parameters of random 
forests are mtry, the number of input variables randomly chosen 
at each split and ntree, the number of trees in the forest. A third 
parameter, denoted by nodesize, is the minimal size of the lea- 
ves of the trees. We retain the default value (5 for regression) 
in our experimentations, since it is close to the maximal tree 

choice. 

Trees are quite unstable, so that this randomness creates 
differences in individual trees' predictions. This enables random 
forests to adapt to the data, automatically fitting higher order 
interactions and nonlinear effects, while at the same time kee- 
ping overfitting in check. This has led to a great interest in the 
method and its application to many fields. 

 

2.2.2. Variable Importance in RF 

While random forests are often used for exploratory data 
analysis, they can also be used to select variables and reduce 
dimensionality. This is done by ranking variables by some mea- 
sure of individual importance. More recently, Gregorutti et al. 
(2015) adapted the individual importance measure for groups 
of variables. 

In the random forests framework for regression problems, 
the most widely used score of importance of a given variable, 
suggested by (Breiman, 2001), is the increasing in Mean Squ- 
ared Error (the "MSE") when permuting at random the observed 
values of this variable in the Out-Of-Bag samples (the "OOB"). 
According to random sampling of observations, there are on 
average 1/e ≈ 36.8% of the observations that are not used for 
building the current tree; that is, are Out-Of-Bag for that tree. 
The accuracy of a random forest's prediction can be estimated 
from these OOB data as: 
 

 
2

1

1 ˆ
OOB

n

MSE i i
i

OOB y y
n



    (2) 

 
where ˆ

OOBiy  denotes the average prediction for the ith obser- 
vation from all trees for which this observation has been OOB. 
To avoid insignificant sampling effects, each OOB error is the 
mean of OOB errors over several runs. 

The RF importance score for the jth variable is determined 
as follows: 

 For each tree t = 1, 2, …, ntree in the forest the OOB Mean 
Squared Error is computed. It is the average of the squared 
deviations of OOB responses from their respective predict- 
tions: 
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where OOBt contains data not included in the bootstrap 
sample used to construct tree t, |OOBt| denotes its cardi- 
nality and ,ˆi ty indicates the prediction for the ith observa-
tion from tree t. 

 For each variable j = 1, 2, …, p, the OOB Mean Squared 
Error is computed for each tree t = 1, 2, …, ntree on the 
associated perturbed OOB sample, OOBt, by randomly 
permuting the values of the jth variable: 
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 For each variable j in each tree t the following difference 

is calculated: 
 

~
t j t
MSE MSEOOB OOB  (3c) 

 
This difference is null for a variable that happens to be not 
involved in any split of tree t. 

Finally, the RF importance score of variable j is obtained 
as the average over all ntree trees of the previous differences: 
 

~

1

1
( )

ntree
t j t

j MSE MSE
i

RFS OOB OOB
ntree



      (3d) 

 
Unlike SVM, the RF importance score does not need bootstra- 
pping because it is stable in the presence of noise and correlated 
variables and vis-a-vis to small perturbations of the data. But 
still to avoid insignificant sampling effects, RF importance sco- 
re is the average on several runs. 

Once all the variables are ranked in a decreasing order of 
importance, we apply a stepwise forward strategy in order to 
select the subset of the most explicative variables. 

 
2.3. Variable Selection Algorithms 

In supervised learning problems, variable selection is an 
important step for the training phase (Guyon et al., 2002; 
Rakotomamonjy, 2003; Guyon and Elisseeff, 2003). The goal 
is to select an "optimal" subset of variables in order to improve 
or, at least, to preserve the predictive performance of the model. 
Thus, the motivation for feature selection is improving predict- 
tion accuracy, reducing time complexity and facilitating data 
understanding. 

To this end, one needs an efficient algorithm for selecting 
an "optimal" subset of variables. This search-space optimization 
problem is NP-hard (Amaldi and Kann, 1998), so one has to rely 
on approximation strategies. 

Feature selection methods may differ according to the na- 
ture of the evaluation criteria; wrapper, filter or embedded. The 

wrapper method, integrates the model prediction performance 
into the evaluation of the quality of a subset of features. The fi- 
lter method evaluates the variable importance by using a statis- 
tic criterion independent of the model. The embedded method 
combines feature selection and model prediction into one task. 
 

 
Figure 1. The variable selection procedures. 

