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ABSTRACT. Land-use legacies, the effects of past land use changes (LUCs) on current social and biophysical processes, can persist for 
hundreds to thousands of years. Although spatial and temporal data are currently available at a continental scale, they are limited for 
investigating LUC legacies. The limitations of historical data include a lack of temporal coverage, inaccessibility at coarse resolution, 
availability only for few land use classes and accessibility for only specific regions. Despite the limitation in data availability, there is an 
urgent need to develop a data-intensive model that can back-cast multiple historic LUCs at regional scales. We developed a back-cast 
model for generating historic land use maps with multiple land use classes at a regional scale using a high performance computing (HPC) 
platform. We trained and tested the model using Retrofit Land Cover Change data between 2001 and 1992 in a backward manner at 1 
km resolution for three land use categories (urban, forest and agriculture) in the Ohio River Basin (ORB) of United States. We also 
developed a calibration metric to assess quantity and locational errors for multiple LUCs simultaneously. Results showed that the range 
that the model underestimated and overestimated the quantity of LUCs was -0.05% to +0.11%. The persistence (over 95%) and location 
(over 80%) accuracies of multiple LUCs were quantified. We then simulated multiple LUCs annually between 2001 and 1980 using 2001 
as the base year across the ORB. We describe how the output of our back-cast model can be coupled with other environmental models 
to assess the impact of land use change on ecosystem services. 
 
Keywords: back-casting multiple land use changes, regional scale, high performance computing, quantity and location error, environmen-
tal management

 
 

 

1. Introduction 

Land use legacies, or the effects of past land uses on cur-
rent social and biophysical processes (Feurdean et al., 2009) 
have been shown to impact stream hydrology (Pijanowski et al., 
2007; Tayyebi et al., 2015) and water quality (Utz et al., 2009; 
Liu and Tong, 2011), climate change (Yang et al., 2014; Tayye-
bi and Jenerette, 2016), soil properties and agricultural yields 
(Islam and Weil, 2000; Tayyebi et al., 2016a and 2016b), and 
biodiversity (Pekin and Pijanowski, 2012). Decision makers 
have recognized that land-use legacies continue to influence 
ecosystem structure for decades to centuries (Foster et al., 2003; 
Azari et al., 2015). Consequently, recognition and knowledge of 
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these historical changes is crucial to the sustainable manage-
ment of ecosystems. 

Land use change (LUC) models have been used to produce 
future and past land use maps for the past thirty years (Verburg 
et al., 2002). LUC models often incorporate separate modules 
to determine the quantity of LUC and the location of cells in 
the map that experience LUC. There are many similarities in 
forward and backward LUC modeling such as determining the 
location and the quantity of each land use class for the given 
area, and training and testing the model (Ray and Pijanowski, 
2010). As a result, LUC forecasting models are often re-engi-
neered to simulate historical land uses (Hill and Aspinall, 2000). 
Some researchers have used these back-cast models to produce 
maps showing the historical spatial distribution of different 
land uses at local scale. For example, Pijanowski et al. (2007) 
coupled an artificial neural network (ANN) based land-use ba-
ck-cast model to a groundwater transport model to examine 
how historical land uses might influence water quality (Ray et 
al., 2012). In other study, Pontius et al. (2001) simulated the 
location of forest disturbance in Costa Rica in a backward ma-
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nner for several decades.  

Large-scale back-cast LUC data can provide insights into 
regional patterns of LUC (Reid et al., 2010) as well as LUC 
trends effects on a variety ecosystem services (Jia et al., 2014). 
However, accessing spatially explicit data on past LUC trends 
is not always straightforward and spatial and temporal land use 
data across a variety of regions are still rare (Kumar et al., 
2013). There are a variety of reasons for these limitations. First, 
although satellite images and aerial photos are important source 
of information for historical LUC modeling, aerial photographs 
are available since the late 1930s (Pauleit et al., 2005) and civi-
lian satellite images (Yang and Lo, 2002) date back to the early 
1970s. In addition, processing imagery at regional scale (sate-
llite images after 1970s and aerial photos after 1930s) to identi-
fy land use classes is exceedingly time consuming and expensi-
ve (Vogelmann et al., 1998). 

Second, although a few studies exist on back-casting and 
forecasting LUC at regional scale (Waisanen and Bliss, 2002), 
the investigation of back-casting LUC at regional and fine sca-
les is limited. Previous back-cast studies used coarse-resolution 
data mostly at the county scale (Theobald, 2001). This is due 
to the fact that recorded (i.e., quantity) data are generally only 
available at county scale. For example, Waisanen and Bliss 
(2002) and Theobald (2001) analyzed existing county-level da-
ta to assess the impact of past LUCs on ecosystem services. 
There are also similar studies for forecasting LUC based on 
coarse-resolution data at a regional scale. For example, the 
CLUE model was modified (CLUE-S) to forecast regional 
LUC in Europe using empirically quantitative relations be-
tween land use and its driving forces (Veldkamp and Verburg, 
2004). In a similar study, urbanization at regional scales in the 
northeastern United States was recently simulated with the 
SLEUTH-3R model (Jantz et al., 2010). 

Third, most LUC analyses have been conducted only for 
discrete time periods (e.g., Brown et al., 2005) or only for a 
small region (e.g., Ray and Pijanowski, 2010). For example, 
Brown et al. (2005) examined LUC trends using housing and 
farm data for each decade during the latter half of the 20th cen-
tury to understand the trend of LUCs. Hammer et al. (2004) 
used housing data for each decade from 1940 to 1990 to show 
the housing density change in United States. Lepczyk et al. 
(2007) quantified hotspots of housing changes in United States 
over a 60-year time (1940 ~ 2000). Ray and Pijanowski (2010) 
showed that one location could pass through several land use 
classes over the span of a century in a regional watershed in 
Michigan.  

