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ABSTRACT. Due to the increasing impact of human activities, water conservation has become a primary aim of environmental man-

agement policies. In this context, fish biodiversity represents a good measure of water quality because changes in ecological factors 

involve qualitative modifications in species composition. For this reason, the analysis of the interaction between biodiversity and en-

vironmental characteristics becomes crucial. This paper aims to analyse the effects of habitat and seasonality on fish biodiversity in 

freshwater environments. In particular, we applied functional data analysis to the beta diversity profile. The proposed approach allows 

us to overcome the limitations of the classical biodiversity indices, highlighting its multidimensional aspect. More in detail, our re-

search focuses on the functional data analysis of variance in order to quantify the effects exerted on a functional observation by some 

factors. This model is applied to a real data set concerning ichthyic biodiversity of 104 streams in the province of Arezzo (Central Ita-

ly). We consider first the fish zonation and then the seasonality as factors; the results show that species diversity fluctuates seasonally 

whereas the zonation has no significant effect in influencing the biodiversity. Our proposal is a powerful tool for the analysis of the re-

lationship between qualitative variables and a functional response. Since the diversity profile is a function of the relative abundance 

vector in a fixed domain, this method is particularly suited to the beta profile and it could be very helpful to monitor or to identify areas 

of high environmental risk. 
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1. Introduction 

The conservation of natural resources and biodiversity, 

especially in river systems, is a great challenge for the coming 

century (Ormerod, 1999). In order to identify priority areas 

for restoration or conservation, scientists are asked to propose 

simple, synthetic and cheap tools for the evaluation of the ec- 

ological status of rivers (Darwall and Vie ,́ 2005). The rivers 

contribute significantly in fulfilling the basic human needs 

such as water for drinking and industrial use, irrigation, flood 

control, hydro power generation, inland navigation, fishing 

and recreation (Basavaraja et al., 2014). Indeed, many rivers, 

streams, lakes, and reservoirs have been damaged as a conse-

quence of the increasing impact of human activities (McAl-

lister et al., 1997). This situation is particularly noticeable in 

the urban environment, where watercourses show highly de-

graded water quality, receiving not only a great amount of do- 

mestic and industrial wastewater, but also sediments and trash 

(Pompeu et al., 2005). In this context, the analysis of the rela-

tionship among physical, chemical, and biological character-
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istics of the environment is becoming crucial (Huang and 

Chang, 2003). Many methods for environmental monitoring 

have been proposed in recent studies, demonstrating that the 

debate among scholars on this issue is very lively (Li et al., 

2015; Yang et al., 2015; Rege et al., 2015). Since changes in 

environmental factors involve qualitative modifications in 

species composition, the most direct and effective measure of 

water body condition is the status of its living systems (Pom-

peu et al., 2005). Indeed, it is well known that biodiversity is 

essential for the stabilization of ecosystems and for the pro-

tection of overall environmental quality (Shukla and Singh, 

2013; Di Battista et al., 2016). In particular, fishes have wide- 

ly been used as ecological indicator to assess the level of deg-

radation and health of water bodies (Vijaylaxmi et al., 2010). 

The impact of the anthropogenic activities, habitat degrada-

tion, exotic species introduction, water diversions, pollution 

and global climate change are the main causative agents for 

the aquatic species rapid decline (Pawara et al., 2014). Since 

freshwater biodiversity has declined faster than either terres-

trial or marine biodiversity over the past 30 years (Jenkins, 

2003), protection and management of water environments has 

become a primary objective. For this reason many scholars 

have recently focused on pollution of rivers (Forsythe et al., 

2015; Xiao et al., 2015). However, there is an urgent need for 

proper quantification of fish diversity in order to determine 

changes that can be used to predict population declines and 
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loss of environmental resources (Burger et al., 2013) and to 

develop policies of natural breed conservation.  

