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ABSTRACT. The efficiency of offshore oil spill response not only relies on an efficaciously global decision/planning in devices com-
bination and allocation, but also depends on the timely control for response devices (e.g., skimmers and booms). However, few studies 
have reported on such decision framework with a timely integration of global planning and operation control to support offshore oil 
spill response. This study developed an agent-based simulation-optimization approach to provide sound decisions for device combina-
tion and allocation during offshore oil spill recovery in a fast, dynamic and cost-efficient manner under uncertain conditions. Mean-
while, the proposed approach aimed at providing operation control schemes for different devices, reflecting the site conditions, and 
correspondingly adjusting the global planning in a real-time manner. Such functions would be extremely helpful in the harsh environ-
ments prevailing in offshore Newfoundland. In the case study, the developed approach was applied to determine the allocation of 3 re-
sponding vessels in collecting spilled oil at 7 locations. The routes of the responding vessels for response operation were optimized and 
reflected by the principle agent-based programming. Furthermore, several oil weathering processes (e.g., evaporation and dispersion) 
were also taken into account in the optimization. The modeling results indicated that a minimal timeframe of 21 hours was needed for 
vessel allocation and recovery operation, leading to an oil recovery rate of 90%. By taking evaporation and dispersion into account, the 
optimal time window was 18 hours, leading to an oil recovery rate of 75%, an evaporation rate of 12%, and a dispersion rate of 3%. 
The proposed approach can timely and effectively support the optimal allocation of devices, the control of operation, and the real-time 
adjustment of global decision making for oil recovery under dynamic conditions. 
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1. Introduction 

During offshore oil spill response, strong interactions ex-
ist among the response devices (e.g., vessels, recovery devi- 
ces, storage barge), responders, decision makers, etc. These 
interactions dynamically occur during the whole process of an 
offshore oil spill response. It may lead to unreliability or com- 
promise of the response actions if these interactions are not 
considered in the global optimization. In order to address the- 
se interactions, an agent-based model is introduced.  

Offshore oil spill is a common type of coastal and marine 
pollution. It is defined as an accident release or discharge of 
petroleum hydrocarbons due to human operations or natural 
disasters. Tankers, offshore platforms and drilling rigs, as well 
as subsea piping lines are among the most common sources of 
oil spills. Various types of hydrocarbon contaminants can be 
involved in an oil spill accident, including crude oil, refined 
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oil products, heavier fuels, and waste oil, etc. (Jing et al., 
2012; Li et al., 2012). In history, oil spills have caused signif-
icant damage to the marine environment and local ecosys-
tems. Given that specific situations can be vastly distinuished 
from each other, different strategies and technologies were 
deployed during the clean-up processes. Both spills have led 
to tremendous economic losses and durable social/environ 
mental impacts, for which, the inefficient decision support 
systems during the emergency response were one of the im-
portant issues (Yin et al., 1999; Picou, 2009; Chen et al., 2010; 
Atlas and Hazen, 2011; Griggs, 2011; Gill et al., 2012; 
Ben-Awuah et al., 2015; Nourani et al., 2015; Rege et al., 2015).  

After offshore oil spill, various transformation processes 
will occur and many of these processes are relating to the 
behavior of the oil. A series of processes regarding the physi-
cal and chemical properties of the oil occur right after the oil 
spill, which are the weathering processes with the most im-
portant processes of evaporation and emulsification. The other 
important processes are relating to the oil movement in off-
shore (Fingas, 2010). Usually the weathering and movement 
processes can strongly interact with each other in the offshore 
environment. These processes mainly include evaporation, 
dissolution, emulsification, dispersion, biodegradation, sprea- 
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ding, photolysis, advection, diffusion, sedimentation, and the 
interaction of oil slick with the shoreline (Gundlach and 
Hayes, 1978; Korotenko et al., 2000). Generally, the oil prop-
erties, hydrodynamics, meteorological and environmental co- 
nditions play important roles in the physical, chemical and 
biological processes for the spilled oil transport and fate 
(Reed et al., 1999; Brebbia, 2001; Cheng et al., 2002). 