The Land transformation model (LTM) has been one of the 
commonly used LUC models during last two decades. LTM 
integrates GIS and artificial neural networks to back-cast LUC 

(Pijanowski et al., 2007). However, previous back-cast appli- 
cations of LTM model were limited in their ability to simulate 
multiple LUCs at the same time. Thus, each land use class was 
trained separately and simple what-if rules were applied to de-
termine actual land use transitions (Ray and Pijanowski, 2010). 
ANN based models that forecast LUC have recently been re-
configured to simulate multiple land use classes simultaneously 

for future scenarios (Tayyebi and Pijanowski, 2014). Other new 
developments in land use forecast models include the genera-
tion of future land use maps over regional scales using high per-
formance computing (HPC) (Pijanowski et al., 2014) and the use 
of hierarchical subcomponents that are responsible for calcula-
ting the quantity of LUC within relevant boundary units (Tay-
yebi et al., 2013). The main objective of this study is to com-
bine all of these elements to develop a back-cast model for ge-
nerating annual historical land use maps with multiple land use 
classes at regional scale using a HPC platform. The back-cast 
model presented in this study is different from previously deve-
loped back-cast models in several ways. First, the new model 
provides separate suitability maps for multiple LUCs simulta-
neously according to the number of the desired outputs. Second, 
the quantity of LUC is adjusted for individual sub-regions wi-
thin the larger study area (i.e., county boundaries here). Third, 
our back-cast model is integrated with HPC to run at regional 
scale. Finally, the back-cast model can simulate annual land use 
to capture multistep LUCs across time. 

Other challenges in modeling LUC is that within a given 
region multiple LUCs occur simultaneously (Tayyebi and Pija-
nowski, 2014; Song et al., 2015). For example, it is quite com-
mon for some areas to be converted from agriculture to urban 
while nearby forests are converted to agriculture (Brown et al., 
2009). However, most calibration metrics have been developed 
for binary outcome and unbiased calibration metric for multiple 
LUCs is lacking. Nonetheless, multiple LUCs can be evaluated 
using contingency tables. One way to do this is to convert mul-
tiple LUCs into numerous binary LUCs that are evaluated using 
binary calibration metrics (Pontius et al., 2011). Thus, it is re-
quired to calibrate each land use class separately. Alternatively, 
binary LUC calibration metrics can be modified to assess mul-
tiple LUCs. As a second objective of this study, we took the 
latter approach, since it minimizes the total number of calibra-
tion runs that need to be executed compared to the former 
approach, and developed a metric to simultaneously characte-
rize model performance, quantity and locations errors, for mul-
tiple LUCs.  

 

2. Developing A Back-Cast Model at Regional Scale 

The back-cast model developed in this study proceed 
through a series of phases. In phase 1, an initial data preparation 
component that is conducted in advance by a GIS professional 
(Figure 1, Item 1). In phase 2, the locations of multiple LUCs 
are determined based on the ANN algorithms (Figure 1, Item 
2). In phase 3, users are required to introduce LUC scenarios 
for back-casting based on their understanding for the given 
study area (Figure 1, Item 3). The back-cast LTM has also de-
faults LUC scenarios that users can take advantage of them. 
Phase 4 involves choosing the scale or boundary to divide the 
data at regional scale to the smaller pieces (Figure 1, Item 4). 
In phase 5, the quantity of LUC for each LUC scenario is cal-
culated and then used to transition cells according to their 
suitability separately within each spatial units (Figure 1, Item 
5). Phase 6 involves running the back-cast LTM at regional 
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scale using high performance computing, suitability maps gen-
erated from model for each spatial units, LUC scenarios and 
quantity of LUCs (Figure 1, Item 6). Phase 7 involves using the 
new developed accuracy metrics in this study to evaluate the 
goodness of back-cast model (Figure 1, Item 7). The last step 
involves back-casting multiple LUCs for regional planning 
(Figure 1, Item 8). 

Figure 1. The main components of the developed back-cast 
model. 

2.1. Location of Land Use Change 

ANNs are machine-learning techniques capable of captu-
ring the non-linear processes behind land transformations (Pija-
nowski et al., 2002). The ANN based approach (Figure 1, Item 
2) incorporates socio-environmental factors, usually derived f-
rom GIS and remote sensing data (Figure 1, Item 1), to back-
cast LUCs (Pijanowski et al., 2002). The back-cast ANN uses 
two reference land use maps separated in time in a reverse ma-
nner (t2 and t1 instead of t1 and t2). In contrast to the forward 
model, the factors or drivers that impact LUC in the past should 
be in t2 instead of t1 and the output of the model is LUC from t2 
to t1. Depending on the land use transition, the model generates 
suitability maps. The suitability map, calculated with the ANN 
component, shows the probability of cells in the region for 
LUC. The cells with higher probability are more likely to con-
vert to LUC (Pijanowki et al., 2009). The conversion of suita-
bility map to a LUC simulation map occurs according to the 
quantity of LUC in backward manner. 

The multi-layer perceptron used in this paper typically in-
cludes three different layers, the input, hidden, and output layer 
(Figure 2). Neurons in the hidden layer assign the relationships 
between the input and output nodes and pass the result through 
a non-linear activation function to the output neuron or adjacent 

 

 

(a) Binary LUC, No-Change (b) Binary LUC, Change 

(c) Multiple LUCs, No-Change (d) Multiple LUC, Change in Class 1

(e) Multiple LUCs, Change in Class i (f) Multiple LUCs, Change in Class 

Figure 2. The difference between the model structure and coding scheme of the original back-cast ANN (a and b) and the 
modified back-cast ANN for simulating multiple LUCs (c to f). 
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neuron of the corresponding hidden layer. Figures 2a and 2b 
show the nature of original back-cast ANN with a single output 
layer. Output with 0 values show cells that were determined to 
be no-change while output with 1 values show cells that chan-
ged between two times in back-ward manner. The original ver-
sion of the back-cast ANN followed two main changes to back-
cast multiple LUCs (Figures 2c to 2f). First, we modified the 
original structure of the back-cast ANN, which was developed 
for binary LUC modeling (Figures 2a and 2b) where the num-
ber of nodes in output layer is equal to the number of the desi-
red output (Figures 2c to 2f). The advantage of the modeling 
approach is that it provides separate suitability maps for each 
outcome according to the number of the desired outputs. Se-
cond, we used a combination of k-binary numbers to represent 
k-category attributes, each associated with one of the transi-
tions. A k-class pattern classification problem can be imple-
mented into a single ANN architecture with k outputs (Figures 
2c to 2f). In order to show the state of transition for each land 
use class, only one of the k numbers in the output layer need to 
be coded as one while the others stayed zero (Figures 2d to 2f). 
On the other hand, when all outputs have 0 value, it represents 
cells that were selected as no-change (Figure 2c).  