 
In this work, we consider a feature selection algorithm from 

the wrapper category using SVR and RF models. We choose a 
stepwise forward strategy, firstly introduced for classification 
in the work of Ghattas and Ben Ishak (2008), based on a sequen- 
tial introduction of variables. A sequence of nested increasing 
models M(k), k = 1, 2, …, p, is constructed invoking at the be- 
ginning the k most important variables, by step of 1. When p is 
huge therefore k becomes too large, the additional variables are 
invoked by blocks. Then, the error rate of each model M(k) is 
estimated by random splitting for the SVM and estimated both 
by random splitting and on OOB samples for the RF. The set of 
variables leading to the model of smallest error rate is selected. 
Our stepwise algorithm has shown a promising results on cla- 
ssification problems even in the situations exposing the curse 
of dimensionality phenomenon, i.e., when the number of input 
variables p is very large compared to the sample size n (Ghattas 
and Ben Ishak, 2008; Feki et al., 2012). 

The detailed main steps of our stepwise procedure, using 
the SVM models with random splitting, are depicted in the 
flowchart given by Figure 1. The term k

mSVM is replaced by 
k

mRF when dealing with the RF models using random splitting. 
The internal For loop is removed when the error rate is 
estimated on OOB samples because it is a built-in default task 
in the RF model. 

3. Real Data Gathering and Pretreatments 

Here, we expose the real data collection, the explicative 
variable description and the missing values treatment. 

D: available dataset 
B: number of bootstrap samples for SVR / number of runs for RF 

Computation of the average score of importance on the (D, B) 
samples 

Ranked variables in the decreasing order of importance  
x(1), x(2), K, x(p) 

For k = 1:p 
 For m = 1:RS 
▪ Make a Random Splitting D = Lm ∪ Tm, Lm for learning and Tm 
for testing. 
▪ Construct SVMm

k = f(x(1), x(2), …, x(k), Lm), the SVM model 
using only the k top ranked variables learnt on Lm. 
▪ Compute Errm

k = test(SVMm
k, Tm), the MSE committed by 

SVMm
k on Tm. 

 End 
 Compute Errk = (∑m=1…RS Errm

k)/RS 
End 

The optimal number of selected variables is: 
kopt = Argk min(Errk). 
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Table 1. Twenty-four Explicative Variables 
Type Variable Definition 

Meteorological 
predictors 

Tmin Daily minimum temperature (°C) 
Tmoy Daily mean temperature (°C) 

Tmax Daily maximum temperature (°C) 

VVmin Daily minimum wind speed (m/s) 

VVmoy Daily mean wind speed (m/s) 

VVmax Daily maximum wind speed (m/s) 

DVvvmin Wind direction of VVmin (1 ~ 8) 

DVdom Daily dominant wind direction (1 ~ 8) 

DVvvmax Wind direction of VVmax (1 ~ 8) 

HRmin Daily minimum relative humidity (%) 

HRmoy Daily mean relative humidity (%) 

HRmax Daily maximum relative humidity (%) 

SR Daily mean solar radiation (W/m2) 

Other 
pollutants 

SO2 
Daily average concentration of Sulfur 
dioxide 

NO2 
Daily average concentration of Nitrogen 
dioxide 

NO 
Daily average concentration of Nitric 
oxide 

O3 Daily average concentration of Ozone 

Lagged PM10 PM10(j − t) 
Daily average concentration of PM10 in 
day j – t (t = 1, 2, ..., 7) 

 

3.1. Data Gathering and Description 

Various panniers of explicative variables have been used 
in the previous works for the purpose of PM10 modeling and 
forecasting (Dong et al., 2009; Kurt and Oktay, 2010; Poggi 
and Portier, 2011; Domańska and Wojtylak, 2012). This variety 
depends on the availability of measured variables and the objec- 
tives of the study. Meteorological fields, including wind, hourly 
temperature, mixing depth and solar insolation fields are an im- 
portant input for any modeling exercise with air quality models. 
These fields can have great uncertainty which contribute in mis- 

predicting airborne chemical species, aerosols and particulate 
matter. Thus, accurate meteorological fields are of utmost im- 
portance. They will lead to reliable forecasts of air pollution 
events (Almanza et al., 2014). 

In our study we do not care about the number of used 

explicative variables and their contribution to explain the ozone 

variation as our main goal is to pick out the best statistically. 

The dataset used in this study consists of PM10 daily ave- 
rage concentrations, other pollutants (SO2, NO2, NO and O3) 
and meteorological data observed in two monitoring stations 
from Tunisia. The first station is installed at Gabes. Its database 
contains 349 observations from 01/01/2010 to 15/12/2010. The 
second station is at Manouba, and its database contains 154 ob- 
servations from 11/05/2010 to 11/10/2010. The data were coll- 
ected from the Mourouj central station of the National Agency 
for Environmental Protection (ANPE), which acts under the 
supervision of the ministry of the environment and sustainable 
development in Tunisia. All the stations monitoring air quality 
on Tunisian territory are operating on a continuous basis mana- 
ged by the RNSQA, under the tutorship of the ANPE. 