Accompanied by the booming of offshore oil production 
and transportation, particularly during the recent few decades, 
prompt response to oil spills has been recognized as a critical 
issue. Growing research efforts have been undertaken into de- 
veloping an effective and efficient tool for oil spill emergency 
decision support systems. For example, Baruque et al. (2010) 
applied a Case-Based Reasoning (CBR) methodology in fore- 
casting the presence and trajectory of oil slicks in open sea by 
analyzing the previously solved problems, thus to shorten the 
time needed for decision making. In another study, Krohling 
and Campanharo (2011) combined fuzzy theory with the con- 
cept of Technology for Order Preference by Similarity to Ideal 
Solution (TOPSIS) in offshore oil spill decision making, whe- 
re multi-scenarios can be simulated using different combat 
strategies to establish contingency plans based on the priori-
tized criteria. In addition, Kokkonen et al. (2010) applied a 
mapping tool to integrate both geological and ecological data 
for boom allocation under dynamic local sensitivities to po-
tential oil spills.  

In addition to oil spill simulation, optimization is also de- 
sired to provide decision support under changing environmen- 
tal conditions (Huang et al., 1996; Huang and Cao, 2011; 
Gong et al., 2016). Zhong and You (2011) developed a multi 
objecttive linear model for operational cleanup schedules and 
coastal protection plans during an oil spill event. Sheu et al. 
(2005) used a fuzzy clustering technique for optimizing re-
source allocation during disasters other than oil spills. Verma 
et al. (2013) formulated a two-stage stochastic programming 
to optimize the allocation of oil spill facilities along the sou- 
thern coast of Newfoundland. Besides, many studies also con-
sidered to integrate optimization with simulation, particularly 
under dynamic situations. For example, You and Leyffer (20- 
11) took into account the time-dependent factors regarding oil 
properties, hydrodynamics, and weather conditions while op- 
timizing the response plans. Li et al. (2014) introduced uncer- 
tainties into the decision making processes during oil spills, 
by developing a Monte Carlo based dynamic mixed integer 
nonlinear programming for devices allocation optimization.  

Challenges still remain in reflecting the highly dynamical 
interactions between different sectors during optimization mo- 
delling for offshore oil spill response (Lv et al., 2010; Huang 
et al., 2016). Such interactions can be simulated by an agent- 
based simulation approach. According to Wooldridge and Jen- 
nings (1995), an agent can be defined as “a software or hard-
ware entity that is situated in some environment, and is capa-
ble of performing autonomous actions in that environment in 
order to meet its design objectives”. Thus, an agent can be 
characterized by its autonomy, social ability, reactive and pro- 

tective behavior. The autonomy can allow an agent indpen- 
dently completing any complex tasks (Rahmani and Zaghami, 
2015). The social ability can drive an agent to interact and ne- 
gotiate with the other agents to achieve its task, and the sys- 
tem goal can be achieved based on the interaction and negoa- 
tion from all agents. The reactive behavior of an agent can 
help dynamically perceive and respond to the changing envi-
ronment, while the proactive behavior can make an agent 
dynamically change its behavior according to the change of 
environment to achieve its goal (Tan et al., 2015). Some other 
properties of agents include mobility, temporal continuity, col- 
laborative behavior, etc. (Liu et al., 2002). Nevertheless, cha- 
llenges still remain in the integration of agentbased simulation 
and the optimization approaches (Cai et al., 2009). 

Despite that dynamic conditions have been considered 
for previous studies, harsh environments tend to make emer-
gency response to oil spills even more challenging by chang-
ing the fate and properties of oil dramatically within short pe- 
riod of time, which will inevitably impede the recovery and 
cleanup processes unless timely updates of operational sched-
ules are made (Brandvik et al., 2006; Bjerkemo, 2011). Few 
studies up to date have been carried out specifically to address 
this issue. Therefore, a real-time decision support systems ta- 
king into account the restrictions of devices and logistical effi- 
ciency is urgently desired.  

To fill this gap, agent-based modeling (ABM) is hereby 
proposed to render a certain degree of autonomous character-
istic to the system, thus to achieve a better simulation of the 
process and make the optimization of the operational schedule 
more practical. This study aims at developing an agent-based 
model, which couples both simulation and optimization under 
dynamic conditions, to provide a real-time decision support 
for devices allocation and operation control during offshore 
oil spill response. Firstly, the algorithm of agent-based simu-
lation-optimization (ASO) is provided. Accordingly, a hypo-
critical case of response devices allocation in offshore oil spill 
response is conducted. The results of case study is then ana-
lyzed and discussed followed with conclusion. The outcomes 
of the study is expected to facilitate a more effective and effi-
cient tool for emergency oil spill response under highly dy-
namic conditions. 