2.2. Land Use Change Scenarios for Back-Casting 

Urbanization, a key LUC, is defined as the expansion of 
urban land uses, including residential, industrial and commer-
cial (Radeloff et al., 2005). Urbanization can occur in sub-ur-
ban areas, including conversion of land in agriculture and forest. 
Agricultural areas have widespread effects on various ecosys-
tem services as well since agricultural land area in the United 
States declined during the 20th century (Vesterby and Krupa, 
1997). The decline can be attributed to both appropriation of 
agricultural land for other uses (i.e., urbanization) and aban-
donment of agriculture on poor quality land (Maizel et al., 
1998). Agricultural decline has also led to significant afforesta-
tion in rural areas (Brown et al., 2005).  

For a better LUC simulation between multiple land use 
classes, it is necessary to define LUC scenarios (Figure 1, Item 
3). It is common to lose urban areas in a backward simulation 
because urbanization increases in a forward manner due to te-
chnological advances, immigration from the countryside, and 
population growth. Thus, it is to be expected that urban areas 
decrease in a back-cast land transformation simulation. Many 
agricultural lands have been converted into urban areas (e.g., 
agricultural loss) because agricultural land is usually conven-
iently located in the periphery of urban areas and forest areas 
have been converted into agricultural lands (e.g., agricultural 
land use gain) to meet the demand for agricultural goods 
(Nassauer et al., 2014; Tayyebi et al., 2014a, b). Thus, for a 
given area where agriculture, forest and urban can be gained or 
lost in a backward manner (Figure 3). 

Agricultural gain: Agricultural gain quantity is less than 
urban loss quantity (Figure 3, Item 1), and urban cells at t2 are 
the first candidates to turn into agriculture. The urban loss 
suitability map exhibits the locations of urban cells expected to 
go to agriculture first, while the rest of the urban loss goes to 

forest (Figure 3, Item 1; urban to agriculture and urban to forest 
transition). Thus, urban loss is equal to agriculture and forest 
gain in this case. However, if the total quantity of urban cells 
in t2 cannot satisfy the quantity of agriculture gain, the rest of 
the cells (e.g., forest cells first) are ranked based on the urban 
loss suitability map and turn into agriculture cells until the total 
number of agriculture gain cells is met. Thus, agriculture gain 
is equal to urban and forest loss in this case (Figure 3, Item 2; 
urban to agriculture and forest to agriculture transition). 

Figure 3. Land change scenarios used for back-casting multi-
ple land use changes. 

Agricultural loss: Agriculture cells at t2 are the first 
candidates to turn into forest (Figure 3, Item 3; agriculture to 
forest transition), and the agriculture gain suitability map de-
cides the locations of those agriculture cells that should go to 
forest first. The urban cells at t2 could also convert into forest 
(Figure 3, Item 3; urban to forest transition), with the urban loss 
suitability map deciding the locations of the urban cells that go 
to forest first. Thus, forest gain is equal to agriculture and urban 
loss in this case. These model variants are exclusive, and, thus, 
conflicts resulting from multiple classifications are prevented 
(Tayyebi and Pijanowski, 2014). It should be noted that conse-
cutive difference between two decades determine the quality of 
loss or gain for agriculture, urban and forest land use classes. 

2.3. Estimating Quantity of Land Use Change 

While historical information is available to be integrated 
into the back-cast model (e.g., census data and agriculture data), 
forward LUC modeling requires estimation of the future LUC 
quantity (Rhemtulla et al., 2007). However, incorporating his-
torical information into back-cast models may not be easy since 
historical information are often summarized at different scales. 
For example, United States Census file databases on housing 
as a proxy of urban quantities are reported every ten years at 
block scale (US Bureau of the Census, 2001). United States 
Department of Agriculture historical land in farms data (U.S. 
Department of Agriculture, 1997) as a proxy of farm areas are 
typically reported every five years at county scale. In addition, 
some historical data are collected periodically and users might 
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be interested in creating land use maps at time periods outside 
the historical data exist.  

Since historical quantities of urban (US Bureau of the 
Census, 2001) and agriculture (U.S. Department of Agriculture, 
1997) land use data are available at block and county scale, re-
spectively, we used county boundaries (Figure 1, Item 4; Figure 
4) to define and adjust the amount of land use class changes.
The housing and land in farms data at political units were then 
scaled to the number of cells within each political unit that were 
needed for each time step (Ray and Pijanowski, 2010). We did 
two separate back-cast simulations: 1) For the back-cast simu-
lation at t1, we fixed the quantity of LUC for each land use 
category by comparing the reference maps between t2 and t1 
(Tayyebi et al., 2014) and 2) For annual times between t2 and t1 
as well as annual times before t1, we used external quantity 
sources (United States Census file databases and United States 
Department of Agriculture historical land in farms) to deter-
mine the quantity of urban and agriculture areas. Since both 
external quantity sources are collected periodically, we used 
cubic splines to fit the housing and land in farms to estimate the 
annual quantity of urban and agriculture areas between t2 and 
t1 as well as before t1 (Pijanowski et al., 2007). 

Indiana 

Ohio 

New York

Pennsylvania

Kentucky 

West Virginia

Virginia

Tennessee North Carolina

Figure 4. Using county boundaries in back-cast model to de-
termine quantity of land use changes. 

2.4. Running Big Data Simulations Using A High Perfor-
mance Computing Platform 

Since we back-cast multiple LUCs at regional scale (e.g., 
multiple states), we deal with a big dataset, and a large number 
of input and output files in calibration and testing run (Huang 
and Chang, 2003). Running LUC models at regional scale re-
quires re-engineering the model so that it may handle larger 
datasets (Silva and Clarke, 2002; Clarke, 2003; Jantz et al., 
2010). We redesigned and ran our back-cast model at a sub con-
tinental scale with fine resolution using a new architectural 
framework in Windows-based HPC cluster environment (Pija-

nowski et al., 2014). In the new architecture of our back-cast 
model, HPC allows for the handling of large data sets in terms 
of size and quantity of files and integrates tools that are exe-
cuted using a variety of scripting languages (Figure 1, Item 6). 
For example, HPC allows for job-scheduling management of 
parallel computing resources and tasks, which distributes com-
putational and file allocation across computational resources 
(CPUs, drives, memory, and software components). In this stu-
dy, each state is a job and counties within associated state are 
considered as tasks. HPC uses XML format per job to identify 
jobs and associated tasks within each job. For example, the 
Ohio River Basin (ORB) in this study contains 11 jobs, each in 
separate XML (ORB includes 11 states of USA), for a total of 
456 tasks (ORB includes 456 counties within 11 states). The 
number of tasks within each job depends on the numbers of 
counties within each state. After submitting jobs in XML for-
mat to HPC, the queue manager schedules each job to run on 
the queue and enable users to monitor progress. Since our back-
cast model produces large number of files, we used a standard 
numbering system from the Federal Information Processing 
Systems (a two-digit code) and counties (a three-digit code) to 
track the inputs and outputs of the simulation. Therefore, every 
county in our study area is given a five-digit integer value (e.g., 
55025 for Dane County, Wisconsin; for example slope_55025. 
asc). 

