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ABSTRACT. Organic matter transport from watershed soil into an aquatic ecosystem plays a key role in the fate of contaminants and 

lake eutrophication. Special emphasis is needed to understand whether sensitive river indicators can reflect watershed non-point source 

organic carbon (OC) pollution, in which the accurate assessment of non-point source (NPS) pollution is crucial. This study selected a 

sub-basin within the Taihu basin, China, as the study site, a typical rural-urban fringe region undergoing rapid urbanization where soil 

organic carbon (SOC) loss would likely take place due to the integration of agriculture NPS and impervious surface NPS. The seasonal 

tendency of NPS soil organic carbon (SOC) loads were evaluated by using the integration of SEDD and PLOAD models, which 

consider the sediment adsorption fraction loads (Sed-OC) and runoff dissolved fraction loads (Dis-OC) together. And then the sensitive 

water indicators for OC loads were determined by measurements of inflowing river properties and stepwise regression analysis. The 

results showed that active dissolved carbon fraction loads were the dominant contributors to the total organic carbon loads (Tot-OC) 

and that Sed-OC loads have more spatial variation. With respect to sensitive river properties, the lignin owned the greatest correlation 

degree with different OC fraction loads, in which the correlation coefficient between particulate lignin and Sed-OC loads reached 

0.782, which is the greatest among the different indicators. In addition, the colored dissolved organic matter (CDOM) was also 

correlated with Dis-OC loads. However, the particulate organic carbon (POC) was not well related to OC loads. The findings of this 

study are useful for better understanding the nutrient migration from watershed soil into aquatic ecosystem controlled by watershed 

NPS pollution. 
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1. Introduction  

Soil organic carbon (SOC) plays a major role with 

respect to many chemical and physical processes in aquatic- 

terrestrial ecosystems (Teisserenc et al., 2010). Non-point 

source (NPS) pollution drive the soil organic matter (SOM) 

delivered from watershed into surface water through sediment 

and runoff (Ouyang et al., 2010). This consequently increases 

organic carbon (OC) loads in aquatic ecosystems, promoting 

the growth of blue-green cyanobacteria and organic pollutants 

and leading to some environmental problems, such as lake 

eutrophication (Neff et al., 2003; Ning et al., 2006; Yang et 

al., 2012). Therefore, understanding the features of NPS OC 

pollution in aquatic-terrestrial ecosystems is helpful for the 

research of earth biogeochemical cycling, and also of great 

significance for the protection of watershed environments. 
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The SOM loss in watersheds is largely sourced from NPS 

pollution. Actually, the NPS pollution could be categorized as 

two types: agriculture non-point source (ANPS) pollution and 

urban non-point source pollution. Most models always focu- 

sed on ANPS and predominantly consider particle-absorbed 

organic carbon loads, which involve two processes: soil 

erosion and sediment delivery (Nearing et al., 1989; Blair and 

Aller, 2012). Compared with physical models, the classical 

empirical models are more suitable and widely used in 

watershed scale monitoring due to the advantages of conden- 

sed structures, accessible parameters and simple and efficient 

operation (McDowell et al., 2002; Be-chmann et al., 2009; 

Laurent and Ruelland, 2011; He et al., 2012; Chen et al., 

2013). In particular, the most recognized exponential model is 

the Revised Universal Soil Loss Equation (RUSLE), which 

has been widely applied to evaluate soil erosion modulus by 

integrating several factors, including climate, land use, soil 

and topography (Li et al., 2009; Ouyang et al., 2010). Based 

on the fundamental form of RUSLE, the sediment delivery 

distributed (SEDD) model has been recently improved by 

researchers. One of the improvements is to take the sediment 

delivery factor into account, and thereby, the loss of the 
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absorbed nutrients in soil sediment can be quantitatively and 

more precisely monitored (Yang et al., 2012). In addition to 

ANPS, more attention has been paid to the watershed organic 

matter loss in surface runoff in recent decades, especially in 

some rapidly urbanized regions. In these regions, the surface 

runoff becomes a main carrier for NPS SOC loads, and the 

SOC is prone to loss in dissolved and active fraction because 

the natural soil surface has been replaced with impermeable 

surfaces. USEPA (2001) developed the PLOAD model to 

calculate annual NPS pollution loads in runoff, which has 

been widely applied due to the advantages of a lower data 

requirement and vivid results visualization of storm water 

permission (Shi et al., 2012). Above all, it is worth mention- 

ing that an effective method for the calculation of NPS SOC 

loads needs to consider both particulate organic matter loads 

from sediment delivery and dissolved organic matter loads 

from surface runoff (Cui et al., 2003). 

Additionally, the impact of watershed NPS pollution on 

the quality of aquatic systems has been quantified by the stu- 

dies based on the results of NPS loads. The NPS pollution lo- 

ads were used to relate numerous water indicators for inflow- 

ing rivers and lakes, including water temperature, turbidity, 

pH and water chemistry indicators (Stambuk-Gilijanovic, 

2003; Liou et al., 2004). High levels of NPS loads were found 

to be associated with poor water quality (Santhi et al., 2001; 

Wu et al., 2013). These results were helpful for understanding 

the relationship between NPS pollution and water quality. 

However, existing studies are mainly focused on the linkage 

between lake indicators and NPS phosphorus and nitrogen lo- 

ads, because TP and TN are the most important inducements 

to lake eutrophiccation (Hood et al., 2003; Teisserenc et al., 

2010), the relationship between NPS OC loads and aquatic 

indicators was rarely analysed. For this case, the critical indic- 

ators within the river or lake that were sensitive to differrent 

NPS OC loads have not been quantitatively determined. This 

investigation could benefit from an understanding of the fate 

of OC delivered from watershed soil into aquatic ecosystems. 