In this paper we aim to assess water quality through bio-

diversity measures. Many indices have been proposed in the 

literature to evaluate the biological health of a community 

(Gove et al., 1994). A diversity index is, in general terms, a 

mathematical expression that combines species richness and 

species evenness. However, these two components are con-

foundded when a single index is considered. The problem is 

that a community with few species and high evenness could 

have the same diversity measure as another community with 

many species and low evenness (Pielou, 1977). Therefore 

different indices could lead to different community ranking 

(Patil and Taillie, 1982). The choice of an index must be con-

sidered with care. The most frequently used diversity indices 

are the species richness index, the Shannon index (Shannon, 

1948) and the Simpson index (Simpson, 1949). The richness 

index provides the number of species present in a given area; 

its main limitation is that the evenness is not considered. The 

Simpson diversity index is a good measure of dominance, but 

not a good predictor of species richness, whereas the Shannon 

index is affected by both the number of species and their 

evenness (Evangelista et al., 2012). However, the Shannon in- 

dex is particularly sensitive to the presence of rare species in a 

community, while the Simpson index is particularly sensitive 

to changes in the relative abundances of the most dominant 

species. This highlights how the use of a single indicator 

greatly reduces the complexity of the ecological systems and 

hides the multidimensional aspect of biodiversity (Patil and 

Taillie, 1979; Gattone and Di Battista, 2009; Gove et al., 

1994). For these reasons, a universally accepted measure has 

not been established (Ricotta, 2005; Di Battista et al., 2016). 

A possible solution is to consider parametric families of di-

versity indices (Hill, 1973; Patil and Taillie, 1979), which are 

usually referred to as diversity profiles. We highlight that we 

focus on α-diversity, that is the within habitat diversity (Ma-

gurran and McGill, 2011). In particular, we propose the com-

bined use of parametric biodiversity indices and the functional 

data analysis approach. This method allows us to consider the 

multi-dimensional aspect of biodiversity and to use statistical 

techniques, such as functional linear models, for studying the 

relationships between biodiversity and environmental charac-

teristics. The proposed method provides a better knowledge of 

the fish biodiversity profile and represents a useful tool for 

conservation planning of aquatic environments.   

2. Materials and Methods 

2.1. Beta Diversity Profile  

Biodiversity is a multidimensional concept accounting 

for both species richness (the number of different species pre-

sent in an ecological community) and species evenness (a 

measure of the relative abundance of each species in an area). 

It represents a good indicator of ecosystem quality (Burger et 

al., 2013) because, generally, a high level of biodiversity is as- 

sociated with natural environmental conditions, and vice ver-

sa. Thus, biodiversity management becomes essential for as-

sessing and predicting biological impacts of ecological dam-

ages. In this context, the resulting imperative is to provide a 

suitable measure for biodiversity in order to develop manage- 

ment solutions for its protection.  

Since the classical indices neglect the multidimensional 

aspect of biodiversity, a common solution in the literature is 

the use of diversity profiles. A diversity profile is a curve de-

picting in a single graph several values of diversity indices, 

including the most commonly used indices: Shannon index, 

Simpson index and species richness. Therefore, the diversity 

profile is a family of measures that is a family of diversity in- 

dices dependent upon a single continuous parameter that is 

sensitive to both rare and common species. The plot of diver-

sity profiles plays a fundamental role in comparing different 

communities. Indeed, if the diversity profiles do not intersect, 

the higher curve corresponds to the community with greater 

diversity.  

In particular, the β diversity profile model proposed by 

Patil and Taillie (1979) has been used: 

 

 
1

(1 )s j
j

j

p
f p







   for 1    (1) 

 

where, pj is the relative abundance of the j-th specie (j = 1, 2, 

..., s), with pj = Pj/∑Pj such that 0 ≤ pj ≤ 1 and ∑pj = 1; Pj is 

the absolute abundance of the j-th species (the number of in-

dividuals belonging to the species j) and the values of β de-

note the different levels of the influence of dominant species 

in computing the biodiversity of a community. Indeed, some 

of the most frequently used indices of biodiversity are special 

cases of Equation (1): β = -1 generates the richness index; 

limβ→0 leads to the Shannon diversity index; β = 1 provides 

the Simpson index. The restriction, β ≥ -1, assures certain 

desirable properties for the β profile (Patil and Taillie, 1979). 