2.5. Complexity of Back-Cast Model 

The core of our back-cast model is ANN algorithm. Com-
plexity of ANN can be tracked in three parts (Figure 2): (1) Nu-
mber of hidden layers: The hidden layers in ANN are responsi-
ble to find non-linear patterns in data. The number of hidden 
layers are arbitrary while most of the previous studies sugges-
ted using one hidden layer is enough to produce satisfactory 
results. More hidden layers increase the complexity of the AN-
N. (2) Number of neurons within each layer: Each layer consists 
of series of neurons. The number of neurons in input layer de-
pend on number of inputs (spatial drivers here) while the num-
ber of neurons in output layer depend on the number of outputs 
(land transitions between two times). Number of neurons in hi-
dden is arbitrary although there are a lot of studies in literature 
suggested that it is the best that the number of neurons in hidden 
layers be equal the number of neurons in input layer or 2 × n + 
1 number of neurons in input layer to produce the best results. 
Since more neurons within layers increase the number of unk-
nown parameters in ANN, this will increase the complexity of 
the ANN. (3) Number of connections: The connections among 
neurons across input, hidden and output layers define the 
topology of ANN. The ANN model used in this study is one of 
the most complicated since it is a fully connected network whi-
ch means all neurons in input layer are connected to all neurons 
in hidden layer, and all neurons in hidden layer are connected 
to all neurons in output layer. More connections between neu-
rons across layers increase the number of unknown parameters, 
so this will increase the complexity of the ANN. 
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3. Developing Quantity and Location Calibration
Metric 

Model calibration includes two steps (Tayyebi et al., 2014): 
1) building a model which is usually called a “training run”,
and 2) evaluating a model which referred to as a “testing run”. 
LUC modelers typically divide the entire data to two parts. The 
first part, used for training, usually uses a smaller portion of the 
dataset for training the model. The second part, or testing, uses 
the rest of the data to assess the model performance. The gen-
erated model from the training run was applied to the entire da-
taset in t2 to simulate LUC in t1 using a fixed quantity of change 
between two reference times. The evaluation approach was u-
sed to assess the goodness-of-fit of the back-cast model against 
reference data in t1. Quantity and location error assessments 
characterize the model’s ability for back-casting multiple LUCs 
(Figure 1, Item 7). 

Table 1a. Contingency Table Comparing the Observed Land 
Use Map in t2 with the Observed Land Use Map in t1 

Observed Map in t1 

C1 C2 … Cn Total 

O
bs

er
ve

d 
M

ap
 in

 t 2
 C1 O11 O12 … O1n ∑n

i=1O1i 

C2 O21 O22 … O2n ∑n
i=1O2i 

… … … … … … 

Cn On1 On2 … Onn ∑n
i=1Oni 

Total ∑n
i=1Oi1 ∑n

i=1Oi2 … ∑n
i=1Oin 

*C shows the land use categories in both land use maps while n shows the 
numbers of land use classes. O shows the number of cells that remain or 
change between two maps. 

Table 1b. Contingency Table Comparing the Simulated Land 
Use Map in t1 with the Observed Land Use Map in t2 

Simulated Map in t1 

C1 C2 … Cn Total

O
bs

er
ve

d 
M

a p
 in

 t 2
 

C1 S11 S12 … S1n ∑n
i=1S1i 

C2 S21 S22 … S2n ∑n
i=1S2i 

… … … … … … 
Cn Sn1 Sn2 … Snn ∑n

i=1Sni 

Total ∑n
i=1Si1 ∑n

i=1Si2 … ∑n
i=1Sin

*C shows the land use categories in both land use maps while n shows the 
numbers of land use classes. S shows the number of cells that remain or 
change between two maps. 

Table 1c. Quantity Error Calculation 
Simulated Minus Observed Map in t1 

C1 C2 Cn Total

O
bs

er
ve

d 

C1 O11 – S11 O12 – S12 O1n – S1n ∑n
i=1(O1i – S1i)

C2 O21 – S21 O22 – S22 O2n – S2n ∑n
i=1(O2i – S2i)

… … … … …
Cn On1 – Sn1 On2 – Sn1 Onn – Snn ∑n

i=1(Oni – Sni)
Total ∑n

i=1(Oi1 – Si1) ∑n
i=1(Oi2 – Si2) ∑n

i=1(Oin – Sin)  

Due to the large size of data and difficulty of presenting 
error distribution at a regional scale, we used contingency ta-
bles to summarize the quantity and locational errors (Figure 1, 
Item 7). Here, we developed quantity and locational metric for 
multiple land use classes simultaneously. We used the follow-
ing two preparation steps to achieve this goal. First (Table 1, 
Item A), we used a contingency table to compare the reference 
maps (we called Observed_Change map after here) between t2 
and t1 to map the persistence and LUC, and second (Table 1, 
Item B), and then we used a contingency table to compare the 
reference map in t2 with the simulated map in t1 (we called Si-
mulated_Change map after here) to quantify the persistence an-
d simulated LUC.  

For quantity error assessment, we subtracted the Simula-
ted_Change map from Observed_Change map to estimate the 
quantity of error between simulated and reference changes. Th-
is is similar to subtracting Item B from Item A in Table 1 (in ta-
ble format, Item C). We then divided each category of the re-
sulting map or the resulting table by the total number of cells 
to show the percentage of each group (persistence and change). 
The negative and positive values within the contingency table 
show the percent of underestimate and overestimate of the ba-
ck-cast model, respectively. 

For our locational error assessment, we compared Item A 
with Item B in Table 1 (in table format), or in other words Ob-
served_Change with Simulated_Change map (in map format), 
to calculate the locational error using the tabulate area function 
in GIS (Table 1, Item D). We divided each category of the resul-
ted map or the resultant table by total number of cells to show 
the percentage of each group. After model calibration, since the 
quantity of land use are available for each year between t2 and 
t1, the generated model from training run applied to the entire 
dataset in t2 to simulate LUC for other times between t2 and t1 
(Figure 1, Item 8). 