With the rapid urbanization and significant anthropogenic 

influence in the recent 30 years, the watershed of Meiliang 

Bay within Taihu Lake, China, has suffered from severe NPS 

pollution, and the lake water has also experienced the most 

severe eutrophication intensity (Duan et al., 2015). The obj- 

ectives of the present study are to: i) assess the spatial and 

temporal features of watershed NPS SOC loads using the 

integration of SEDD and PLOAD models, which consider the 

sediment adsorption fraction and runoff dissolved fraction 

together. ii) Determine the critical indicator that is sensitive to 

the NPS SOC loads from numerous related inflowing river 

indicators, including DOC, POC, CDOM and lignin etc. The 

findings from this study could be used to simplify the repre- 

sentation of watershed NPS loads and provide a practical 

foundation for the environmental protection of watersheds. 

2. Material and Methods 

2.1. Study Site  

The watershed region of Meiliang Bay is located in an 

upstream watershed area of the Taihu Watershed, China, and 

located on the eastern coast of China and south of the Yangtze 

River Delta. This selected region covered a total area of 486 

km2 and is located in a peri-urban area between Wuxi and 

Changzhou cities, which are famous for their natural condi- 

tions and advantageous economic development with the most 

extensive agriculture, urbanization and industry in Jiangsu 

province. The average annual precipitation in the study area is 

1035 mm, and the main rainfall season is from May to 

October. The annual mean runoff depth is 688 mm, and the 

annual average temperature is 15.6 °C. The main soil type in 

this area is bleached paddy soil, which covers more than 85% 

of the study site. The dominated fertilizer types are nitrogen 

fertilizer and phosphate fertilizer. The background content of 

soil organic matter (SOM), total phosphorus (TP), total nitro- 

gen (TN) content is 1.97 g kg-1, 0.07 g kg-1 and 0.12 g kg-1 

respectively. Sand proportion accounts for 13.14% and pH is 

5.97 (Gong et al., 2003). The sub-watershed is densely cove- 

red by a river network consisting of three trunk streams with 

their tributaries, including Wujin Port, and the Yangxi and 

Liangxi Rivers, which flow into Meiliang Bay in Taihu Lake. 

Eighteen sub-basins were generated by ArcGIS based on the 

three inflow Rivers (Figure 1). Moreover, the study area is 

undergoing dramatic land use adjustments and rapid urbani- 

zation in the last 30 years, a large amount of arable land and 

forestland has been replaced by construction (Li et al., 2007). 

Currently, construction land and arable land cover most of the 

study area, in which more than 30% of the area is impervious 

surface and 55% is arable land. The watershed region suffers 

from severe NPS pollution due to extensive agricultural acti- 

vities and urbanization, the eutrophication in Meiliang Bay is 

the most serious within the Taihu Lake, largely as a result of 

the constant delivery of soil nutrients into inflowing rivers by 

NPS pollution, which have contributed to lake eutrophication. 

 

 
 

Figure 1. Location of study site and sampling points. 
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2.2. Spatial and Temporal Evaluation of NPS SOC Loads 

The NPS SOC loads in 2014 were assessed in this study, 

and the statuses of the loads were considered in four seasons 

due to the significant variation in NPS SOC loads among diff- 

erent seasons. Both sediment-adsorbed organic carbon frac- 

tion loads (Sed-OC) and active dissolved carbon fraction 

loads (Dis-OC) were calculated, and the total carbon fraction 

loads (Tot-OC) could be derived from these two components.  

 

2.2.1. Assessment of Sed-OC loads component 

The spatial features of Sed-OC loads within different sea- 

sons were estimated with equation (1). The model involved 

two important factors, including soil erosion and sediment 

delivery (Yang et al., 2012), in which the soil erosion modulus 

was calculated by the Revised Universal Soil Loss Equation 

(RUSLE) (Cui et al., 2003). The model was calculated in 

ArcGIS 10.0 using 30 m × 30 m spatial grids: 

 

sed oc i sed iL A OC SDR− =    (1) 

 

where sed ocL − represented Sed-OC loads per unit area (kg  

km-2 yr-1); Ai is the soil erosion modulus (kg km-2 yr-1), OCsed 

expresses the sediment SOC concentration status (g kg-1), 

which was achieved by field sampling in different land use 

types of each sub-basin and laboratory measurements. SDRi is 

the sediment delivery ratio (%) for each grid. Specially, the 

SDRi was calculated by the equation (2), which was refer- 

enced by Ferro (1997): 

 

( )expi iSDR t= −  (2) 

 

where ti is the travel time (h) from grid i to the nearest river 

channel along the flow path, and β is a coefficient that lumps 

together the effects of roughness and runoff along the flow 

path (Ferro, 1997). The sensitivity of SDR to β is watershed- 

specific, and the value of 0.304 is suitable for the watershed 

because this value produces the smallest mean relative square 

error between the modeled and measured sediment yield 

(Ferro, 1997). Travel time can be calculated based on equation 

(3) (Jain and Kothyari, 2000), in which lj is the flow length 

and vj is a velocity factor derived from Smith and Maidment 

(1995): 
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Moreover, the core component of the Sed-OC quanti- 

zation method was the soil erosion modulus, which was calcu- 

lated by RUSLE given by equation (2), which is calculated 

based on the following model: 

 

i i i i i iA R K LS C P=      (4) 

 

where Ri is the rainfall-runoff erosivity factor (MJ mm (ha h 

yr)-1); Ki is the soil erodibility factor (Mg h MJ-1 mm-1); LSi is 

the slope length and steepness factor, in which the L is slope 

factor and S is the steepness factor; Ci is the cover manage- 

ment factor; and Pi is the conservation support practice factor, 

which is based on land uses (Dabral et al., 2008). The algori- 

thm of the R factor used in this study is given by the following 

(Wischmeier and Smith, 1987): 
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where Pm is the monthly average rainfall (mm) and P is the 

annual average rainfall (mm). The Ki value was assigned by 

the soil type spatial distribution map (1:1000000) and refer- 

ence to the study of Bu et al (2003) which was conducted in 

the Taihu Basin.  