The plot of Equation (1) versus β provides the diversity pro-

file which is a decreasing and convex curve. It provides a 

faithful graphical representation of the shape of a community, 

showing how the perceived diversity changes as the emphasis 

shifts form rare to common species. Moreover, communities 

can usefully be compared by comparing their diversity pro-

files (Leinster and Cobbold, 2012). 

 

2.2. Functional Data Analysis Approach 

Functional data analysis (FDA) addresses problems in 

which the observations are described by functions rather than 

finite dimensional vectors (Ramsay and Silverman, 2005; 

Ferraty and Vieu, 2006). This kind of data is very common in 

different fields for example environmental science, biology, 

medicine, meteorology, among many others. In particular, the 

FDA approach assumes the existence of certain smooth func-

tions, f(β), which generate the observations. However, in real 

applications, functional data are often observed as a sequence 

of data points. In this context, the FDA approach is able to 



 T. Di Battista et al. / Journal of Environmental Informatics 28(2) 101-109 (2016) 

 

103 

convert discrete observations to functional form by means of 

suitable techniques. A popular method to represent smooth 

functions is through linear combinations of K known basis 

functions, ϕk, which are linearly independent of each other 

(Ramsay and Silverman, 2005): 

 

1

( ) ( )

K

k k

k

f c  



  (2) 

 

where ck is the vector of coefficients defining the linear com- 

bination, ( )k  is the vector of the basis functions and K rep-

resents the dimension of the expansion. Several basis func-

tions can be used, including polynomials, regression splines, 

Fourier series and wavelets, according to the characteristics of 

the data. In particular, B-spline basis functions are the most 

used to represent non-periodic functions because of their flex-

ibility and easy implementation (Wegman and Wright, 1983).  

The FDA approach treats the whole curve as a single en-

tity instead of a sequence of observations; moreover, it is pos-

sible to use functional tools to obtain more information about 

the data, such as the analysis of the slopes of the functions, 

reflected in their first derivative. 

However, we focus on a particular aspect of functional 

data analysis, i.e. when the functional datum is expressed by a 

specific function known in advance (De Sanctis and Di Batti- 

sta, 2012; Di Battista and Fortuna, 2013). In this case, the 

observations belong to a parametric family of functions, call- 

ed S, with s real parameters that is: 

 

 ( , )S f  θ  (3) 

 

where  1 2,  ,  ,  
T

sθ     represents a set of unknown param-

eters taking values in a convex parameter space Θ, while β is 

the functional domain. Thus, the functional space S is consti-

tuted by a set of functions belonging to the same family. In 

this framework, functional data constitute a subset S of some 

Lp space, with 0 < p < ∞ and with the usual Lp-norm, ||f||p 

(Rudin, 2006). In particular, we consider the Banach space 

that is every Lp space with p > 0. A Banach space is a normed 

linear space over the field of real functions. It is a complete 

metric space with respect to the metric derived from its norm 

that is a Cauchy sequence of vectors always converges to a 

well defined limit in the space. Since diversity profile ex-

presses diversity as a function of the relative abundance vec-

tor in a fixed domain, it can be analyzed in a functional con-

text (Gattone and Di Battista, 2009). Thus, in an ecological 

setting, the functional space S could be the family of diversity 

profiles, such as the β profile in Equation (1), and for each i-th 

sites, i = 1, 2, …, N, each relative abundance vector can be 

assumed as a single parameter, pi = (pi1, …, pis) = θi, so that, p 

= θ, whereas β represents the functional domain (Di Battista 

and Fortuna, 2013). In this framework, the approximation by 

means of basic functions is not suitable because the underly-

ing data process is known in advance and it is important to 

preserve its parametric form. In particular, we assume that 

there is a bi-univocal correspondence between the family S 

and the convex parameter space Θ, so that each function f(θ; 

β) of S is unequivocally defined by the parameter vector θ. 

Therefore, the functions vary in S only by means of the pa-

rameters θi. 