(a) Ohio River Basin in 1992 (b) Ohio River Basin in 2001 

Figure 5. Land use maps of Ohio River Basin in (a) 1992 and 
(b) 2001. Stratified random sampling boxes for training of the 
back-cast ANN. 
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4. Implementation of Back-Cast Model for Ohio 
River Basin 

4.1. Study Area and Land Use Data Processing 

Data used to build and test the back-cast ANN covered the 
entire Ohio River Basin (ORB) which included counties that 
wholly or partially fall within the basin borders (Figure 5). The 
ORB includes 456 counties in Illinois, Indiana, Ohio, Pennsyl-
vania, New York, Maryland, West Virginia, Virginia, South Ca-
rolina, Kentucky, and Tennessee, the size of the area including 
counties is 515,818 km2 while the ORB covers 421,962 km2. 
We employed the retrofit National Land Cover Database (NLC-
D) (Fry et al., 2008) with 30 m resolution to obtain land use 
data for the ORB from 2001 and 1992 (Tayyebi et al., 2013). 
We then reclassified the National Land Cover Database in both 
times from Anderson Level 1 to a coarse, four core land use 
cover classes (“urban”, “forest”, “agriculture” and “other cla-
ss”). To accomplish this, the four developed (i.e., urban) Natio-
nal Land Cover Database classes were aggregated to create a 
single urban land use class. All forest, shrubland, and herbace-
ous vegetation classes were combined to create a single natural 
vegetation cover class, referred to as “forest” from here on. The 
agriculture land use class included cultivated crops. Because 
barren, open water, wetlands and shrubland are very minor land 
use classes in the ORB and much of it does not change (open 
water, barren), we collapsed these into an umbrella “other class” 
to focus on the reporting of the spatial-temporal dynamics of 
the major land use classes (urban, agriculture and forest) loca-
ted in the ORB. The change from 2001 to 1992 was used as 
output in the back-cast model. 

Several spatial drivers were obtained in GIS by processing 
the land use layers in 2001 (Table 2). The Euclidean distance 
tool in ArcGIS was used to create separate raster maps that 
stored in each cell: the distance from the nearest urban, forest 
and agriculture cell. ArcGIS Focal statistics was used to calcu-

late the density of each main land use class around the central 
cell in 10, 50 and 250 m windows. Slope was calculated from 
DEM using the GIS Spatial Analyst tool. These spatial drivers 
(obtained for the base year of 2001) were used as input in the 
back-cast model. 

 

Table 2. The Drivers Used for the Back-Cast Model in 2001 
and the Rationale for Including Them in the Simulation 
Driver Description 

Distance to nearest 
road 

Distance to road has been found to be one of 
the strongest drivers of urbanization in the 
United States 

Distance to nearest 
town and distance to 
county capitals 

People live and work near towns and 
proximity to cities, towns and villages 
strongly influences urbanization 

Slope Built environment cannot occur on steep 
slopes; crops are difficult to manage large 
scale using mechanized management. 
Generally, slopes > 8% are not farmed in the 
US 

Distance to nearest 
urban cell 

Previous urban cells are well known to create 
new urban cells in future time steps because 
infrastructure for urban likely exists 

Density of urban 
within a fixed 
window size 

Urban tends to fill in once a certain density of 
this use is reached (e.g., in 90 m, 250 m, 1 
km) 

Density of 
agriculture within a 
fixed window size 

Large homogeneous agricultural plots are 
more sustainable over time (e.g., in 90 m, 250 
m, 1 km) 

Distance to nearest 
surface water body 

People like to place built structures (e.g., 
houses) next to lakes and rivers and are thus 
drivers of urbanization 

 
4.2. Training and Testing Run 

Previous studies on modeling LUC at a national scale su-
ggests that performing a calibration run across various spatial 

Table 1d. Locational Error Calculation 
 Changed Map between Observed Map in t2 and Simulated Map in t1 

C11 C12 … C1n C21 C22 … C2n … Cn1 Cn2 … Cnn 

O
bs

er
ve

d 
C

ha
ng

e 
M

ap
 b

et
w

ee
n 

 
t 2

 a
nd

 t 1
 

C11 P1111 P1112 … P111n P1121 P1122 … P112n … P11n1 P11n2 … P11nn 
C12 P1211 P1212 … P121n P1221 P1222 … P122n … P12n1 P12n2 … P12nn 
… … … … … … … … … … … … … … 
C1n P1n11 P1n12 … P1n1n P1n21 P1n22 … P1n2n … P1nn1 P1nn2 … P1nnn 
C21 P2111 P2112 … P211n P2121 P2122 … P212n … P21n1 P21n2 … P21nn 
C22 P2211 P2212 … P221n P2221 P2222 … P222n … P22n1 P22n2 … P22nn 
… … … … … … … … … … … … … … 
C2n P2n11 P2n12 … P2n1n P2n21 P2n22 … P2n2n … P2nn1 P2nn2 … P2nnn 
… … … … … … … … … … … … … … 
Cn1 Pn111 Pn112 … Pn11n Pn121 Pn122 … Pn12n … Pn1n1 Pn1n2 … Pn1nn 
Cn2 Pn211 Pn212 … Pn21n Pn221 Pn222 … Pn22n … Pn2n1 Pn2n2 … Pn2nn 
… … … … … … … … … … … … … … 
Cnn Pnn11 Pnn12 … Pnn1n Pnn21 Pnn22 … Pnn2n … Pnnn1 Pnnn2 … Pnnnn 

*Calculating the number of cells that correctly predicted and misplaced as locational error by the back-cast model. C with indexes show the number of 
possible persistence and land use transitions within two maps. P shows the number of cells that have been correctly predicted as persistence or change (P 
along diagonal with blue color) and the number of cells that have been misplaced by back-cast model (P along off-diagonal with orange color) between two 
change maps. 
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scales (Tayyebi et al., 2013) is required to assess the accuracy 
of the model properly. For example, Verburg et al. (2002) and 
Pijanowski et al. (2014) showed that 1 km is an appropriate 
spatial scale to forecast multiple LUCs at continental scale sin-
ce it is the proper scale to minimize the simulation error. There-
fore, before training and testing, we resampled spatial predic-
tors in 2001 and LUC map from 30 m to 1 km. For the training 
run, the back-cast ANN topology includes four outputs that 
have been coded using series of 1 s and 0 s and the following 
steps: 1) the cells that experience urban to agriculture change 
as the first model outcome, 2) the cells that experience urban to 
forest change as the second model outcome, 3) the cells that 
experience agriculture to forest change as the third model out-
come, 4) the cells that experience forest to agriculture change 
as the forth model outcome, and 5) other cells that experience 
other types of transitions. Our back-cast model ignores missing 
data and masks them out from further analysis. Before using 
data for training run in ANN, our back-cast model normalizes 
data using mean and standard deviation in each layer. Therefore, 
abnormal data are not used for the training run. We selected a 
training data set comprising 10% of entire dataset due to the 
large area covered in ORB using stratified random sampling to 
train the back-cast model which was then evaluated using the 
testing data set (other 90% of entire dataset). 