The factor LSi reflects the effects of topography on soil 

erosion and is the acceleration factor of erosion power. LSi 

factors include slope length and steepness factors. Slope len- 

gths longer than 3 m can be extracted in a digital elevation 

model (DEM). The L and S factors used in the study are 

calculated according to McCool et al., (1987) and Onyando et 

al. (2005), and the models are shown in Equation (6), in 

which θ is the slope angle in degrees, and λ is the field slope 

length (m): 
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The Pi is determined as the ratio between the soil losses 

expected for a certain soil conservation practice and those 

usually estimated based on landuse type. In this study, the Pi 

assignment referenced Xu et al. (2012), which was deter- 

mined by a local investigation in the Taihu Basin. C is defined 

as the cover-management factor, which express the protective 

effect of soil cover against the erosive action of rainfall. C- fa- 

ctor mapping by remote sensing can provide essential infor- 

mation for improving the spatial modeling of soil erosion 

(Durigon et al., 2014). In this study, the C factor is calculated 

by referring to the study of Durigon et al. (2014), which invol- 

ves the use of a regression equation derived from a satellite- 

derived Normalized Difference Vegetation Index (NDVI). 

 

2.2.2. Assessment of Dis-OC Loads Component 

The PLOAD model is a GIS-based model, which is used 

to calculate non-point source pollutant loads from different 

sub-watersheds based on land uses and annual or seasonal 

precipitation data (USEPA, 2001). In the present study, the 
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PLOAD model is designed for the estimation of seasonal dis- 

solved non-point source nutrients loads: 

 

Dis OC i i i runL OC Pj Rn C− =     (7) 

 

where LDis-OC represents the dissolved non-point source 

nutrient loads per season (kg km−2 yr-1) for each grid pixel; Pi 

is the precipitation per season (mm yr-1); Pji is the ratio of 

storm producing runoff (default = 0.9); Rni is the runoff 

coefficient, which was evaluated based on each land use type, 

and derived with the following equation:  

 

( )0.05 0.009n impR I= +   (8) 

 

where Iimp is the imperious factor for different land uses, and 

the value is selected from the guidelines provided by NRCCS, 

TR-55 user’s manual (USEPA, 2003). Crun is the event mean 

concentration (EMC) for the land use type (mg L-1), which is 

determined by the runoff from a specific event by taking flow 

samples at regular intervals during the event and using follo- 

wing equation:  

 

dis n

i

OC Q
EMC

Q
=




 (9) 

 

OCdis is the OC concentration of sample n, and Qn is the 

flow rate. The water examples were obtained after the genera- 

tion of surface runoff from each rainfall event using a PLOAD 

simulation. In this study, two critical rainfall events per season 

were selected. The measured Dis-OC concentrations in runoff 

were averaged and then designated as the OCdis value of each 

land use.  

 

2.2.3. NPS OC Load Assessment  

In this study, the total NPS OC loads for each season 

were determined by the dissolved and adsorbed components 

together. The equations were given as follows:  

 
n n

Tot OC sed OC dis OC U

i i

L L L A− − −

 
= +  

 
   (10) 

 

where Tot(P) is the introduction of NPS nutrients into the 

rivers (kg yr-1); and AU is the area of the land use type (km2) 

within each sub-basin. The model was implemented in Arc- 

GIS 10.0 based on a raster grid (30 m × 30 m), and then clus- 

tered into each sub-basin. 

 

2.3. Selection of Sensitive Water Indicators within Inflow- 

ing Rivers  

The organic matter in the water and related water indica- 

tors were correlated with the watershed OC loads. The inflow- 

ing river indicators sensitive to OC pollution were then identi- 

fied. The fate of SOC delivered from a watershed to inflowing 

rivers could be further analysed.  

Several water indicators were collected and measured in 

the laboratory in each season. The indicators were included: 

(i) dissolved organic carbon (DOC) and particulate organic 

carbon (POC), which represented the different existing form 

of organic carbon substances in the water (Duan et al., 2015); 

(ii) CDOM, the colored fraction of DOM, which originated 

from the decomposition of plant matter within the aquatic en- 

vironment, as well as through the transport of partially degra- 

ded organic material from the surrounding watershed environ- 

ment (Yamashita and Tanoue, 2008; Zhang et al., 2009); (iii) 

the chemical oxygen demand (COD), an important parame- 

ter used to describe the intensity of organic contamination; 

and lastly, iv) the dissolved lignin (d-lig) and particulate lig- 

nin (p-lig), which were widely used as important biomarkers 

for terrigenous organic matter tracing but rarely related to 

NPS pollution in previous studies (Gordon and Goñi, 2003; 

Bao et al., 2014)  

 Table 1. The Data Source for the Calculation of the NPS P Loads 

Data type Data source Description 

Land use (Figure 2) Second National 

Land Survey of 

China. 

The data were interpreted from a Resource Satellite ST.3 (ZY-3) image in the second national 

land survey of China, and the data were merged into six main types for the convenience of the 

study (forestland, arable land, orchard land, wetland, construction land and other land). The 

modeling factors including conservation support practice factor (P), runoff coefficient (Rn), 

OCdis and OCsed were assigned based on land uses. 

Remote sensing 

image 

Landsat Enhanced 

Thematic Mapper 

(ETM+) data 

The ETM+ data with a spatial accuracy of 30 m was acquired from USGS, and the satellites 

transit date is Aug 2, 2013, the closest date to the actual sampling period. The NDVI data 

were the basis of the cover-management factor assignment, which was interpreted from the 

image.  