The objective of this study is to model, to analyze and to 
forecast the PM10 daily average concentrations using the SVR 
and the RF approaches. To that effect, we use twenty-four expli- 
cative variables to predict the PM10 daily average concentration. 
These variables are grouped into three categories; meteorologi- 
cal indicators, other pollutants and delayed PM10 daily average 
concentrations. Table 1 summarizes all the explicative variables. 
In some previous studies, it was shown that the first lagged 
PM10 is an important predictor of its current value (at day j) but 
without identifying statistically the proper delay (Chaloulakou 
et al., 2003; Poggi and Portier, 2011). They are limited only to 
one lag of PM10. Here we consider seven delayed PM10 concen- 
trations from j - 1 to j - 7. The best predictors to keep in the mo- 
del will be statistically identified hereafter. 

We note that the variables associated with wind direction 

      Figure 2. Variation of PM10 daily average concentrations: (a) Gabes station; (b) Manouba station. 
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DVdom, DVvvmin and DVvvmax are transformed from degree 
to categorical data from 1 to 8. Indeed, the disc is divided into 
eight equal sectors from north = 1, north-east = 2, …, south = 
5,…, to north-west = 8. This is the wind compass describing 
the eight principal bearings used habitually in meteorology to 
categorize wind direction. 

Figure 2 shows the evolution of PM10 daily average con- 
centrations (in μg/m³) for each monitoring station. As it can be 
seen, the two monitoring stations are different from the daily 
average PM10 concentrations variation. We note a large variabi- 
lity in the PM10 values for the two stations. Moreover, Manouba 
database contains more outliers than that of Gabes. This tricky 
behavior can cause, probably, some difficulties in its modeling 
and forecasting. 

 

3.2. Missing Values Treatment 

Missing data is a ubiquitous problem in evaluating experi- 
mental measurements such as related with air quality monito- 
ring. This is due to instrument calibration or malfunction. The 
treatment of missing values represents an important step in the 
data mining process. Obviously, we cannot more usual obtain 
good results from poor or insufficient data. Thus, the two col- 
lected raw databases present many missing values. For Gabes 
database, 6.99% of the data does not exist and for Manouba 
database 23.65% of the data are missed. To handle this problem 
of missing values, we use an imputation technique based on a 
multivariate imputation by chained equations developed by Van 
Buuren and Groothuis-Oudshoorn (2011) and implemented in 
the MICE algorithm on the software R freely downloadable 
from http://cran.r-project.org/. 

4. Experimental Results 

This section reports the experimental results on the above 
presented variable importance scores. This is done on simula- 
ted and on two real world datasets. The purpose of our empiri- 
cal analysis is twofold. First, for simulated data, we check the 
ability of all the scores to properly rank the right important 
variables within a linear regression framework when noisy va- 
riables are added. Then we check the ability of our stepwise 
algorithm to select the best subset of variables. Second, for real 
world data, we compare the variable selection methods using 
datasets from the two stations and we focus on the forecasting 
performance improvement. We have used MATLAB for our 
computational tasks. 

 

4.1. Guideline Results on Synthetic Data 

The major advantage of using simulated data here is that 
the relevant variables are already known by construction. So, 
this part can give us some judgments and benchmark results that 
will be used as guidelines for the real application. 

We consider a linear relation between the target y and the 
first six input variables xi, i = 1, 2, …, 6 given by: 

 

1 2 3 4 5 62 3 4 5 6y x x x x x x        (4) 

Only the first six variables are relevant and the added ones are 
noise. All the variables are randomly and independently drawn 
according to the standard normal distribution. Note that we can 
vary the number of noisy variables and the dataset size accor- 
ding to our aims. 

As the target y is linearly related to the explicative vari- 
ables we have used a standard linear SVR. To tune the other pa- 
rameters of the SVR model, we have performed a grid search 
over several runs of 10-fold cross-validation which lead to 
choose ε = 0.001 and C = 1,000 whatever n and p. 

For RF model, we used the results of Genuer et al. (2010) 
and Díaz-Uriarte and Alvarez de Andres (2006) and we made 
some preliminary simulations to find an optimal parameters 
tuning. According to the obtained results, parameters nodesize 
and mtry are set to their default values for regression (nodesize 
= 5 and mtry = p/3) but taking ntree = 300 leads to good stability. 
The performance gain was negligible in our simulations. 