We then used historical land in farms data (from 1980s to 
2000s) and housing statistics (from 1980s to 2000s) to deter-
mine the quantity of agricultural and urban land use that should 
be allocated to each county for annual years between 2001 ~ 
1980. The generated back-cast ANNs from the training run 
were applied to the entire dataset in 2001 to simulate LUC to 
1992 using four suitability maps and the fixed quantity amounts. 
We then compared the simulated LUC map in 1992 with the 
reference map in 1992 to estimate the locational and quantity 
error of back-cast model. The tested back-cast model then app-
lied to the entire dataset in 2001 to simulate LUC for annual 
years between 2001 ~ 1980 using four suitability maps and esti-
mated quantity data.  

Figure 6. The training run of the back-cast ANN against mean 
squared error. 

5. Results

5.1. Training Run and Historical Quantity Change 

We conducted multiple training cycles with the back-cast 

model to identify a training cycle that would generate model 
results that deviated to an acceptable extent from observed 
values. Mean squared error starts around 0.068 and drops rap-
idly through 5000 cycles (Figure 6). We halted the training at 
25,000 cycles where the mean squared error reached a stable 
minimum of 0.066.  

The trends of urban quantities for each state are very 
similar to one another and decrease smoothly in the number of 
urban cells from 2001 to 1980, respectively. While the trends 
of agriculture quantities for each state are different. For some 
of the states, the number of agriculture cells increase from 2001 
to 1980, although the rates of these increases differed across 
states. For some other states, the number of agriculture cells are 
stable from 2001 to 1980. The portions of Ohio and Indiana 
within ORB have the greatest number of urban and agriculture 
cells. In contrast, the portion of Maryland within ORB has the 
smallest number of urban and agriculture cells. The cubic sp-
lines fit the observed agriculture data well (with R2 > 0.95). 

Table 3a. Contingency Table Quantifying the Observed Land 
Use Change for Entire ORB between 2001 and 1992 

Percent (%) 
Observed Map in 1992 

Other 
Class 

Urban Agriculture Forest Total 

O
bs

er
ve

d 
M

ap
 

in
 2

00
1 

Other 
Class 

1.9230 0.0097 0.0917 0.1295 2.1540 

Urban 0.0038 8.4965 0.1931 0.2111 8.9045 
Agriculture 0.0157 0.0510 36.6410 0.6832 37.3909

Forest 0.0217 0.0163 0.4177 51.0949 51.5507
Total 1.9642 8.5736 37.3435 52.1188

Table 3b. Contingency Table Comparing Observed Map in 
2001 and Simulated Map in 1992 for Entire ORB 

Percent (%) 
Simulated Map in 1992 

Other
Class 

Urban Agriculture Forest Total

M
ap

 in
 2

00
1 

Other  
Class 

2.1539 0.0000 0.0000 0.0000 2.1539 

Urban 0.0000 8.5080 0.1895 0.2070 8.9045 
Agriculture 0.0000 0.0000 36.7584 0.6325 37.3909 
Forest 0.0000 0.0000 0.3956 51.1551 51.5507 
Total 2.1539 8.5080 37.3435 51.9946 

Table 3c. Quantity Error Calculation for Entire ORB 

Quantity Error 
(%) 

Simulated Map in 1992 Minus 
Observed Map in 1992

Other 
Class 

Urban Agriculture Forest Total 

M
ap

 in
 2

00
1 Other 

Class 
0.2310 -0.0097 -0.0917 -0.1295 0.0000

Urban -0.0038 0.0115 -0.0036 -0.0041 0.0000
Agriculture -0.0157 -0.0510 0.1174 -0.0507 0.0000
Forest -0.0217 -0.0163 -0.0221 0.0602 0.0000
Total 0.1898 -0.0655 0.0000 -0.1242 0.0000

*The negative and positive values in table show that back-cast model 
underestimated and overestimated those transitions, respectively.
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5.2. Quantity Error Assessment 

Urban, agriculture and forest land use classes occupied 
8.90, 37.39 and 51.55% of the landscape respectively in the 
ORB in 2001 (Table 3a), and 8.57, 37.34 and 52.12% in 1992, 
respectively (Table 3a). 98.14% (1.92% in other class, 8.49% 
in urban, 36.64% in agriculture and 51.09% in forest) of the 
landscape have not changed from 2001 to 1992 (Table 3a). The 
model simulated the proportions of urban, agriculture and fore-
st land use classes at 8.50, 37.34 and 51.99% in 1992 respec-
tively (Table 3b).  

 
5.2.1. Entire Ohio River Basin 

The model overestimated the quantity of urban persistence 
by 0.01% in 1992 (Table 3c) and underestimated the transition 
from other classes, agriculture and forests to urban by 0.01, 
0.05 and 0.02%, respectively (Table 3c). In total, the back-cast 
model underestimated the quantity of urban areas in 1992 by 
0.06% (Table 3c).  

The model also overestimated the quantity of agriculture 
persistence by 0.11% in 1992 (Table 3c), and underestimated 
transition from other class, urban and forest to agriculture by 
0.09, 0.003 and 0.02%, respectively (Table 3c). In total, the ba-
ck-cast model neither underestimated nor overestimated the 
quantity of agriculture areas in 1992 (Table 3c) since we fixed 
the quantity of agriculture change for the entire ORB. Forest 
persistence was overestimated by 0.06%, and changes from 
other classes, urban and agriculture in 2001 to forest in 1992, 
was underestimated by 0.13, 0.004 and 0.05%, respectively. In 
total, the back-cast model underestimated the quantity of forest 
areas in 1992 by 0.12% (Table 3c). Therefore, the range that 
the back-cast model underestimated and overestimated the qu-
antity of multiple land use changes were -0.05 and 0.11% for 
entire ORB (only for urban, agriculture and forest), respec-

tively. 