Digital Elevation 

Model (DEM) 

ASTER global 

DEM 

The data acquired from USGS, and the spatial accuracy is 30 m. The length-slope factor (LS) 

was calculated from the length and slope spatial data. 

Runoff amount Meteorological 

monitoring stations 

in Taihu Basin, 

Four monitoring stations were located in our study sites; the average annual rainfall amount 

was acquired and then interpolated onto the spatial scale. The rainfall intensity (R) factor was 

calculated from the spatial rainfall data. 

Soil type and soil 

properties 

background data 

<Soil Annals of 

Jiangsu Province> 

The data were digitized from <Soil Annals of Jiangsu Province>, the soil erodibility factor (K) 

was assigned based on the soil types and background data, including the soil mechanical 

composition and the soil organic concentration within each soil type. 
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2.4. Data Collection 

The field sampling data and spatial data were gathered in 

this study. The spatial data consisting of land use/cover data, 

the soil type data, the digital evaluation data and runoff data 

were used to quantify the modeling factors in the estimation 

of OC loads (Table 1). 

The field data plays an important role in model assess- 

ment and validation, and the dataset can be divided into 

monitoring data and sampling data, in which the monitoring 

data refers to the observed sediment and surface water OC 

discharge data measured at different monitoring sites. These 

data were collected after typical rainfall events throughout all 

four seasons (Table 2). The monitoring data were used to 

quantify the modeling factors, such as OCsed and OCdis. In 

additional, the sampling data refers to the selected water 

indicators derived from the inflowing rivers in all the sub- 

basins (Figure 2). The surface water sampling was performed 

on the dates shown above and during the morning hours from 

8:00 to 13:30. The samples were collected in airtight glass jars 

with a 250-ml capacity, and the all the samples were trans- 

ported to the laboratory for refrigeration to prepare for water 

properties measurements. Specifically, the samples were filt- 

ered through precombusted (6 h at 450 ºC) 47 mm Whatman 

GF/F glass fiber filters (0.7 um) at a low doc vacuum, using a 

Shimadzu TOC-5000A analyzer, following the protocol of 

Chen et al (2004) for DOC analysis (Jiang et al., 2012). The 

POC concentrations were measured by the combustion of 

sample filters in an EA3000 elemental analyzer (Biddanda 

and Benner, 1997). With respect to CDOM, the CDOM absor- 

ption spectra were obtained between 200 and 800 nm at 1-nm 

intervals using a Shimadzu UV-2450 PC UV-Vis spectropho- 

tometer with matching 5-cm quartz cells. Milli-Q water was 

used in the reference cell. Absorbance measurements at each 

wavelength (k) were baseline corrected by subtracting the ab- 

sorbance values at 700 nm. The absorption coefficients were 

obtained by the following equation:  

 

( )
( )2.303

CODM

D
a

r


 =  (11) 

 

where ( )CODMa  represented the CDOM absorption coefficient 

at wavelength λ, ( )D  is the corrected optical density at wave- 

length λ, and r is the path length in m. In the present study, the 

concentration of CDOM is expressed as ( )443CODMa (Zhang et 

al., 2009). The COD was measured by a colorimetric method 

with a potassium dichromate-sulfuric acid solution as the rea- 

gent (Yao et al., 2011). These indicators mentioned above we- 

re measured by the State Key Laboratory of Lake Science and 

Environment, Nanjing Institute of Geography and Limnology, 

Chinese Academy of Sciences. The dissolved and particulate 

lignin were measured by the analysis and determination center 

of Nanjing Normal University, using Agilent 1290 Infinity LC 

for chromatographic separation and an Agilent 6460 mass sp- 

ectrometer for the lignin analysis (Casas et al., 2014).  

Finally, the measured water indicators that belonged to 

the same sub-basin were averaged, which represented the wa- 

ter properties of the target sub-basin. For all of the above, the 

sampling data were linked with OC loads to identify the in- 

flowing river properties that were sensitive to NPS OC pollu- 

tion.  

 

2.5. Relationship between NPS OC Loads and Water Indi- 

cators on the Sub-Basin Scale 

The relationships between different NPS OC load frac- 

tions and water properties within eighteen sub-basins and four 

seasons were analysed for the purpose of identifying sensitive 

inflowing river indicators. A Pearson correlation analysis was 

performed using SPSS 19.0, and the correlation coefficient (r) 

was used to assess the correlation between various water indi- 

  
 

Figure 2. Land use characteristics of the study site. 

 

 Table 2. The Information of Selected Typical Rainfall Events  

No Date Season Temperature Temporal duration Rainfall 

1 18 Dec, 2013 Winter 5.2 73 min 43.6 mm 

2 2 Feb, 2014 Winter -0.2 82 min 48.0 mm 

3 7 Mar, 2014 Spring 13.0 109 min 72.1 mm 

4 8 May, 2014 Spring 20.0 92 min 60.0 mm 

5 28 Jul, 2014 Summer 36.2 114 min 100.02 mm 

6 9 Aug, 2014 Summer 33.2 156 min 112.82 mm 

7 28 Sep, 2014 Autumn 24.2 189 min 132.77 mm 

8 9 Nov, 2014 Autumn 20.1 89 min 72.2 mm 

 

http://iopscience.iop.org/1748-9326/9/8/084011/article#erl499596bib3
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cators and three OC load fractions. Furthermore, a stepwise 

regression analysis was also performed between different NPS 

OC load fractions and water parameters. Because the load of 

each OC was dependent and each water indicator was inde- 

pendent, the F statistic was taken as the criterion of the step- 

wise regression, in which F-enter and F-remove were set as 

0.05 and 0.1. A t-test was used to identify the significance of 

the coefficients of the independent variables (p ≤ 0.05) ent- 

ered in the final stepwise model (Basnyat et al., 2000; Fer- 

guson et al., 2008).  