In order to check the ability of the five scores to retrieve the 
right pertinent variables, we have performed 100 trials with ran- 
dom draws of training set. At each trial we record the number 
of relevant variables correctly top ranked at the first six posi- 
tions. This was done for different values of n and p. 

 

Figure 3. Average number of relevant variables (ANRV) cor- 
rectly ranked with respect to the number of variables (p = 20, 
50, 100) and the used score of importance. The sample size is 

set to n = 150. 
 

4.1.1. Ranking Sensitivity to p 

The experiment that we carried out here is the following. 
We set the sample size to n = 150 and we vary the number of 
variables taking p = 20, 50 and 100. All the five scores of im- 
portance have been computed as previously mentioned. The 
SVR scores are computed over 200 bootstrap samples. For RF, 
the importance score is averaged on several runs to avoid insig- 
nificant sampling effects. Each score gives rise to a decreasing 
hierarchy of importance. The number of relevant variables ran- 
ked in the top six positions of the hierarchies have been counted. 
For each value of p, the results have been averaged over 100 
trials with random draws of training set. Figure 3 shows the ave- 
rage number of relevant variables ranked in the top six ranks 
when increasing the number of noisy variables. 
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From Figure 3 we see that the scores ∂Gα, ∂GW and ∂GS 
outperform greatly the other scores in variables importance 
assessment in all situations. Moreover, an unexpected result is 
that the ∂GR score performs better as soon as the number of 
variables becomes large enough. However, the effectiveness of 
the RFS score deteriorates by increasing the number of vari- 
ables. 

 

 
Figure 4. Average number of relevant variables (ANRV) 

correctly ranked with respect to the sample size (n = 100, 200, 
300) and the used score of importance. The number of 

variables is set to p = 30. 
 

4.1.2. Ranking Sensitivity to n 

Now we fix the number of variables to p = 30 and we vary 
the sample size taking n = 100, 200 and 300. Then we do the 
same computations as previously. Figure 4 gives the average 
number of relevant variables ranked in the top six ranks when 
increasing the sample size. 

The results presented in this figure confirm the previous 
findings. It seems that the ∂GR score is more robust to noisy 

variables when their number becomes larger relatively to the 
sample size. 

 

4.1.3. Stepwise Curve Shape 

Let us now run our stepwise algorithm on the toy dataset 
using only the scores ∂Gα with the SVR and the score RFS with 
the RF. A sequence of nested increasing models is constructed 
on each hierarchy. The Mean Squared Error (MSE) for the SVR 
model is averaged over 50 random splits; 80% for learning and 
the remaining for testing. For the RF model, the MSE is 
estimated in two ways; over OOB samples and then over 50 
random splits. For uniformity reasons, we keep the same 50 
random splits used for the SVR and RF models. Finally, the 
model realizing the lowest MSE is chosen as the model having 
the optimal subset of variables. We used here a toy dataset with 
n = 150 and p = 30. Our aim is to check the ability of our 
stepwise algorithm to select the best subset of variables with 
the different approaches. 

Figure 5 depicts the performance of the nested increasing 
models where variables are introduced sequentially in a decr- 
easing order of importance. We observe that the two RF curves 
(right panel) have very similar behavior; decreasing to reach a 
global minimum then increasing. This typical behavior reflects 
good performance of the stepwise algorithm and jointly attests 
good quality of the variables ranking. This behavior was deeply 
analyzed in the work of Ghattas and Ben Ishak (2008) for binary 
classification and more recently in the work of Feki et al. (2012) 
for multiclass problems. Moreover, the OOB curve (OOB-MSE) 
seems a little bit optimistic than the RS curve (RS-MSE) obtai- 
ned by random splitting for RF. The left panel shows that the 
expected curve shape is less remarkable with SVR. Indeed, the 
rising phase of the MSE is slower. This shows that the SVR fo- 

 

Figure 5. Mean Squared Error of nested increasing models on toy data. For each score, the minimum error rate and the corres-
ponding optimal number of relevant variables are given in brackets. We take n = 150 and p = 30. The y-axis is taken in the logari- 
thmic scale. (a) Averaged MSE over 50 random splitting for the ∂Gα score; (b) Error rates estimated on OOB samples and over 50 

random splitting for the RF score. 
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recasting is less sensitive to the presence of noisy variables 
comparatively to RF model. 