The knowledge of the parametric form underlying the 

functions allows us to overcome some typical issues of the 

classic FDA approach. Indeed, in the classical FDA frame-

work, the primary question of interest is the choice of the 

suitable method for converting the original data in a function-

al form. Generally, it is possible to approximate any function 

by taking a linear combination of a sufficiently large number 

K of basis functions (Ramsay and Silverman, 2005). The nu- 

mber of basis functions is itself a parameter that we choose 

according to the characteristics of the data. Obviously, a high 

K corresponds to a high fit of the model to the data, but we 

aim to achieve a satisfactory approximation using a compara-

tively small number of basis functions. Moreover, a great deal 

depends on the choice of the basis functions and on how they 

are able to reproduce the behaviour of the original functions. 

Indeed, there is no best choice of the basis function. Further-

more, in the specific case of the beta profile, the smooth func-

tion f(β) in Equation (2) must satisfy the non-egativity and the 

convexity of diversity profile. These restrictions can be ob-

tained arbitrarily in several ways (see for example Barlow et 

al, 1972; Ramsay, 1988; Gattone and Di Battista, 2009). The 

way of pre-processing the original data is an important issue 

due to the impact that this process might have on the subse-

quent statistical analysis (Pérez and Vilar, 2013). For example, 

in functional clustering methods, the results depend on how 

the curves are smoothed to the data (Tarpey, 2007). Our me- 

thod allows us to overcome this limitation. Indeed, the pre 

-processing step is not necessary because the functional form 

of the observations is known in advance in its explicit para-

metric form. 

3. Parametric fANOVA Model 

In order to quantify the effects exerted on a functional 

observation by some factors, each at multiple levels, a para-

metric functional analysis of variance (fANOVA) can be used 

(Ramsay and Silverman, 2005). This procedure involves test-

ing for possible differences among population mean curves 

under G different conditions (treatment levels) over the whole 

functionnal domain. In this framework, we are interested in 

generalizations of common statistical tests and of common 

statistical models. In particular, the aim of this paper is to 

understand whether two or more groups of functions are sta-

tistically distinguishable. For this purpose, we want to test the 

null hypothesis that the functional groups have the same func-

tional mean, against the alternative hypothesis that there is 

some difference among them: 

 

     

   

0 1 2 G

1 g *  

H :  

H :  for at least one  and g *g g

     

    

 
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We assume that there is a single factor with G different 

levels or groups (g = 1, 2, …, G) and N =∑ng total observa-

tions, with ng observations within each group; then, the model 

for the i-th observation (i = 1, 2, …, N) in the g-th group can 

be expressed as follows: 

 

( ) ( ) ( ) ( )ig g igf           (4) 

 

where fig(β) is the functional response in the g-th group, 

   is the grand mean function (i.e. the average function 

across all observations), g(β) represent the functional effect 

of being in a specific treatment and the residual functio- 

nsig(β) are the unexplained variations for the i-th observation 

within the g-th group. The model in Equation (4) can be writ-

ten in matrix notation:  

 

        f Z ε  (5) 

 

where  f is the N dimensional vector of functional observa- 

tions, and         
1

  ,  ,  ,
T

G
γ         is the (G + 1) di- 

mensional vector of the functional parameters;  ε is a vec-

tor of N residual functions and Z is a design matrix of dimen-

sion (N, G + 1), coding the group membership. In particular, 

each row of the matrix Z corresponds to a single observation; 

the first column consists entirely of “1” to represent the over-

all mean and the G columns correspond to different groups 

with value “1” if the observation belongs to the g-th group, 

“0” otherwise.  

In order to ensure the identifiability of the functional ef-

fects  g  , the sum to zero constrained is imposed: 

 
1

2
( ) 0,

G

g
g

 



    (6) 

 

The model is equivalent to the standard ANOVA, with 

the difference that the vector of parameters  ,γ  and hence 

the predicted observations    ˆ ,f Zγ  are vectors of func-

tions rather than vectors of numbers. 