2. Agent-Based Simulation-Optimization 

2.1. Simulation-Based Dynamic Mixed Integer Nonlinear 
Programming 

Consider a linear program as follows: 

 

j jMin f C X  (1a) 

s.t.    

1

, 1, ,
n

ij j i
j

A X B i m


    (1b) 

0jX   (1c) 
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where  1 n
C R

 is the matrix of coefficients of the objective 
function; and  m n

ijA R
 as well as   1m

iB R
 are matrices of 

variable constraint coefficients.  

When Cj are not just constants but also functions linking 
with some other parameters: 

 

( )j jC g y  (2) 

 
where ( )jg y are the functions showing the relations between 
the coefficients C and parameters y, leading to a simulation- 
based optimization model as follows: 

 
( )j jMin f g y X  (3a) 

s.t. 

1

, 1, ,
n

ij j i
j

A X B i m


    (3b) 

0jX   (3c) 

 
Equation 3 will be a simple linear model and can be sol- 

ved by linear programming if ( )jg y is independent from the 
decision variables (Xj). However, when ( )jg y are dependent 
on the decision variables, the model becomes non-linear. Es-
pecially when ( )jg y are dynamically relating with the deci-
sion variables (usually with time series), the model becomes 
dynamic and non-linear, and cannot be easily solved: 

 

  1 1( ) , ( )t t j t j j t jMin f f g y X g y X    (4a) 

s.t.   

1

, 1, ,
n

ij j i
j

A X B i m


    (4b) 

0jX   (4c) 

 
where t and t-1 are time indicators in a time series, and the 

1 1( ( ) , ( ) )t t j t j j t jf f g y X g y X    represents relations bet- 
ween the status from the previous and the current stages. For a 
single stage or globally continuous problem, Equation 4 can 
be converted as follows: 

 

  1 10
( ) , ( )  

T

t j t j j t jMin f f g y X g y X dt     (5a) 

s.t.    

1

, 1, ,
n

ij j i
j

A X B i m


    (5b) 

0jX   (5c) 

 
It will be more convenient to break the time series into 

certain stages based on a controllable time interval, leading to 
a simulation-based dynamic mixed integer nonlinear program- 
ming (DMINP) as follows: 

 

  1 10
1

( ) , ( ) ,
s

N t

s j t j j t j
s

Min f f g y X g y X t dt  


       (6a) 

s.t.   

1

, 1, ,
n

ij j i
j

A X B i m


    (6b) 

0jX   (6c) 

 
where ts is the time interval in the stage s. In some cases,

( )jg y in the same stage can be assumed to be constant and 
Equation 6 can be correspondingly converted to: 

 

  1 1 1
1

( ) , ( )
N

s j t j s j t j s
s

Min f f g y X t g y X t   


   (7a) 

s.t.    

1

, 1, ,
n

ij j i
j

A X B i m


    (7b) 

0jX   (7c) 

 
2.2. Oil Recovery Simulation  

In offshore oil spill recovery, the net oil recovery rate 
(ORRn, defined as the amount of recovered oil per hour) of 
skimmer is usually determined by slick thickness (ST). The 
function between ORRn and ST is described as follows: 

 
2

nORR a ST b ST     (8) 

 
where a and b are empirical coefficients obtained from experi- 
mental tests. Correspondingly, the objective function of the 
offshore oil spill recovery problem by skimmer can be ex-
pressed as follows: 

 

0

t

i niMax V SK ORR dt   (9) 

 
where V is the volume of recovered oil, t is the operational 
time, SKi are the numbers of skimmer type i, and ORRni are 
the recovery rates of the corresponding skimmer.  