Although the simulation experiments deal with specific 
artificial situations, we can still draw useful and practical reco- 
mmendations to properly conduct real applications. Thus, acc- 
ording to the previous results, in the real world applications we 
will use all the scores except ∂GR which has the worst raking 
performance. Finally, we will propose a combined procedure 
between SVR and RF. It consists of using the SVR hierarchies 
to construct a sequence of nested increasing RF models and 
conversely. The goal of this combination is to gather the good 
qualities of the two models RF and SVR in a single procedure 
in hope to reduce selection bias effect (Ambroise and McLa- 
chlan, 2002). The problem of selection bias is especially rem- 
arkable with the SVR (left panel in Figure 5) where the average 
MSE reaches zero when only the six top ranked variables are 
introduced in the model. 

Ultimately, for consistency reasons the error rates are esti- 
mated solely by random splitting for all choices and the results 
will be carefully compared and interpreted. 

 
4.2. Real World Application 

In this section we will present and compare the results ob- 
tained for the different approaches on the two considered stations 
Gabes and Manouba. All the explicative variables are standar- 
dized in order to avoid the scale effect. For each station, we first 
give the variable ranking according to the four scores of impor- 
tance ∂Gα, ∂GW, ∂GS and RFS and then we select the subsets of 
relevant predictors using our stepwise algorithm. We will leave 
aside 10% of the observations chosen at random from each 
dataset for testing and selection bias checking. 

At the beginning, we have performed a grid search over 
several runs of 10-fold cross-validation. The obtained results 
lead to take ε = 0.001 and C = 1 for the two datasets. The best 
kernel to use was polynomial with degree d = 1 meaning that 
the two datasets can be considered as linear. 

Like in simulation part for RF model, parameters nodesize 
and mtry are set to their default values for regression (nodesize 
= 5 and mtry = p/3) and we took ntree = 300 which ensure good 
stability. 

 

4.2.1. Experiments on Training Sets 

All the work will be conducted here on the training sets. 
The random division gives rise to training sets for Gabes and 
Manouba stations containing 314 and 139 observations respec- 
tively. The remaining instances from each station are kept aside 
for testing and for selection bias checking. 

The training sets are used to compute the variable impor- 
tance according to the three retained SVR scores and the RF 
score. All the computations are carried out in a similar manner 
to that of the simulated part. Table 2 gives the Spearman's rank 
correlation coefficients ρ in order to measure the similarities 
between the different hierarchies across scores or/and stations. 

Examining the Table 2 leads us to the following conclu- 
sions. The three SVR hierarchies are more similar to each other 
than that resulting from RF. This is true for the two stations, 
but the degree of similarity is a little higher for Gabes station. 
When we compare the similarities across stations we observe a 
significant difference between the hierarchies. This difference 
is much greater for the RF score. 

 
Table 2. Spearman's Rank Correlation Coefficients for Com- 
parison of the Hierarchies across Scores or/and Stations 

  Gabes Manouba 
  ∂Gα ∂GW ∂GS RFS ∂Gα ∂GW ∂GS RFS 
Gabes ∂Gα 1 0.96 0.84 0.39 0.23 0.15 0.38 -0.01
 ∂GW  1 0.82 0.38 0.22 0.18 0.31 0.04 

∂GS   1 0.48 0.38 0.24 0.49 0.11 
RFS    1 0.59 0.48 0.59 -0.14

Manouba ∂Gα     1 0.90 0.80 0.31 
 ∂GW      1 0.72 0.45 

∂GS       1 0.28 
RFS        1 

          

Figure 6. Variable ranking using the four scores of importance for Gabes station. (a) Variable ranking according to the score ∂Gα; 
(b) Variable ranking according to the score ∂GW; (c) Variable ranking according to the score ∂GS; (d) Variable ranking according to 

the score RFS. 
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To get a clearer idea about the different hierarchies, Fi- 
gures 6 and 7 come to expose the variable ranking and the co- 
rresponding scores values for Gabes and Manouba stations, res- 
pectively. 

From Figure 6 we notice a strong similarity between the 
headers of the three SVR hierarchies. Indeed, the first ten 
positions contain eight common variables. On the other hand, 
the RFS hierarchy is a little different. In fact, only six variables 
are common over the top ten ranks when we observe the four 
hierarchies simultaneously. These similarity statistics are lower 
for Manouba station. Moreover, we note that the top ranked 

variables are not the same from one station to the other which 
can be explained by their urban, meteorological and geogra- 
phic differences. Finally, we can conclude that the variables re- 
lated to temperature and relative humidity and the variable 
PM10 (j -1) are predominantly more or less top ranked whatever 
the score and the station. This finding is consistent with the 
results of the previous work of Poggi and Portier (2011). 