Under the assumption of independent errors and constant 

variance, the vector of parameters  ,γ  can be estimated us-

ing the standard least squares criterion. Thus, for each β, the 

minimizing problem becomes:   

 

LMSSE( ) ( ) ( ) ( ) ( )
T

            f Zγ f Zγ  (7) 

 

Minimizing Equation (7) subject to the constraint in 

Equation (6), the least squares estimates of the functional pa- 

rameters at each point of the functional domain are given by: 

 
1ˆ( ) ( ) ( )T T γ Z Z Z f  (8) 

 

In order to assess whether there are significant differ-

ences between the groups, a pointwise F statistic can be used 

(Ramsay and Silverman, 2005): 

 

 ( ) ( ) / ( 1)
( )

( ) / ( )

SSY SSE G
F

SSE N G

 




 



 (9) 

 

( )SSY  represents the variance between groups in the 

functional context: 
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2

1 1

ˆ( ) ( ) ( )
N G

ig

i g

SSY f   
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where the  ̂  is an estimate of the overall mean function. 

( )SSE  is the functional within variance: 

 

 
2

1 1

ˆ( ) ( ) ( )
N G

ig ig

i g

SSE f f  
 

   (11) 

 

Equation (9) provides the observed F-statistic function; it 

is built by calculating the Fisher test statistic for each point of 

the domain. As in the classical ANOVA, a high value of F 

indicates that the variance explained by the model is greater 

than the non-explained variance. The main difference between 

this procedure and the standard univariate or multivariate 

ANOVA is that the value of F is not fixed, but it varies over 

the whole domain. The classical significance level was de-

signed to be used for a single hypothesis test, rather than in a 

continuum. Therefore, we need to protect ourselves against 

falsely declaring significance somewhere in the interval. At 

this purpose a possible solution is the use of the permutation 

test (Ramsay and Silverman, 2005) that is the functional 

equivalent of the univariate F-test statistic. Thus, the permuta-

tion F-statistic allows us to assess if there are any significant 

differences between the groups. The basic idea is to compute 

the Fisher test statistic (Equation 9) as a function built from 

the series of point estimates for each part of the domain. 

However, in order to formally test the null hypothesis that 

there is no relationship between the functional variables, a 

single test statistic is required. Using the maximum of the 

observed F-statistic function, a distribution of the test statistic 

under the null hypothesis can be obtained by calculating the 

test-statistic several times, each time using random permuta-

tions of curves. In detail the procedure is the following: first 

we calculate the observed F-statistic function using Equation 

(9) obtaining the “observed F” whose maximum is necessary 

to compute the p-value of the test. In the second step, we ran-

domly re-label the curves with different curve numbers, 

without changing the grouping structure; then for the set of 

re-labelled curves we calculate the F-statistics for each part of 

the domain and the maximum of these functions. This 

re-labeling procedure is repeated several times, and for each 

one we calculate the pointwise F-statistic function and its 

maximum. In the third step we find the pointwise 0.05 critical 

value of the null distribution at each point of the domain and 

calculate the 95th percentile of the F-statistic values corre-
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sponding to that point. The last step allows us to find the ma- 

ximum 0.05 critical value of the null distribution, calculating 

the 95th percentile of the distribution obtained by the permu-

tations of the second step. Taking the 95th percentile of the 

distribution we find the value of the critical threshold without 

using the statistical tables. The p-value corresponding to this 

test is the proportion of occasions where the maximum value 

of the permutation F-statistic function is greater than the ma- 

ximum of the observed F-statistic function. Of course, the 

p-value provides the degree of consistency with the null hy-

pothesis like the classical ANOVA. 

4. Application: Fish Biodiversity in  
the Province of Arezzo 

The proposed functional approach is applied to a real da-

ta set concerning ichthyic biodiversity in the province of 

Arezzo, Central Italy (see Carini et al., 2006). In 2006 the fish 

abundance data were collected for a total of 32 species and 

104 streams which belong to the basins of four important riv-

ers of Central Italy: Arno, Tevere, Marecchia and Foglia (Fig-

ure 1). Ichthyic biodiversity in the province of Arezzo is 

evaluated through the β-profiles in Equation (1). Figure 2 

displays the functional beta profiles for the 104 streams of the 

study area while due to the presence of a large number of 

communities, the figure is not easily interpretable; it is possi-

ble to highlight only the extremes cases. In particular, the 

highest curve represents the community of the stream “Esse” 