  

 

 

 

 (a)  (b)  (c) 

 (d)  (e)  (f) 

 (g)  (h)  (i) 

 (j)  (k)  (l) 
 

 

   

 

 

  

 

  

 
 

Figure 3. Spatial distributions of watershed seasonal soil organic carbon loss in 2014. Note that Sed_win and Dis_win are 

the Sed-OC loads and Dis-OC loads in the winter; Sed_spr and Dis_spr are the Sed-OC loads and Dis-OC loads in the 

spring; Sed_sum and Dis_sum are the Sed-OC loads and Dis-OC loads in the summer; Sed_aut and Dis_aut are the Sed- 

OC loads and Dis-OC loads in the autumn, respectively. 
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3. Results  

3.1. Simulation of the NPS OC Pollution Tendency 

The seasonal spatial distributions of NPS OC loads for 

2014 are shown in Figure 3. The differences among different 

seasons are notable in Figure 3. The NPS pollution was the 

lowest in the winter for both Dis-OC and Sed-OC, while the 

NPS OC loads increased to their highest in the summer. 

Specially, the maximum Sed-OC load reached 80.786 kg km-2 

in the summer, and the maximum Dis-OC load was 12.273. 

These values were significantly higher than those values in 

the winter.  

Figure 3 demonstrates the evident spatial variation in 

Sed-OC loads, while the variation among different seasons is 

relative small. The slightly polluted region occupied more 

than 60% region of the entire watershed, and the region 

severely polluted with Sed-OC was located in the center of 

the study area for each season. In contrast, the Dis-OC 

pollution varied more notably in a temporal perspective, in 

which the southeastern part of the study area was severely 

polluted in the winter. While the pollution intensity in this re- 

gion decreased to some extent as the season shifted, the region 

with the most severe pollution was replaced by the southwest- 

tern corner of the whole watershed.  

Table 3 shows the OC loads for each sub-basin. With res- 

pect to Sed-OC loads, sub-basins No. 11, No. 12, No. 13 and 

No. 5 suffered severe NPS pollution intensity for all four sea- 

sons. These four sub-basins were loaded with more OC losses 

than the other sub-basins. In particularly, the region with the 

most severe pollution was located in sub-basin No. 13, in 

which the loads reached 4.988 t km-2 in the summer. Re- 

garding the Dis-OC loads, sub-basin No. 3 received more 

loads than the other sub-basins. However, the situation chang- 

ed as the season turned into spring and summer. Specially, the 

most severe pollution appeared in the summer, and sub-basins 

No. 11 and No. 15 suffered from the highest Dis-OC loads. In 

addition, the Dis-OC loads also increased rapidly in sub-basin 

No. 14, which had the highest loads in the autumn. Moreover, 

sub-basins No. 5, No. 12 and No. 13 suffered from the most 

severe OC pollution as these two OC load fractions were 

integrated, and the loads reached 6.06 t km-2, 6.10 t km-2 and 

7.609 t km-2 for these three sub-basins, respectively. 

 

3.2. Spatial Pattern of Inflowing River Properties 

To investigate the seasonal variation of inflowing river 

nutrients, the data of carbon-related indicators within 18 sub- 

basins were analysed for each season (Figure 4).  

The DOC concentrations were greater than the POC va- 

lues, and the maximum value appeared in the summer, in 

which the DOC concentrations ranged from 16.09 mg L-1 to 

53.90 mg L-1, with a mean of 36.44 mg L-1. Furthermore, the 

variability of the DOC concentrations was the most signi- 

ficant in the summer, with a standard deviation greater than 

10.76, compared with standard deviations smaller than 5.0 in 

the other seasons. The distribution of COD concentrations 

was similar to that of DOC, and the maximum value also app- 

eared in the summer (ranged from 26.64 mg L-1 to 48.74 mg 

L-1), while the values were slightly lower than those of DOC. 

In addition, the COD concentrations in the winter were signi- 

ficantly smaller than in the other seasons. In contrast, the POC 

concentrations were lower without notable variation among 

different sub-basins. The ( )443CODMa value did not vary nota- 

bly among different sub-basins in three seasons, including the 

 

Table 3. Statistical Data of NPS P Loads among Different Sub-basins and Different Seasons  

No. 

Winter Spring 

Sed-OC 

(t km-2) 

Dis-OC 

(t km-2) 

Tot-OC 

(t km-2) 

Sed-OC 

(t km-2) 

Dis-OC 

(t km-2) 

Tot-OC 

(tkm-2) 

1 0.696 0.886 1.582 0.595 1.839 2.434 

2 0.173 0.598 0.771 0.892 1.538 2.429 

3 0.529 1.295 1.824 0.246 2.011 2.257 

4 0.313 0.680 0.993 0.719 1.488 2.207 

5 1.534 0.388 1.922 1.143 1.227 2.370 

6 0.371 0.388 0.759 0.708 1.218 1.926 

7 0.277 0.354 0.631 1.087 1.234 2.321 

8 0.979 0.468 1.447 0.502 0.971 1.473 

9 0.882 0.528 1.410 0.527 0.706 1.233 

10 0.447 0.619 1.067 0.340 1.300 1.640 

11 0.193 0.981 1.175 1.791 2.024 3.815 

12 0.319 0.681 1.000 2.278 1.711 3.989 

13 0.650 0.676 1.326 1.678 1.353 3.031 

14 0.377 0.723 1.101 0.224 1.371 1.595 

15 0.123 0.976 1.100 0.083 2.225 2.308 

16 0.033 0.638 0.671 0.367 1.531 1.898 

17 0.237 0.744 0.981 0.274 1.674 1.948 

18 0.121 0.308 0.429 0.508 1.228 1.736 
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winter, spring and autumn, and the values ranged from 2 to 4 

for most samples. However, the situation was quite different 

in the summer, and the ( )443CODMa demonstrated significant 

difference among the eighteen sub-basins, in which the values 

ranged from 2.14 to 8.61, with a mean of 5.86 and standard 

deviation of 2.01. 