As ORRni are dynamically related with the objective val-
ue (V), the problem becomes dynamic and non-linear, and 
cannot be easily solved. It will be more convenient to break 
the time series into multiple stages based on a controllable 
time interval defined as the minimal time required for shifting 
one operational condition to another. The duration of a stage 
is usually determined by the time for device deployment and 
allocation, resource arrangement, etc. This leads to a multi-
ple-stage simulation based nonlinear programming as follows: 

 

1

N

i nis
s

Max V SK ORR


   (10) 

 
where N is the length of an operational period, s is the number 
of operational stages, ORRnis are net oil recovery rates for SKi 
at stage s, which is calculated by the slick thickness or the col- 
lected oil from the stage s-1: 
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 

1

0
1

1ni ni

s

h
h

nis ORR s ORR

V V
ORR f ST f

A






  
  
 
 
 


 (11) 

 
where V0 is the initial volume of spilled oil, A is the area of 
the spilled oil, and h is the stage index. 

 

2.3. Weathering Simulation  

In real-world practices, oil recovery is significantly af-
fectted by the weathering processes such as spreading and 
drift, evaporation, natural dispersion, emulsification, biode-
gradetion, etc. (Fingas, 2010). In a case that spilled oil is 
boomed and the recovery is required to be done within a short 
period, evaporation, dispersion, and emulsification may play 
important roles in oil weathering. Therefore, these processes 
will also be taken into account in the multiple-stage simula-
tion based nonlinear programming. According to Fingas (20- 
11), the empirical equation of evaporation for oil is as fol-
lows: 

 
   273.15

100

c d T Ln t
FE

   
  (12) 

 
where c and d are equation parameters for specific oil, FE is 
the evaporation rate (m3/hour∙m3 of oil), T is temperature (K), 
and t is time (min).  

Emulsification is one of the key processes that could 
change the properties and characteristics of spilled oil. It can 
affect other weathering processes and consequently the oil 
recovery operation. Mackay et al. (1980) provided a simula-
tion of emulsification by using the incorporation rate of water 
into an oil slick: 

 

 2
1 exp 1a

b
b

K
FW K U t

K

  
        

 (13) 

 
where FW is the fractional water content, Ka is the cure fitting 
constant that varies with wind speed (2 × 10-6), Kb is mousse 
viscosity constant (0.7 for crude oils and heavy fuel oil) (Za-
deh and Hejazi, 2012), and t is time (s). 

Furthermore, the equation for the dispersion process is as 
follows (Mackay et al., 1980): 

 

 2

0.5

0.11 1

1 50 t

U
FD

ST s
 


   

 (14) 

 
where FD is the dispersion rate (m3/ (s∙m3 of oil)), µ is the dy- 
namic viscosity of the oil (cP), and St is the interface tension 
between oil and water (dyne/m).  

When considering the simulation of the oil recovery effi- 
ciency, along with the weathering processes, the optimization 

model for oil skimming can be formulated as follows: 

1

N

i nis
s

Max V SK ORR


   (15a) 

s.t. 

 
1

0
1

ni

s

h h h
h

nis ORR

V V FV DV
ORR f

A





    
 
 
 
 


 (15b) 

 
 

1

0
1

1

s

h h h
h

s FD s FD

V V FV DV
FD f ST f

A






 
   

  
 
 
 


 (15c) 

 
1

1 0
1

s

s s h h h
h

FV FE V V FV DV





      
 

  (15d) 

 2
1 exp 1 3,600 2, ,

m

a
b

b

FW

K
K U m N

K

  
          


 (15e) 

 
1

1 0
1

s

s s h h h
h

DV FD V V FV DV





 
     

 
  (15f) 

1

, 1, ,
n

ij j i
j

A SK B i m


    (15g) 

0jSK   (15h) 

 
where FV is the evaporated oil (m3) and DV is the dispersed 
oil (m3). 

 

2.4. Agent-Based Model for Device Interaction and Agent- 
Based Simulation-Optimization Coupling 

During offshore oil spill response, the interactions among 
different sectors (response devices, responders, decision ma- 
kers, etc.) dynamically occur during the whole process of res- 
ponse. It may lead to unreliability or compromise of the res- 
ponse actions if these interactions are not considered in the 
global optimization. In order to address these interactions, an 
agent-based model is introduced.  

As shown in Figure 1, an agent usually contains some ba- 
sic properties as follows: (1) able to survive and respond to 
the environment; (2) able to dynamically receive the informa- 
tion from the local environment; (3) driven by certain goals or 
purposes; and (4) has certain intrinsic behaviors reacting with 
the environments and other agents (Liu, 2001). 