At this stage of investigation, we can say that the first step 
of variable ranking does not allow clear and fair comparison 
between the different approaches. Thus, the second step of se- 
lecting the optimal subset of variables will help us to complete 

    

Figure 7. Variable ranking using the four scores of importance for Manouba station. (a) Variable ranking according to the score 
∂Gα; (b) Variable ranking according to the score ∂GW; (c) Variable ranking according to the score ∂GS; (d) Variable ranking accor-

ding to the score RFS. 
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Figure 8. Gabes station: Mean Squared Error of nested increasing models. For each curve, the optimal number of relevant predic-
tors and the corresponding MSE are given in brackets. (a) The nested SVR models; (b) The nested RF models. 
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our comparative study.  

For the variable selection step, we will perform our step- 
wise algorithm with both RF and SVR using all the previous 
hierarchies. Using an external score to the model in the step- 
wise algorithm should reduce the selection bias problem (Am- 
broise & McLachlan, 2002). The optimal subset of predictors 
is the one achieving the lowest MSE over 50 random splitting; 
80% for learning and 20% for testing. For homogeneity reasons, 
we have chosen to use random splitting instead of the OOB 
samples for the RF. 

When we examine Figures 8 and 9 we directly note that 
the error rates are much higher than those in the simulated part 
(see Figure 5). These rates do not seem very strange and can be 
explained by the fact that the real datasets are not perfectly li- 
near and on the boundary to be rather nonlinear. Besides, the 
dataset of Gabes station seems to have a more linear trend than 
that of Manouba station. We recall that the two real datasets are 
nevertheless linear according to our grid search testing. These 
results confirm again that real world datasets remain always 
much more complex than the simulated special cases. However, 
we cannot totally ignore the usefulness of simulation experi- 
ments.  

What is more interesting is that all the curves depicted in 
Figures 8 and 9 show the expected typical behavior stressed in 
the simulated part in Figure 5. This typical curve shape is less 
respected when using the scores ∂GW and ∂GS. Moreover, the 
RFS hierarchy seems to be more suitable for the two datasets 
according to the corresponding MSE curve shape. This is due 
to the fact that RF are highly nonparametric and nonlinear 
learning models which fit well the data without overfitting es- 
pecially when the data are nonlinear or faintly linear. 

Finally, we see clearly that our variable selection approach 

improves significantly the forecasting performance by selec- 
ting a reduced numbers of predictors. The improvement mag- 
nitude and the subset size of selected predictors vary depending 
on the used score and model. 

 

4.2.2. Selection Bias Checking 
This paragraph is devoted to control the selection bias pro- 

blem on the test sets. It is known that this problem is inherent 
to the tasks of variable selection (Ambroise and McLachlan, 
2002). Let us first denote the previous selected subsets for 
Gabes station by: 

5 :GG
 5 top ranked variables in the G hierarchy selected in 

common by the SVR and the RF models, 
9 :

WGG 9 top ranked variables in the WG hierarchy selected by 
the SVR model, 

7 :
WGG 7 top ranked variables in the WG hierarchy selected by 

the RF model, 
12 :

SGG 12 top ranked variables in the SG hierarchy selected by 
the SVR model, 

14 :
SGG 14 top ranked variables in the SG hierarchy selected by 

the RF model, 
3 :

RFSGG 3 top ranked variables in the RFS hierarchy selected by 
the SVR model, 

13 :
RFSGG 13 top ranked variables in the RFS hierarchy selected 

by the RF model. 
For Manouba station, they are denoted by: 

8 :GM
 8 top ranked variables in the G hierarchy selected by 

the SVR model, 
12 :GM

 12 top ranked variables in the G hierarchy selected by 
the RF model, 

9 :
WGM 9 top ranked variables in the WG hierarchy selected by 

        

Figure 9. Manouba station: Mean Squared Error of nested increasing models. For each curve, the optimal number of relevant 
predictors and the corresponding MSE are given in brackets. (a) The nested SVR models; (b) The nested RF models. 
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the SVR model, 
6 :

WGM 6 top ranked variables in the WG hierarchy selected by 
the RF model, 

8 :
SGM 8 top ranked variables in the SG hierarchy selected by 

the SVR model, 
15 :

SGM 15 top ranked variables in the SG hierarchy selected by 
the RF model, 

8 :
RFSGM 8 top ranked variables in the RFS hierarchy selected by 

the SVR model, and 
6 :

RFSGM 6 top ranked variables in the RFS hierarchy selected 
by the RF model. 