(basin of Chiana); it is composed of 12 different species, in-

deed for β = -1, the diversity profile is equal to 11 (the number 

of species minus 1). Although it is not clear from the plot, due 

to the overlap of the curves, we can identify five communities 

with only one species (for β = -1 the ordinates are equal to 0); 

three of them are situated on the basin of Casentino (the 

streams “Gorgone”, “Oia” and “Staggia”), whereas the other 

two are located in the basins of Chiana (the stream “Esse V.”) 

and of Tevere (the stream “Minimella”). Figure 3 shows the 

beta profiles of the four basins; the great part of the streams 

belongs to the Arno and the Tevere basins whereas in Marec- 

chia and Foglia basins there are only two and one streams, 

respectively.  

Several variables could affect biodiversity and the analy-

sis of their interaction is complex. In the literature it is well 

known that biodiversity is influenced by the environmental 

characteristics of habitat, geomorphology, climate and species 

interacttions (Pompeu et al., 2005; Shukla and Singh, 2013; 

Basavaraja et al., 2014). For this reason, the fANOVA model, 

introduced in Section 3, is applied to explore possible differ-

ences in freshwater fish biodiversity among sites in the prov-

ince of Arezzo. In this paper we analyse the effects of two 

different categorical variables on the beta diversity profile. At 

this purpose, we present two different fANOVA models: in the 

first one the factor is the fish zonation with two treatments 

(Cyprinids and Salmonids), whereas in the second one, the 

factor is the seasonality with its four modalities (spring, 

summer, autumn and winter).  

 

4.1. The Functional Effect of Fish Zonation on Biodiversity 

In order to evaluate the effect of habitat characteristics on 

the fish biodiversity, we consider the zonation system of the 

streams. According to this approach, the rivers can be divided 

into separate zones, each with typical fish species, physical 

and chemical parameters such as the slope, the width, the 

depth, the current velocity and the water temperature (Huet, 

1949). Indeed, the zonation system of rivers is based on the 

assumption that the physical, chemical and biological charac-

teristics of every natural river change gradually along its 

 

Figure 1. The basins of the four rivers in the Province of 

Arezzo. 

 

Figure 2. The functional beta profiles of the 104 streams in 

the province of Arezzo. 
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course from headwaters to mouth. One important result of 

these shifting environmental properties is that most fish spe-

cies find suitable living conditions in only a selected stretch of 

the entire river (Bram and Piet, 2003). In the province of 

Arezzo it is possible to identify only two different zones: 

Salmonids and Cyprinids (Carini et al., 2006). The first one is 

usually characterized by slope and cold rivers (max 15 °C), 

high and well oxygenated water, fast water stream, uneven 

substrate (with rock, stones, pebbles and gravel) and absence 

of aquatic vegetation. In the second one, the rivers present 

slight slope, warm waters in summer, very slow water stream 

and substrate prevalently muddy. In order to quantify how 

much of the pattern of biodiversity variation is explainable by 

the two levels of fish zonation, the fANOVA model in Equa-

tion (5) is applied under the constraint in Equation (6). Figure 

4 shows the predicted β-profiles for the two zones. The lower 

diversity is present in the group of Salmonids. Since the two 

profiles do not intersect, we can conclude that in the Cypri-

nids zone there is higher biodiversity. The two functional ef-

fects of being in a specific zone are displayed in Figure 5. The 

Cyprinids zone exerts a positive effect on fish biodiversity, 

whereas the effect of Salmonids zone is negative. The gap 

between the two functional effects is present over the whole 

domain, and it is particularly high for β < 0. 

Figure 6 shows the functional statistics for testing the 

null hypothesis that there are no significant differences among 

the mean group functions. The solid line represents the ob-

served F statistic calculated as in Equation (10); the dashed 

curve indicates the 0.05 point-wise critical value computed 

with the permutation test and the dotted line is the 0.05 max-

imum critical value (see Section 3). 