The general algorithm of an agent-based model is shown 
as follows: 

General algorithm of an agent-based model: 

 t = 1 (initial state) 
 while t ≤ tmax or t ≥ tmin (goal is not satisfied) do 
  for Agent i    i = 1:n 
   Reactive behaviours (Bi)  Perceive envi 
    ronmental information (Et) 
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   Communicate with agent j (Cij)    j = 1:n;  
    j ≠ i 
   if conflict occurs then 
    Negotiate with agent j (Nij)    j = 1:n;  
      j ≠ i 
    if Win then 
     Bi  Behaviours retain 
    else 

     Bi = Bi
’ Behaviours change  Pro-

active behaviour 
    end if 
   else 
    Behaviours retain 
   end if 
   Update agent state (Bi  Bi or Bi

’) 
  end 
  Update environment (Et  Et+1) 
  t = t + 1 
 end 

Agent 1
(Behavioral 

specification 1)

Agent 2
(Behavioral 

specification 2)

Agent k
(Behavioral 

specification k)

...

Environment

Perception

Perception

Perception

Actions

Interaction

Interaction
Interaction

Figure 1. Basic structure of an agent-based model. 
 

This agent model can be embedded in the DMINP app- 
roach as simulative constraints to reflect the dynamic interact- 
tions of devices (e.g., ship mount devices) during offshore oil 
spill response, leading to an agent-based simulation-optimiza- 
tion coupling (ASO) approach. The framework of the ASO 
approach is shown in Figure 2. This approach can utilize the 
global objectives as the goals for agents and dynamically ad-
just the plan settings according to the agent-based modeling. 

3. Case Study 

3.1. Background  

Consider an offshore spill of Statfjord oil with a total am- 
ount of 1,000 m3. Statfjord is a light, low sulphur crude oil 

produced from North Sea with an API of 39.5 (Statoil, 2010). 
Due to advection and spreading, the spilled oil was separated 
to 7 slicks within a 70 km by 30 km area. The volumes and 
locations of these oil slicks are shown in Table 1. The initial 
thickness of each slick is 50 mm. 

Three ships (Ship A, Ship B, and Ship C) with three types 
of ship mounted skimmers were applied in this area to collect 
the spilled oil. Each ship was located in a different harbor and 
required a specific period of time for allocation (Figure 3).  

 

Initial conditions

Oil recovery 
simulation

Interaction of 
recovery 
devices

Man power;
Finance;

Regulation

Efficiency;
Time;
Cost

Policies (Targets)

Environmental 
conditions

Device 
conditions

Simulation-based dynamic 
mixed integer nonlinear 
programming (DMINP)

Predefined Plans

Goal;
Rule;

Sequence of 
activities

New 
environmental 

conditions Agent 

response 
device

Optimal 
settings for 

stage t 

Is the pre-set 
goal achieved

Operation ends 

Yes

No

Update the 
operational 

stage
t = t + 1

Figure 2. Framework of the agent-based simultion-optimiza- 
tion coupling (ASO) approach.  
 
Table 1. Locations and Volumes of Oil Slicks 

Slick 
Location 

Oil volume (m3) 
X (km) Y (km) 

1 24.03 10.03 132.44 
2 5.80 18.46 219.37 
3 19.97 20.99 146.69 
4 14.07 3.43 137.82 
5 27.49 5.42 81.07 
6 16.61 29.39 79.86 
7 3.27 13.84 202.76 

 

Figure 3. Locations of response ships and oil slicks. 
 
3.2. Oil Spill Skimming 

In order to determine their efficiencies, ORRs and OREs 
of these skimmers were collected from the previous tests con- 
ducted by Environmental Canada and OHMSETT (Schulze, 
1998). According to the collected information, a series of 
ORRn1, ORRn2 and ORRn3 were generated based on calculating 
ORRs * OREs using different oil thickness with a viscosity of 
1,000 cSt (Schulze, 1998). Fittings were then applied based 
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on quadratic functions to generate the regression models of 
ORRn with the change of spilled oil thickness, representing 
the recovery efficiencies of the three types of skimmers (Fig-
ure 4). Such a change of slick thickness is usually caused by 
the processes of spreading, shifting, weathering (e.g., evapo-
ration, dispersion, dissolution, emulsification, etc.), as well as 
oil recovery. The details about the ORRn of the skimmers as 
well as the regression models of the efficiencies are shown in 
Table 2. 
 