Both the dis-lig and par-lig concentrations exhibited the 

highest values in the summer and the lowest values in the 

winter. The dis-lig values in the summer ranged from 2.14 ng 

L-1 to 7.58 ng L-1, with a mean of 4.87 ng L-1 and standard 

deviation of 1.50, while the mean value of dis-lig data in the 

winter was only 0.55 ng L-1. Moreover, the dis-lig concen- 

trations were significantly greater than the par-lig concentra- 

tions in general. The maximum value of par-lig in summer 

was only 3.09 ng L-1, which was even smaller than the mean 

value of dis-lig in the same season.  

 

3.3. The Sensitive Water Indicators to NPS OC Loads  

To comprehensively assess the relationship between NPS 

OC pollution and inflowing river properties, the correlation 

coefficients (r) between these parameters within eighteen sub- 

basins and four seasons are shown in Table 4. Results showed 

that acdom (443 m-1) and lignin were significantly related to 

NPS OC loads. In particular, the correlation coefficient (r) 

between acdom (443 m-1) and Dis-OC was as high as 0.729, 

and the r between par-lig and Sed-OC even reached 0.782.  

For a better understanding of the sensitivity of water pro- 

perties to NPS OC loads, multiple stepwise regressions were 

performed between selected water properties and the loads of 

various NPS OC fractions (Table 5). All of the eighteen sub- 

basins and four seasons were taken into account in the mode- 

ling process, the modeling results demonstrated a likeness am- 

ong three OC load fractions for all sub-basins and seasons, in 

which the r2 values were 0.63, 0.68 and 0.70 for Sed-OC, 

Dis-OC and Tot-OC, respectively. However, the diversity was 

notable when regarding the introduced independent variables. 

Specifically, par-lig became the only introduced independent 

variable when modeled with Sed-OC. Moreover, both Dis-OC 

and Tot-OC introduced two independent variables into the 

modeling process, in which the acdom (443 m-1) and DOC 

were qualified to link with Dis-OC, whereas the par-lig and 

dis-lig became the introduced independent variables for Tot- 

OC.  

4. Discussion 

4.1. Contribution of Sed-OC and Dis-OC to NPS OC 

Loads 

The Taihu Basin has undergone rapid urbanization in re- 

cent decades, and the region originally dominated with agri- 

cultural land has been gradually replaced by a large area of 

peri-urban watershed. Moreover, the non-point source pollu- 

tion was formed from complex sources such as rural-urban 

and agricultural sediment and runoff. Therefore, for the pur- 

pose of more accurate NPS assessment, the SOC losses were 

categorized into two main fractions, the adsorbed and dissol- 

ved fractions.  

Our results showed that the Sed-OC loads varied on a 

spatial scale, and this largely determined the spatial features 

of Tot-OC (Figure 3). In addition, the peak value of Sed-OC 

was significantly higher than that of Dis-OC, which was espe- 

Table 3. Statistical Data of NPS P Loads among Different Sub-basins and Different Seasons 

(Continued)  

No. 

Summer Autumn 

Sed-OC 

(t km-2) 

Dis-OC 

(t km-2) 

Tot-OC 

(t km-2) 

Sed-OC 

(t km-2) 

Dis-OC 

(t km-2) 

Tot-OC 

(t km-2) 

1 1.452 2.839 4.291 0.549 0.662 1.211 

2 4.018 2.256 6.274 1.597 1.118 2.715 

3 1.078 3.238 4.317 0.261 0.499 0.760 

4 1.757 2.757 4.514 1.098 0.810 1.908 

5 4.028 2.032 6.060 1.377 1.169 2.547 

6 1.537 1.977 3.514 0.790 1.020 1.810 

7 2.550 1.880 4.430 0.943 0.916 1.859 

8 1.854 2.200 4.054 0.541 1.189 1.730 

9 1.851 1.809 3.659 0.685 1.197 1.882 

10 2.637 2.374 5.011 0.957 0.861 1.818 

11 2.773 3.122 5.895 1.448 0.764 2.213 

12 3.684 2.426 6.109 2.412 1.032 3.444 

13 4.988 2.621 7.609 2.427 1.340 3.768 

14 1.229 2.568 3.797 0.244 1.187 1.430 

15 0.597 3.886 4.483 0.325 1.139 1.464 

16 1.066 2.364 3.430 0.323 1.092 1.416 

17 1.382 3.051 4.432 0.550 1.198 1.748 

18 1.734 1.797 3.531 1.020 0.929 1.949 
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cially reflected in the summer season (Figure 3). The diversity 

was partly due to the influence of rainfall intensity. It is ack- 

nowledged that the rainy season began in the summer and 

continued until September. From Table 2, it can be found that 

the rainfall intensity in the summer season, the rainfall 

intensity on 28 Jul and 9 Aug, 2014 exceeded 100 mm. Heavy 

rainfall always resulted in violent soil erosion in steep areas 

and was accompanied by higher particulate SOC loads.  