This test is based on the null distribution which has been 

constructed using 1000 random permutations of the curve la- 

bels. It is evident from Figure 6 that the observed F statistic is 

lower than the maximum critical value for each point of the 

domain. Although the point-wise F statistic intersects the ob-

served F statistic, we accept the null hypothesis and conclude 

that there are not statistical differences between the zonation 

groups in terms of their mean functions. In a functional con-

text, the p-value is the proportion of occasions where the 

maximum value of the permutation F-statistic function is 

 

Figure 3. The functional beta profiles of the 4 basins of the province of Arezzo: (a) Arno, (b) Tevere, (c) Marecchia and (d) Foglia. 

 

Figure 4. The estimated β profiles of the two groups  

according to the fish zonation. 
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greater than the maximum of the observed F-statistic function. 

Therefore, in this case, the p-value tends to infinity and is 

highly consistent with the null hypothesis.  

 

4.2 The Functional Effect of Seasonality on Biodiversity 

The previous fANOVA highlights that the fish zonation 

does not influence significantly the functional beta profiles in 

the study area. However, biodiversity can be affected by other 

factors such as the seasonality because the physico-chemical 

characteristics of the water vary during different seasons. For 

this reason, the fANOVA model is applied to test biodiversity 

differences in different seasons.  

The predicted β-profiles for the four seasons are plotted 

in Figure 7. The lower biodiversity is present in spring 

whereas the higher one is given by autumn. Since the four 

profiles do not intersect, we can easily rank them according to 

the different seasons. Figure 8 shows the four functional ef-

fects of the specific seasons. Autumn and summer present a 

positive effect on fish biodiversity for the whole domain; 

whereas winter and spring effects are negative on the entire 

interval. 

Figure 9 shows the observed F statistic (solid line), the 

point-wise critical value (dashed curve) and the 0.05 maxi-

mum critical value (dotted line). Also in this case the test is 

based on 1000 random permutations of the curve labels. The 

solid line lies above the point-wise critical level and the 

maximum critical value over the whole domain, except for β 

close to 1. Therefore, there is sufficient evidence to reject the 

null hypothesis and to conclude that there are statistically 

significant differences among the groups in terms of the sea-

sonality levels. Obviously, in this case, the p-value tends to 

zero and it is not consistent with the null hypothesis.  

5. Conclusions 

Ecosystems and marine resources, as common resources, 

need collective management. Thus, it is necessary to have 

adequate information on the amount of resources available 

 

Figure 5. The functional effects of the fish zonation. 
 

 

Figure 6. The functional F-test of the fANOVA model 

using fish zonation as factor. 

 

 

Figure 7. The estimated β profiles of the four groups ac-

cording to seasonality. 

 

 

Figure 8. The functional effects of the four seasons. 
 

 

Figure 9. The functional F-test of the fANOVA model 

using seasonality as factor. 
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and on the dynamics of fish populations and their interaction 

with the marine environment. Qualitative and quantitative 

ecological models can help in assessing resources and in reg-

ularization of human activities that can have significant im-

pacts on marine ecosystems. Therefore, biodiversity assess-

ment is a key component of environmental sustainability. Our 

research introduces an innovative method to assess the rela-

tionships between functional data and categorical variables of 

particular interest. Specifically, we suggest the joint use of 

beta diversity profiles and functional analysis of variance. 

This method allows us to consider biodiversity in its multidi-

mensional aspect and to evaluate its relationship with envi-

ronmental factors. In particular, we studied the ichthyic bio-

diversity of 104 Italian streams in the province of Arezzo. 

Two environmental factors were considered: fish zonation and 

seasonality. The first one has no statistically significant effects 

on biodiversity, contrary to our beliefs. Otherwise, the seaso- 

nality highly influences our functional response. In particular, 

autumn seems to improve fish biodiversity, whereas spring is 

a limiting treatment. The hypothesis testing was conducted 

using the permutation test that is the functional equivalent of 

the univariate Fisher statistical test. The proposed method is 

particularly suited for monitoring water quality, because the 

lower beta profiles indicates the lower biodiversity in the 

graphical comparison and gives an immediate indication of 

areas of high environmental risk. Moreover, another important 

feature of our proposal is its ability in comparing the func-

tional effects of different factors in different communities. 
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