Table 2. Time of Devices Allocation and Model Parameters of 
ORRn (Li et al., 2012, 2014) 

Types of skimmers 
Model parameter for ORRn 

a b 
SK1 (Ship A) 0.01437 0.01602 
SK2 (Ship B) -0.00791 0.84975 
SK3 (Ship C) -0.01591 1.54975 

 
Due to the challenge of transportation, no more skimmers 

and vessels can be supplied at this stage. The objective of the 
response in the current stage is to determine the allocations 
(routes) of ships to achieve 90% of oil recovery with a mini- 
mum time window. According the above information and the 
algorithms of DMINP and ASO, a global optimization model 
can be generated as follows: 

 
Min T  (16a) 

s.t. 

1

0.9 1000
T

t
t

TV


   (16b) 

 ,  1, , ; 1, 2,3; 1, ,7t t i tkTV f Agent ST t T i k       (16c) 

 

where T is the time window of operation (hour); t is the indi- 
cator of stage; TV is the recovered oil in each stage (m3); and 
ft (Agenti, STtk) is the function of the agent-based modeling at 
stage t; STtk is the slick thickness of each slick k at stage t 
(mm); and Agent is the referring to each skimmer mounted 
ship. The development of the agent function is as follows: 

The agent-based model for offshore oil spill recovery: 

 t = 1; ST1k = 50 mm; initial location of ships (LSti);  
  speed of ships (SS)= 20 km/hour 

 while 
1

0.9 1000
T

t
t

TV


   do 

  for Ship i  i = A, B, C 

   Vtik = ORRntik × [1 – f(LSti, LOk, SS)] 
   Vti = max {Vtik} 
   if LSti = LStj  j = A, B, C; j ≠ i then 
    if Vti < Vtj then 
     LSti = LOk  max {Vtik} 
    else 
    Vti = max {Vtik}  k  LOk = LStj  
`    end if 
   else 
   LSti = LOk  max {Vtik} 
   end if 
  end  

  
C

t ti
i A

TV V


  , 
tiLS tk tiRV RV V  ,  

  1, 50
ti ti tit LS LS LSST RV IV     update environment 

  LSti  Update agent state 
  t = t + 1 
 end 

 

where LSti is the location of ship i at stage t, (x, y); SS is the 
speed of ships (20 km/hour); Vtik is the potential oil recovery 
if ship i removes from the current location to Slick k at stage t, 
(m3); ORRntik is the function of net oil recovery rate if skim-
mer on ship i operates on Slick k at stage t, (m3/hour), the 
calculation of the corresponding ORRn is based on the Equa-
tion 8 and the values in Table 2; LOk is the location of Slick k, 
(x, y); Vti is the maximum value of Vtik, (m3); RV is the re-
maining oil on each slick (m3); and IV is the initial volume of 
spilled oil on each oil slick (m3). 

 

3.3. Oil Weathering  

In order to further test the feasibility of the ASO ap-
proach with oil weathering, three major weathering processes, 
evaporation, emulsification, and dispersion, is considered. The 
inputs for the oil weathering processes are shown in Table 3. 

According to Fingas (2011), the empirical equation of 
evaporation for the Statfjord oil is as follows: 

 
2.67 0.06 ( 273.15) ( )

100

T Ln t
FE

   
  (17) 

 
The simulation of oil dispersion is based on the Equation 

14. Accordingly, the global optimization model can be genera- 
ted as follows: 

Table 3. Statjord Crude Oil Characteristics for the Weathering Processes of Evaporation and Dispersion (Nazir et al., 2008) 

Parameter Value Parameter Value 

Temperature (T) 298 K Wind speed (U) 5 m/s 
Vapor pressure (Psat) 10.4 Pa Molecular weight (M) 128.2 g/mol 
Density of oil (ρsat) 832 kg/m3 Gas constant (R) 8.314 m3∙Pa/mol∙K 
Viscosity of the oil (µ) 3.03 cP Interface tension of oil and water (St) 2000 dyne/m 
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Figure 4. Net oil recovery rates for the skimmers (Schulze, 
1998; Li et al., 2012, 2014). 
 