To evaluate and to compare the forecasting effectiveness 
of the different models, we have adopted several statistical per- 
formance metrics. In addition to the classical metrics, various 
new types of metrics were discussed and were deeply compared 
in the literature (Legates and McCabe, 2013; Willmott et al., 
2012; Krause et al., 2005). Overall, it can be stated that none of 
the efficiency metrics performs ideally. Each of them has 
specific pros and cons which have to be taken into account du- 
ring model evaluation. However, some measures can be more 
complementary and allow together to make fair evaluation. The 
statistical metrics considered here were successfully used in 
climatic, hydrologic, and environmental domains, and especial- 
ly, in previous studies of PM10 and other air pollutants (Wang 
et al., 2015; Antanasijević et al., 2013; Koo et al., 2012). The 
selected metrics that will be used are: the Root Mean Squared 

Error (RMSE), the Mean Absolute Error (MAE), The Mean 
Absolute Percent Error (MAPE), the factor of 2 (FA2) and the 
factor of 1.25 (FA1.25), the refined index of agreement (dr), and 
finally the coefficient of efficiency (E1). It is important to em- 
phasize that the significances of these statistical metrics are not 
equal, but they complete themselves strongly. Their formulas 
are expressed as follows: 
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where iO and iP are the observed and the predicted values, res- 
pectively, O  is the mean of the observed values, and  I x  
is the indicator function which equals 1 if x I and 0 otherwise. 
In general, good predictive models are associated with simulta- 
neous achievement of small values for RMSE, MAE and MAPE. 
The other metrics serve to reinforce the judgment. The FA2 and 
FA1.25 factors provide the proportion of cases for which the va- 
lues of the ratios Pi/Oi fall in the range [0.5, 2] and [0.8, 1.25], 
respectively. The dr statistical index of model performance is 
bounded by -1 and 1, and it measures similarity between the 
modeled and the observed tendency. In general, it is more ratio- 
nally related to model accuracy than are other existing indices 
(Willmott et al., 2012). Finally, to date, the E1 coefficient is the 
main competitor with dr (Legates and McCabe, 2013). For the 
last four metrics, the higher the value is, the better the quality 
of forecasts is. 

 

Table 3. Gabes Station: Forecasting Accuracy Metrics for the 
Selected Subsets of Predictors and for all the Predictors 

SVR 

 RMSE MAE MAPE FA2 FA1.25 dr E1 

All variables 70.57 52.03 50.40% 0.83 0.31 0.49 -0.008 

G5
∂Gα 73.74 51.30 45.82% 0.80 0.40 0.50 0.005 

G9
∂Gw 74.01 55.71 53.94% 0.77 0.25 0.46 -0.08 

G12
∂GS 72.50 51.89 49.58% 0.85 0.34 0.49 -0.005 

G3
∂GRFS (*) 70.32 46.76 40.49% 0.85 0.43 0.54 0.09 

RF 

All variables 66.67 45.76 41.01% 0.85 0.47 0.55 0.11 

G5
∂Gα 61.40 44.30 40.20% 0.86 0.43 0.57 0.14 

G7
∂Gw 63.28 44.02 39.11% 0.88 0.43 0.57 0.15 

G14
∂GS 65.51 46.02 41.19% 0.85 0.41 0.55 0.11 

G13
∂GRFS (*) 65.22 43.47 38.27% 0.88 0.48 0.58 0.16 

 

Tables 3 and 4 give the predictive performance realized by 
the SVR and the RF models on the test sets when using all 
variables and when using only the selected subsets for the both 
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stations. For RF model, we have reported the average error on 
several runs in order to attenuate the random sampling effects 
inherent to the RF architecture and to provide fairest results. 

From Tables 3 and 4 we see that, in most cases, the varia- 
ble selection improves significantly the forecasting accuracy on 
the test sets. This proves that our variable selection procedure 
is not seriously affected by the selection bias problem. The best 
result for each criterion is written in bold. The most best subset 
of predictors for each pair model/station is marked by an aste- 
risk. It is the subset which improves the majority of the adopted 
criteria. The overall improvement, according to the seven crite- 
ria, is more important for Gabes station. For instance, the best 
relative gain in forecasts accuracy (in terms of MAPE) is about 
19.66% ((50.40 - 40.49)/50.40) when using the SVR model wi-
th the subset of predictors 3

RFSGG , and is approximately 16.29% 
((230.11 - 192.63)/230.11) when using the RF model with the 
subset of predictors 6

RFSGM for Gabes and Manouba stations, 
respectively. Moreover, the best relative improvement in the 
RMSE is slightly greater for the RF model in favor of Gabes 
station. Indeed, the best relative gain in the RMSE is about 7.9% 
((66.67 - 61.4)/66.67) when using the RF model with the subset 
of predictors 5

GG
 for Gabes, and is approximately 7.03% ((24 

3.62 - 226.49)/243.62) when using the RF model with the 
subset of predictors 12

GG
 for Manouba. These results show that 

the selection bias is much more attenuated when using an exter-
nal score to the involved model. On the other hand, it is worthy 
to note that a decrease in at least one of the two measures MAE 
or MAPE is accompanied by an improvement in the last four 
metrics. This improvement becomes even more important when 

the decrease in MAE and/or MAPE is significant. 