A significant different status can be found when the NPS 

OC pollution loads were clustered according to the eighteen 

sub-basins (Table 3), which is closely related to the land use 

(Clavero et al., 2011; Wu et al., 2012). In this study, the loads 

of different NPS OC fractions throughout the whole year were 

clustered according to different land use patterns, and the ara- 

ble land and orchard land contributed greater Sed-OC loads 

than the other land use types, as the contribution proportion of 

arable land was more than 50% (Figure 5). Great Dis-OC 

loads were observed on construction land, which contributed 

77% to the total loads. These results supported the findings of 

previous studies on the relationship between land use and 

NPS pollution, which have shown that arable land, artificial 

forestland and orchard land are prone to generate more parti- 

  
WinterWinterWinter

SpringSpringSpring

SummerSummerSummer

AutumnAutumnAutumn

 

 

Figure 4. Seasonal statistical data of water indicators within different sub-basins in 2014. 
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culate organic matter loss, whereas arable land and imper- 

vious surfaces tend to have great dissolved organic matter loss 

(Ahearn et al., 2005). Furthermore, the results suggested that 

the role of artificial forestland on NPS loads was not as 

important as previous studies claimed, probably due to the 

sporadic forestland region in most of the sub-basins.  

 

4.2. The Sensitive Inflowing River Properties 

The organic matter in a watershed would be delivered 

into the corresponding inflowing rivers by NPS pollution and 

eventually impact on lake aquatic ecosystem (Munafo et al., 

2005). Therefore, it is important to establish the relationship 

between loads of different OC fractions loads and the water 

properties that are OC-related. Then, the fate of organic ma- 

tter delivered from watershed soils, as well as the sensitive 

river indicators, can be deeply discussed.  

(i) The role of COD and CDOM 

The COD and CDOM have been acknowledged as 

reliable markers of NPS pollution (Benner et al., 2004). How- 

ever, the COD and CDOM demonstrated inconsistent corre- 

lations with NPS OC loads. The CDOM was well fitted with 

Dis-OC loads, with a correlation coefficient of 0.729, and the 

correlation coefficient also exceeded 0.644 with respect to the 

correlation with Tot-OC, suggesting that the Dis-OC loads 

accounted for a grea-ter proportion in most of the sub-basins. 

On the contrary, the COD showed an absolutely different sta- 

tus when linked to NPS OC loads. It is necessary to note that 

several previous studies indicated that the COD was well cor- 

related with urban NPS pollution (Yao et al., 2011). These can 

partly interpret the better fitting effect between COD and 

Dis-OC as compared to Sed-OC. However, the study results 

showed that the COD was not well correlated with NPS OC 

loads when compared with the other river inflowing prop- 

erties (Table 4). This may be because the COD concentrations 

in inflowing rivers are not solely determined by NPS pollu- 

tion, and the metabolism and release of sediment and aquatic 

vegetation also play important roles in COD concentrations 

(Pontier et al., 2004). Actually, the pollution generated by en- 

dogenous substance in inflowing rivers was much higher than 

that in Taihu Lake (Yao et al., 2011). Therefore, the COD con- 

centration in inflowing rivers may not be a suitable maker for 

NPS OC loads, especially in peri-urban watershed regions.  

(ii) The role of DOC and POC  

The DOC and POC were acknowledged as the main 

co-existing fractions of carbon in aquatic ecosystem that cor- 

respond to watershed soil particulates and dissolved organic 

carbon losses directly (Duan et al., 2015). However, the re- 

sults in our study showed a different situation to some extent. 

Only the DOC was qualified to introduce into the stepwise 

regression model targeted to Dis-OC loads, and the r value 

was only 0.61, which was not as ideal as some studies 

suggested (Hernes et al., 2008). To further understand this 

phenomenon, the scatter graphs between DOC and Dis-OC 

Table 4. Correlation Coefficients (r) between NPS P Loads and Soil Properties 

 DOC (mg L-1) POC (mg L-1) COD (mg L-1) acdom (443 m-1) par-lig (mg L-1) dis-lig (mg L-1) 

Sed-OC 0.315 0.302 0.291 0.422* 0.782** 0.605** 

Dis-OC 0.609** 0.107 0.421* 0.729** 0.601** 0.552** 

Tot-OC 0.508* 0.119 0.435* 0.644** 0.720** 0.672** 

*: p < 0.05; **: p < 0.01. 

 

Table 5. Statistical Data of the Multiple Stepwise Regression Results 

OC load states No. of introduced independents Independents R2 RMSE 

Sed-OC 1 par-lig 0.63 0.361 

Dis-OC 2 acdom (443 m-1), DOC 0.68 0.605 

Tot-OC 2 par-lig, dis-lig 0.70 0.248 

 

  
 Figure 5. The NPS OC loads for different land use patterns. 
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Figure 6. The scatterplots between DOC and Dis-OC loads 

for different seasons. 
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loads for different seasons are shown in Figure 7. The points 

of the winter, spring and autumn groups were distributed close 

to the trend line, and the positive correlation between DOC 

and Dis-OC loads were demonstrated. However, the points of 

the summer season were irregular distributed and apart from 

the trend line, suggesting that the watershed Dis-OC loads 

were not closely related to DOC concentrations in the sum- 

mer. In other word, regression without data from the summer 

might result in a stronger relationship. The summer season 

experienced the most severe NPS OC pollution of the whole 

year for both particulate and dissolved loss fractions (Table 

4), and this confirmed the results proposed by Burns et al., 

(2008). Otherwise, the DOC concentrations also achieved the 

highest values, while the differences among different sub- 

basins were also more notable than the other seasons regard- 

ing the standard deviation and variation indices (Figure 6). In 

this case, it can be inferred that high Dis-OC loads might not 

be necessarily followed by greater DOC concentrations in 

some sub-basins in the summer. Some literature notes that the 

DOC concentrations are largely affected by climate situations, 

and DOC can be swiftly broken down by microbes in aquatic 

environments and transformed into inorganic carbon under 

high temperature conditions. In addition, more frequent stor- 

ms in the summer can accelerate DOC decomposition (Dalzell 

et al., 2005). These results can partly explain the high varia- 

bility of DOC concentrations and the poor fitting effects with 

Dis-OC loads in the summer. Regarding the POC concen- 

trations, there was no evident relationship between POC and 

various OC load fractions (Table 4), possible because the 

POC was generally the form of carbon that was most readily 

precipitated as sediment. Furthermore, POC was not the only 

existing form for watershed NPS Par-OC loss, but the se- 

diment might be the ultimate placement for watershed parti- 

culate organic carbon delivery. All of these imply that the 

POC is not suitable to uncover the watershed NPS Sed-OC 

loads.  