 
Figure 5. Optimal routes of the responding vessels based on 
ASO modeling. 
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Based on the assumptions that only the provided weathe- 

ring processes will occur during an oil spill and no sedimenta- 
tion will happen during the weathering, the corresponding 
ASO problem for offshore oil spill recovery can be finally 
formed and solved by programming software (i.e., MATLAB® 

with LINDO API®).  

Ship A
Time
(hr)

Action

0
0.2 Transport to Slick 4

Oil recovery on Slick 4

3
3.6 Transport from Slicks 4 to 1

Oil recovery on Slick 1
5

5.3 Transport from Slicks 1 to 5

Oil recovery on Slick 5

9
9.8

Transport from Slicks 5 to 3

Oil recovery on Slick 3

Transport from Slicks 6 to 2
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Oil recovery on Slick 6

17
17.8

19

Transport from Slicks 3 to 6

Oil recovery on Slick 2
Stop operation

21

Ship B
Time
(hr)
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0
0.2 Transport to Slick 7

Oil recovery on Slick 7

6

Oil recovery on Slick 2

Transport from Slicks 7 to 2

Transport from Slicks 7 to 2

14
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19
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Transport to Slick 4
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9
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Oil recovery on Slick 3

17
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19

Transport from Slicks 1 to 3

Oil recovery on Slick 6

Stop operation
21

6.3

14.3 Transport from Slicks 2 to 7

19.3

6.6

Transport from Slicks 1 to 5

11
11.3 Transport from Slicks 5 to 1

Oil recovery on Slick 1

Transport from Slicks 3 to 6

20.1
Oil recovery on Slick 7

 

Figure 6. Detailed schedules of the responding vessels. 
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4. Results and Discussion 

4.1. Modeling without Oil Weathering 

The modeling results indicated that, without considering 
the oil weathering processes, the time window for achieving 
an oil recovery rate of 90% was 21 hours based on the optimal 
vessel routes determined by the ASO modeling.  

The routes of three responding vessels are shown in Fig- 
ure 5 and the detailed schedule of each vessels are listed in 
Figure 6. Due the closest distances to two large slicks (Slicks 
2 and 7) and stable relatively stable efficiency of oil recovery, 
Ship B with SK2 was mainly working on these two slicks. No 
interaction between Ship B and other two ships was identified 
until the late stage (after the 15th hour). Furthermore, strong 
interactions were observed between Ships A and C. However, 
due to the long distance from Ship C to the slicks, it took 2.9 
hours for this ship to arrive in the first slick. No oil recovery 
was made by this vessel at the first three hours and no interac-
tion occur between Ships A and C. From the 3rd to the 19th 
hour, close interactions tool place between these two ships. 
Because the recovery efficiency of the skimmer on Ship C 
(SK3) was high and had less significant decrease than the one 
on Ship B (SK1) (Figure 4), the allocation of Ship A varied 
according to the allocation of Ship B. Since the distances were 
far from these two ships to Slicks 2 and 7, the interactions bet- 
ween Ships A and C occurred on Slicks 1 and 3-6. Due to the 
unacceptable decrease of recovery efficiency, Ship A stopped 
operation after the 19th hour. Interactions of all three ships 
happened after the 17th hour. 

Figure 7 depicts the amount of oil recovered by each ship 
at each stage, while Figure 8 indicates the cumulative amount 
of recovered oil. Although the recovery amounts fluctuated 
during the whole operation period, the global trends of recov-
ery decreased along with time. Due to the strong interactions 
between Ships A and C, the fluctuations of the amount of oil 
recovered by these two ships were more significant than that 
collected by Ship B. Furthermore, as controlled by the global 
objecttive, the overall oil recovery by all ships kept increasing 
until the ultimate goal was achieved. 

In order to demonstrate the advantages of the ASO ap-
proach, a comparison was made between the ASO and the 
shortest distance optimization in offshore oil spill recovery. In 
the shortest distance modeling, the allocations of ships were 
only driven by the short distance between each ship and each 
oil slick. The ships left the slicks until 90% of oil recovery 
was achieved on each slick. The comparison results are illus-
trated in Figure 9. At the early stage (the 1st to the 5th stage), 
oil recovery efficiencies derived from the two approaches 
were almost the same. Since the 5th stage, the recovery effi-
ciency of the shortest distance approach became lower than 
the one based on the ASO. Furthermore, this inferiority be-
came more significant along with time. To achieve the 90% 
oil recovery rate, the settings from the shortest distance re-
quired 23 hours while the settings from the ASO approach 
only required 21 hours.  