Table 4. Manouba Station: Forecasting Accuracy Metrics for 
the Selected Subsets of Predictors and for all the Predictors 

SVR 

 RMSE MAE MAPE FA2 FA1.25 dr E1 

All variables 239.94 172.86 235.60% 0.26  0 0.59 0.19

M 8
∂Gα 226.41 164.08 211.12% 0.40 0.13 0.61 0.23

M 9
∂Gw (*) 231.89 160.60 222.81% 0.40 0.13 0.62 0.24

M 8
∂GS 241.82 179.24 265.01% 0.40 0.13 0.58 0.16

M 8
∂GRFS 241.78 170.50 218.03% 0.40 0.13 0.60 0.19

RF 

All variables 243.62 178.75 230.11% 0.33 0.07 0.58 0.16

M 12
∂Gα 226.49 161.71 205.58% 0.40 0.13 0.62 0.24

M 6
∂Gw 232.07 160.97 207.50% 0.41 0.19 0.62 0.24

M 15
∂GS 233.34 166.10 202.19% 0.43 0.07 0.61 0.22

M 6
∂GRFS (*) 229.27 162.32 192.63% 0.44 0.19 0.62 0.24

 

Finally, Figure 10 shows the forecasting performance of 
the selected subsets of predictors compared to using all the 
predictors. The observed values versus the model forecasts of 
PM10 concentrations are depicted for each dataset. Each scatter 
plot corresponds to one of the models marked by an asterisk in 
Tables 3 and 4. We can see that the overall quality of forecasts 
is at least preserved when using only the selected predictors. 

5. Conclusions 

In this work, we have compared two popular statistical lear- 
ning models namely the Support Vector Regression and the 
Random Forests for the purpose of variable selection and fore- 

  

Figure 10. Actual values versus forecasts of PM10 concentrations for the test sets. Comparison between the forecasts using all the 
predictors and those using only the selected predictors. (a) Gabes station with the SVR model; (b) Gabes station with the RF 

model; (c) Manouba station with the SVR model; (d) Manouba station with the RF model. 
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casting. This comparison study was conducted on synthetic and 
real datasets. The results of the simulated part were used as a 
benchmark to properly conduct the real application. We have 
considered two monitoring stations from Tunisia to model and 
forecast the PM10 daily average concentration. The problem of 
variable selection for linear multiple regression was deeply 
investigated. 

On the linear simulated data we have shown that the SVR 
scores G , WG and SG outperform slightly the score RFS 
in variable importance assessment. It has been also demonstra- 
ted that the score RG is comparatively much less efficient. 
Concerning the real world application, we have noticed that the 
linear trend was not explicit in the two datasets. Besides, Ma- 
nouba dataset modeling was a little trickier than that for Gabes 
dataset because of outliers. Despite this difficulty, we were able 
to substantially improve the accuracy of forecasts for the two 
datasets. To do this, we have proposed a combined variable 
selection approach using RF and SVR simultaneously. The best 
improvement in the RMSE for the two datasets was achieved 
by using the score G for variable ranking and the nested RF 
models for subset selection. This result is not surprising given 
that our variable selection procedure is based on the training 
set's MSE minimization. We have also demonstrated that our com- 
bined approach does not suffer from the problem of selection 
bias. This was done by considering various metrics of forecasts 
accuracy. 

In practice, we have shown that it is possible to accurately 
forecast the PM10 daily average concentration by using only a 
reduced number of selected variables. The number of selected 
variables differs from one station to the other. This variability 
can be explained by their urban, meteorological and geogra- 
phic large differences. Nevertheless, we have identified four 
common variables namely Tmoy, Tmax, HRmoy and PM10(j - 
1).  

Of course, the problem of variable selection for regression 
remains one of the main open issues in statistics. This challenge 
is certainly more difficult when we deal with nonlinear regre- 
ssion and/or handle situation exposing the curse of dimensiona- 
lity phenomenon with a lot of highly correlated variables like 
in microarray data. Finally, the scope of our application could 
be broadened to cover other monitoring stations and by consi- 
dering supplementary explicative variables. 
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