The back-cast model assumed that when the cells con-
verted to urban in forward manner, they would stay urban for-
ever (Rittenhouse et al., 2012). Therefore, we did not incorpo-
rate transitions from any classes to urban from 2001 to 1992 
and the back-cast model underestimated these transitions. Whi-
le we fixed the quantity for urban and agriculture areas from 
2001 to 1992, few overestimations or underestimations are due 
to the fact that forest transitions depend on other land use tran-
sitions occurring simultaneously in the landscape since there is 
not available online data source (such as those sources exist for 
agriculture and urban areas) to determine the quantity of histo-
rical forest areas. Change in quantity of agriculture cells ref-
lects the agriculture abandonment this region experienced du-
ring the last 10 years, as well as the urbanization that occurred 
in the forward direction. 

 

5.2.2. County Scale 

Little LUC has occurred overall in the ORB between 2001 
~ 1992. However, this does not indicate to what extent different 
counties in the ORB transitioned from one land use class to 
another. Around 10% of counties in ORB underestimated urban 
persistence (Figure 7, Item a). Counties overestimated urban 
persistence were mostly the same counties that underestimated 
urban to agriculture transition (Figure 7, Item b). Around 70% 
of counties in ORB underestimated urban to agriculture transi-
tion where these counties were distributed across within ORB 
(Figure 7, Item b). In addition, the counties that underestimated 
urban persistence (Figure 7, Item a) were the same counties that 
overestimated urban to forest transition (Figure 7, Item c). Ar-
ound 40% of counties in ORB have underestimated urban to 
forest transition. 

All counties in ORB overestimated agriculture persistence 

Table 3d. Comparison of the Simulated Change and Observed Change between 2001 and 1992 
 Changes between Observed Map in 2001 and Simulated Map in 1992  

11 22 23 24 33 34 43 44 Total 

O
bs

er
ve

d 
C

ha
ng

e 
be

tw
ee

n 
20

01
 a

nd
 1

99
2 

11 1.9230 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.9230 
12 0.0097 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0097 
13 0.0917 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0917 
14 0.1295 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1295 
21 0.0000 0.0035 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0038 
22 0.0000 8.4817 0.0135 0.0013 0.0000 0.0000 0.0000 0.0000 8.4965 
23 0.0000 0.0121 0.1708 0.0102 0.0000 0.0000 0.0000 0.0000 0.1931 
24 0.0000 0.0107 0.0051 0.1953 0.0000 0.0000 0.0000 0.0000 0.2111 
31 0.0000 0.0000 0.0000 0.0000 0.0154 0.0003 0.0000 0.0000 0.0157 
32 0.0000 0.0000 0.0000 0.0000 0.0506 0.0004 0.0000 0.0000 0.0510 
33 0.0000 0.0000 0.0000 0.0000 36.6305 0.0105 0.0000 0.0000 36.6410 
34 0.0000 0.0000 0.0000 0.0000 0.0619 0.6213 0.0000 0.0000 0.6832 
41 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0217 0.0217 
42 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0160 0.0163 
43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3622 0.0555 0.4177 
44 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0331 51.0618 51.0949 
Total 2.1539 8.5080 0.1895 0.2070 36.7584 0.6325 0.3956 51.1551  

*Codes 1, 2, 3 and 4 represent other class, urban, agriculture and forest, respectively. Codes (e.g., 22) with repeated digits imply persistence while other 
digits (e.g., 34) show transition. 
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varied from 0.001 to 2.88% (Figure 7, Item d). While all coun-
ties in ORB underestimated agriculture to forest transitions va-
ried from 0.001 to 2.70% (Figure 7, Item e). The counties that 
overestimated agriculture persistence (Figure 7, Item d) were 
the same counties that underestimated agriculture to forest (Fi-
gure 7, Item e). The percentage of overestimate in agriculture 
persistence was around same as the percentage underestimated 
in agriculture to forest transition. Around 90% of counties in 
ORB overestimated forest persistence (Figure 7, Item f). These 
were the same counties that underestimated forest to agricul-
ture transition (Figure 7, Item g). The percentage overestimated 
forest persistence was around same as that underestimated fo-
rest to agriculture transition. 

(a) Urban Persistence (b) Urban to Agriculture 

(c) Urban to Forest (d) Agriculture Persistence 

(e) Agriculture to Forest (f) Forest Persistence 

(g) Forest to Agriculture 

Figure 7. Spatial distribution of quantity errors within Ohio 
River Basin for persistence and land use transitions at county 
scale. 

5.3. Location Error Assessment 

5.3.1. Entire Ohio River Basin 

The back-cast model simulated the location of persistence 
and LUCs for the entire ORB at 1km resolution well. The back-
cast model simulated the persistence of three dominant land use 
classes well (8.48% of 8.49% for urban; 36.63% of 36.64% for 
agriculture; 51% of 51.09% for forest). On the other hand, the 

back-cast model misplaced 0.01% of agriculture persistence as 
agriculture to forest transition, 0.03% of forest persistence as 
forest to agriculture transition, 0.013 and 0.001% of urban per-
sistence as urban to agriculture transition and urban to forest 
transition between 2001 ~ 1992, respectively (Table 3d). In ge-
neral, the ability of the back-cast model to simulate persistence 
for each land use class was over 95% since around 95% of the 
landscape have not changed between two times.  

The back-cast model simulated the location of LUCs for 
the entire ORB at 1 km resolution relatively well. For urban loss 
(codes 23 and 24 along rows in table 3d), the back-cast model 
simulated 0.17% (row and column 23) of 0.19% for urban to 
agriculture change (row 23 and columns 22 ~ 24) and 0.19% 
(row and column 24) of 0.21% for urban to forest change (row 
24 and columns 22 ~ 24) correctly. Results showed that the 
model misplaced 0.0121% of urban to agriculture change (row 
23 and column 22) and 0.0107% of urban to forest change (row 
24 and column 22) as urban persistence. Similarly, for the agri-
culture to forest change, the back-cast model simulated 0.62% 
of 0.68% these changes (row and column 34) correctly. The 
model misplaced others, 0.06%, as agriculture persistence (row 
34 and column 33). Finally, for the forest to agriculture transi-
tion, the back-cast model simulated 0.36% of 0.41% for this 
change (row and column 43) correctly. The model misplaced 
others, 0.05%, as forest persistence (row 43 and column 44). In 
general, the ability of back-cast model to simulate LUCs was 
over 80% since only less than 5% of the landscape have chan-
ged between two times. 