 
Figure 7. Oil recovery by each ship at each stage. 
 

 
Figure 8. Cumulated oil recovery by each ship. 
 

 
Figure 9. Comparison of oil recovery by ship routes deter-
mined by ASO and shortest distance. 
 
4.2. Modeling with Oil Weathering 

Based on the ASO model developed for oil recovery and 
the equations for evaporation, emulsification, and dispersion 
(Equation 18), the ASO model for oil recovery with weathe- 
ring (evaporation, emulsification, and dispersion) was develo- 
pped and solved. The modeling results indicated that, by con-
sidering the weathering processes, the time window for achi-  
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Figure 10. Cumulated oil recovery by each ship with oil 
weathering. 
 

 
Figure 11. Transport and fate of spilled oil during the opera-
tional period. 
 

eving the 90% oil recovery was 18 hours based on the optimal 
routes of responding vessels determined by the ASO app- 
roach.  

The optimal routes and schedules of ships based on the 
ASO with consideration of weathering were similar to the 
ones not considering weathering. As shown in Figure 10, the 
amount of oil recovered by each ship was lower than the 
amount without weathering, which was caused by a 15% re-
duction of oil due to evaporation and dispersion (Figure 11). 
Furthermore, the increase trends of oil recovery were less sig- 
nificant. This is because the additional decrease of slick thic- 
kness (caused by evaporation and dispersion) further lowered 
the efficiencies of skimmers mounted on ships (Figure 4). Bas- 
ed on the ASO approach, the optimal routes of vessels had led 
to 75% oil recovery, 12% oil evaporation, and 3% oil disper-
sion.  

5. Conclusions 

An agent-based simulation-optimization (ASO) coupling 
approach has been developed to support oil recovery and de- 
vice allocation during offshore oil spill responses, providing 
sound decisions for oil recovery in a fast and dynamic man-

ner. The ASO approach was developed based on the integra-
tion of a global optimization approach, simulation-based dy-
namic mixed integer nonlinear programming (DMINP), and 
an agent-based model (ABM) for reflecting devices interac-
tions. The DMINP approach converted the simulation model 
into constraints which were dynamically linked to the deci-
sion variables, and broke the time series into multiple stages 
according to controllable time intervals in practical manner. 
The ABM captured the interactions between components in 
offshore oil spill recovery systems and integrate with global 
optimization. Therefore, The ASO approach could provide 
sound decisions for oil recovery under highly interactive con-
ditions and therefore improve recovery efficiency. 

In the case study, the developed approach was applied to 
determine the allocation of 3 responding vessels from 7 diffe- 
rent locations spilled oil slicks. The modeling results indicated 
that the optimal routes of vessels could lead to a minimum 
operational time window of 21 hours to achieve the 90% oil 
recovery rate, which was greatly improved from the tradition-
al method that is based on the shortest distance (23 hour). 
This demonstrates the superiority of the ASO approach. The 
feasibility of the ASO approach in being integrated with other 
simulation processes (e.g., weathering process) was also test-
ed with the consideration of evaporation and dispersion pro-
cesses. The results demonstrate that the proposed approach 
can timely and effectively support optimal allocation of devi- 
ces and control of operation under dynamic conditions and 
improve recovery efficiency. 

The results of case study have proved the feasibility of 
the proposed ASO approach in supporting the oil recovery by 
skimming. Extensively, the ASO approach is also capable to 
dynamically support the whole process of oil recovery oil, in- 
cluding the devices allocation, deployment, and operation of 
containment, skimming, surfactant utilization, in-situ burning, 
etc. 

In future studies, hydrodynamic simulation and more we- 
athering processes will be considered to further test the feasi-
bility and capability of the developed ASO approach. Future 
research efforts may also include the consideration of possi-
bilistic uncertainties for incorporating expert knowledge into 
the decision making process of offshore oil spill responses. 
Testing of the developed method through real-world applica-
tions is undergoing with the collaboration with local oil spill 
responders. 
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