(iii) The role of lignin 

Lignin in lake sediment has been characterized as the im- 

portant biomarkers of water SOM sources and fate, but the 

relationship between the lignin and NPS loads in inflowing 

rivers has rarely studied (Bao et al., 2014). Interestingly, it can 

be inferred from this study that the lignin may be a suitable 

and unified inflowing river indicator in relation to NPS pollu- 

tion.  

Lignin is an aromatic polymer and is predominately sour- 

ced from surface plants in the watershed. Lignin is rarely 

generated by the aquatic ecosystem itself (Casas et al., 2014). 

Therefore, lignin content in waters can be always somehow 

associated with land vegetation. The NDVI index is an im- 

portant remote sensing indicator for land surface vegetation 

coverage, and the NDVI values of different sub-basins distri- 

buted in different seasons are shown in Figure 7. It is no surp- 

rise that the tendency of the NDVI was similar with the lignin 

tendency showed in Figure 4. Furthermore, the tendency of 

NDVI and lignin were also consistent with the NPS OC loads 

features, and all of them demonstrated significant differences 

among seasons. These indicators owned the highest values in 

the summer and the lowest values in the winter. The consis- 

tent features showed that the vegetation status was a critical 

indicator associated with the NPS loads and lignin together. 

For these cases, the lignin concentrations were correlated with 

NDVI firstly (Figure 8). The scatter points can be divided into 

two groups, and the ideal relationship was found when the 

NDVI value was under 0.4. The correlation degree became 

even poorer as the NDVI increased. In addition, it was notable 

that the scatter points with an NDVI value exceeding 0.4 

mostly belonged to the summer (Figure 8). The scatter plots 

between different NPS OC load fractions and lignin is dis- 

played in Figure 9, which also given consistent results with 

Figure 8 and is especially reflected in Dis-OC. The relation- 

ship between Dis-OC and lignin was poor in the summer, 

whereas the relationships in the other three seasons were still 

evident. This phenomenon indicated that the increased NDVI 

statuses in the winter, spring and autumn were generally ac- 

companied with greater NPS loads, and resulted in more 

lignin in aquatic ecosystems during the nutrient delivery pro- 

cess. Furthermore, the relationship between the NDVI and 

watershed NPS pollution in aquatic ecosystems was not 

simply linear, and the relationship between NPS loads and 

lignin could also vary among different seasons due to the in- 

fluence of land surface vegetation, which supported the find- 

ings from satellite-derived vegetation indices that are related 

  
 

Figure 7. The statistical data of NDVI values for different 

seasons. 
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Figure 8. The scatterplots between NDVI and lignin 

concentrations. 
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to cellulose and lignin in the green-up season (spring) and 

green senescence (winter) (Ouyang et al., 2009; Woods et al., 

2011; Villamuelas et al., 2016).  

 

4.3. Implication of the Sensitive Inflowing River Proper- 

ties Detection 

The inflowing rivers are the important bond between wa- 

tershed and lake. It is necessary to place a particular emphasis 

on understanding the sensitive river indicators, which can ref- 

lect the watershed NPS OC pollution. In our study, six impor- 

tant carbon related indicators were selected, the temporal sca- 

le, including four seasons within the whole year, was conside- 

red, and both the particulate and dissolved fractions of OC 

loads were taken into account. Thus, the results further proved 

that the different OC load fractions and aquatic ecosystem in- 

dicators, as well as the seasonal differences, need more detail- 

ed consideration for the purpose of better understanding the 

sensitivity of inflowing carbon-related indicators. A greater 

temporal series with multiple years may be needed in further 

studies. Moreover, the selection of a finer watershed scale and 

a typical inflowing river are also necessary to validate the fin- 

dings in this study. More importantly, more adequate river 

indicators including dissolved organic matter (DOM), bioche- 

mical oxygen demand (BOD), carbon-nitrogen ratio (C/N) 

and a sediment indicator may be needed to be introduced into 

the research. Furthermore, our study has indicated that river 

lignin is closely linked to watershed NPS loads. A more de- 

tailed consideration of lignin-derived substances in rivers and 

sediment may become a new focus of studies on the assess- 

ment and management of watershed non-point source pollu- 

tion.      

4. Conclusions 

For the purpose of better understanding which inflowing 

river indicators are sensitive to watershed NPS OC pollution, 

the accurate and effective assessment of NPS OC loads is the 

most important step. The results revealed that, firstly, the Dis- 

OC was the main NPS OC load fraction, while the contri- 

bution of Sed-OC should not be neglected due to a peak value 

of Sed-OC that was significantly higher than that of Dis-OC 

in differrent seasons. Secondly, the sensitive water indicators 

related to NPS OC loads were evaluated. Interestingly, the 

lignin showed a strong correlation with both Sed-OC and Dis- 

OC loads, but nevertheless, its content in inflowing rivers was 

extremely low. Thirdly, the CDOM and DOC were well link- 

ed with Dis-OC fractions, but POC failed to correlate with 

particulate organic matter loss, possibly because not only the 

POC but also the sediment was the ultimate fate for watershed 

particulate organic carbon delivery. Fourthly, more adequate 

river indicators, including DOM as well as a sediment indi- 

cator, are needed in additional research.    

The findings of this approach are shown to have value as 

predictive tools to simplify the representation of watershed 

NPS loads, and they are also useful for better understanding 

nutrient delivery from the watershed into the aquatic ecosys- 

tem.  
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