5.3.2. County Scale 

The model performed slightly better in simulating persis-
tence than LUC. Forest persistence with 95% agreement was 
the most accurate, followed by agriculture persistence with 93% 
agreement and urban persistence with 89% agreement. Urban 
to forest transition with 80% agreement was the most accurate 
land use transition. Following, agriculture to forest transition, 
urban to agriculture transition and forest to agriculture transi-
tion with 76, 71, and 62% agreement were the most accurate 
land use transition, respectively. 

6. Discussion

Modeling and model calibration for multiple LUCs at a 
regional scale is a challenge in land change science. Previous 
back-cast models (Ray and Pijanowski, 2010; Ray et al., 2012) 
have been limited in their ability to simulate multiple land use 
transitions simultaneously. Rather, each land use class was trai-
ned separately and simple what-if rules were applied to deter-
mine actual land use transitions. In this study, we developed a 
new back-cast model that simulates multiple land use (urban, 
agriculture and forest) changes at large spatial scales using an 
advanced computer modeling technique (e.g., artificial intelli-
gence) on a HPC platform. We also demonstrated a new cali-
bration approach to test quantity and location errors of the ba-
ck-cast model for the ORB. Previous studies showed that the 
accuracy of models decreased slightly when models are applied 
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to multiple LUCs at the same time rather than modeling separa-
te binary transitions (Yang et al., 2008). We also found this to 
be the case when comparing our results to previous studies that 
used a similar model for binary back-casting of LUC (Ray and 
Pijanowski, 2010). 

The sequence of LUC at a given location is important to 
understand. For example, Brown et al. (2005) showed that ma-
ny non-urban areas undergo three or more changes over several 
decades, with agriculture transitioning to forest and then to ur-
ban. Future research can benefit from land use maps produced 
by the back-cast model to address questions related to the pro-
cess of LUC. For example, Tayyebi et al. (2015) recently ana-
lyzed LUCs for the entire ORB of United States for three LUCs 
(forest, agriculture and urban) by comparing annual land use 
maps across ORB between 1980 ~ 2001. They found that three 
general trends emerge from back-cast simulations, an increase 
in urban, an increase in forests and a decrease in agriculture. In 
other words, agriculture to forest and agriculture to urban tran-
sitions were the most common LUCs in the ORB.  

Considering past land use in establishing future mitigation 
measures is crucial to overcoming the legacies of human stre-
ssors in the region and the effective restoration and protection 
of ecosystem resources at regional scales (Stark, 2011). Thus, 
products resulting from large regional LUC simulations like the 
one presented here could support regional scale environmental 
programmatic assessments that are becoming more common 
with national government agencies (NEON) (Schimel et al., 
2007). For example, Tayyebi et al. (2015) used the developed 
landuse maps in this study to determine the location of catch-
ments in the ORB exceeding critical land use thresholds for wa-
ter quality and other aquatic resources. They found that while 
the proportion of catchments to exceed critical urban land use 
thresholds will increase from 15% in 1980 to 17.5% in 2001, 
the proportion of catchments to exceed critical agricultural land 
use thresholds will decrease from 45 to 42%. 

One of the main challenges in LUC science is the number 
of desired outputs in the model (Tayyebi and Pijanowski, 2014). 
One of the limitation of this study is that it has few land use 
classes as output; however, this may not reflect the reality of 
LUCs in nature. In future, there is a need to test models for 
back-casting of unlimited LUCs or the modeling of land classes 
hierarchically (simulating urban and then the type of urban, su-
ch as residential or commercial). Second, this study only per-
formed model calibration at 1 km resolution for entire the ORB. 
Pijanowski et al. (2014) and Tayyebi et al. (2013) performed 
model calibration at multiple spatial and temporal scales for the 
entire conterminous United States. There is thus an urgent need 
to develop an accurate back-cast model that can work at fine 
scale resolution (e.g., 30 m), at large spatial scales, and for mul-
tiple transitions all simultaneously. Finally, this study only used 
few LUC scenarios to back-cast multiple LUCs for short time 
interval (from 2001 to 1980). Previous studies showed that 
these LUC scenarios are suitable for a short time (Brown et al., 
2005); however, for a longer term it is required to explore more 
sophisticated LUC scenarios and perform model evaluation in 
a longer term using aerial photo (Ray and Pijanowski, 2010). 

We made several assumptions to develop the back-cast 
model. First, we assumed that the pattern of spatial drivers and 
ANN network remained constant over time. Thus, spatial rules 
used to determine the potential locations for land use transitions 
were assumed to remain constant over time. Second, we used 
Cubic function to determine the quantity of agriculture and ur-
ban areas in the past. Using other functions such as polynomial 
function can change these quantities and these quantities direc-
tly affect the back-cast LUC scenario. Third, since the quantity 
of forest areas in the past is not available online like urban and 
agriculture quantity, our back-cast LUC scenarios were limited 
and depended on either agriculture gain or agriculture loss. 
Therefore, further analysis to determine quantity of forest in the 
past using high resolution satellite imageries or aerial photos 
can lead to define better LUC scenarios for back-casting. Fina-
lly, more rules need to be explored in order to determine how 
they would be applied to the back-cast model and it is possible 
that in a large region several transition rules may need to be 
applied in the same simulation (Dietzel and Clarke, 2006). 

 

7. Conclusions 

This study developed a new back-cast model to simulate 
multiple LUCs over broad spatial scales using a HPC platform. 
The study represents an advancement in computational mode-
ling as well as a successful broad-scale modeling framework 
that has direct applications to land use management. This study 
also developed a new metric that enables LUCs modelers to as-
sess simultaneously the locational and quantity errors of multi-
ple LUCs at large spatial scales. We demonstrated that out ba-
ck-cast model can simulate historical persistence and LUCs ac-
curately at a regional scale by adjusting land use transitions ac-
ross counties. Finally, we produced new land use maps between 
2001 and 1980 at new spatial and temporal scales that can be 
coupled with other models to assess land use and environment 
interactions. 
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