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ABSTRACT. Object oriented image classification (OOIC) and neural network aided Markov Chain (MC) modeling tools were used to 
map and predict land use and land cover (LULC) changes. A case study in the Kiskatinaw River Watershed (KRW) of Canada was pre- 
sented. With an overall classification accuracy of 90.45%, the multi-temporal Landsat satellite images of KRW were analyzed for 11 
selected LULC types. It was found that KRW experienced a significant wetland depletion along with a change in forest cover types from 
1984 to 2010. The vulnerability of LULC change in different parts of KRW was predicted through MC modeling based on the obtained 
transition probability, and the results indicated slight LULC changes from 2010 with a wetland depletion of 67.89 km2. In summary, 
the proposed methods generated valuable results for informed LULC management and hold the potential to be applied to other water-
sheds. 
 
Keywords: IDRISI selva, land use and land cover (LULC) change, landsat imagery, Markov Chain model, object oriented image classi- 
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1. Introduction　 

Effective land use and land cover (LULC) change detec-
tion has become a critical worldwide concern in recent years 
due to varied land use practices under burgeoning population 
and economic development (Weinzettel et al., 2013; Jia et al., 
2015). Remote sensing (RS) technology is a valuable tool for 
extracting LULC information and generating LULC change 
inventory. Digital satellite image classification, where image 
pixels are assigned to real-world LULC feature types, is the 
most commonly used RS analysis approach for change detec- 
tion. Conventional per-pixel based image classification (PBC) 
techniques classify each image pixel individually by consider- 
ing their spectral information, but they ignore textural and con- 
textual imagery information (Myint et al., 2011; MacLean et 
al., 2013). However, meaningful interpretation of real-world 
LULC features requires an evaluation of multiple properties, 
not just spectral signature. For example, there could be LULC 
features whose spectral properties are dissimilar, but the shape 
or neighbourhood relationship are unique providing an oppor- 
tunity for contextual, textural and shape evaluation in the image 
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interpretation procedure (Liu et al., 2008; Blaschke et al., 2014). 
To address such problem, the object oriented image classifica- 
tion (OOIC) has gained popularity and was recognized to be 
capable of generating less noisy LULC maps as compared to 
PBC approach (Robertson and King, 2011; Blaschke et al., 
2014). It classifies imagery information based on the characte- 
ristics of image segments (i.e., a group of spectrally homoge- 
neous pixels), such as segment size, shape, texture, and zonal 
statistics (Cai et al., 2009a, b; Li et al., 2009, 2011; Blaschke, 
2010; Chen et al., 2013; MacLean et al., 2013).  

Although many researchers have claimed that OOIC can 
generate more accurate results for higher-resolution satellite 
imagery such as QuickBird and IKONOS, OOIC has also been 
successfully used for satellite imagery with medium resolution 
(e.g., Landsat Thematic Mapper) (Redoux and Defourny, 2007; 
Vieira et al., 2012). This is particularly important by noting 
that Landsat image data have been available since 1972 for 
every part of the world and can be freely downloaded from 
U.S. Geological Survey (USGS) data archives and other govern- 
mental data sources. Such imagery data are the most effective 
and easily acquirable source for historical satellite data analysis 
(Zhang et al., 2011; Hansen and Loveland, 2012). For example, 
Frohn et al. (2011) used OOIC and Landsat-7 ETM+ imagery 
for classifying wetlands, and their results illustrated higher 
accuracy compared to conventional PBC methods. Lyons et al. 
(2012) also utilized OOIC to analyze Landsat satellite imagery 
for long-term LULC mapping from 1972 ~ 2010 in the coastal 
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environment of South East Queensland, Australia. In addition 
to RS analysis, LULC modeling has become a critical compo- 
nent in land use planning and sustainable environmental mana- 
gement. A variety of LULC models has been developed, such 
as the regressional model and cellular automata mechanistic 
model (Mas et al., 2014; Verstegen et al., 2014). In general, 
complex LULC models are capable of generating more robust 
outputs, but their simulation requires a rigorous and difficult 
parameterization (Benito et al., 2010). This particularly appears 
as a significant issue in study areas with limited data availabi- 
lity. A simple LULC model using Markov Chain (MC) might 
be useful in this regard (Strigul et al., 2012; Tong et al., 2012). 
The MC model assumes land use at a given time as a discrete 
state and projects future land use as a function of its previous 
state (Iacono et al., 2015). It calculates transition matrix for 
various LULC features based on current driving forces and 
can predict future LULC change pattern if such driving forces 
continue (Mas et al., 2014). To obtain the required LULC tran- 
sition matrix, a multi-layer perception (MLP) neural network 
algorithm can be used. It can fit complex nonlinear relationship 
between driving variables and LULC change (Eastman, 2012a, 
b; Mas et al., 2014), and many studies have reported the robu- 
stness of such algorithm in LULC modeling (Almeida et al., 
2008; Lin et al., 2011; Fan and Huang, 2012; Mas et al., 2014). 
The relatively simple and intuitive logic for prediction makes 

MC modeling an attractive option over more complex and data- 
intensive stochastic models for land use projections.   

One of the significant limitations of the previous MC 
model based land use projection studies was that they were 
only based on existing land use maps, aerial photographs or 
field survey data, and thus the quality of modeling inputs in 
terms of spatial distribution was greatly restricted. Spatial va- 
riation is critical in MC land use modeling because it produces 
spatially explicit land use prediction for individual pixels in 
the raster (e.g., satellite image) and considers spatial hetero- 
geneity in the social and biophysical environments (Verburg et 
al., 2006). Satellite images with good spatial resolution can 
provide improved and spatially distributed data inputs for MC 
modeling, but the integration of satellite image analysis with 
MC modeling for land use prediction was rarely reported in 
practice. Moreover, a few research studies combining satellite 
remote sensing with MC model used PBC based classification 
that has been demonstrated to be less efficient (Mas et al., 
2014). For example, Guan et al. (2008) utilized PBC based sa- 
tellite image classification and MC modeling for land use ch- 
ange prediction in Japan. Revesty (2011) combined the analy- 
sis of Landsat satellite image with MC models for a land use 
modeling case in Iran. Rimal (2011) integrated supervised cla- 
ssification of Landsat data with MC modeling for LULC change 
analysis in Nepal. This underlines the need to combine OOIC 
based satellite image analysis with MC modeling to predict fu- 
ture land use changes for number of benefits: (1) better spatial 
data distribution provided by temporal satellite images, (2) 

more accurate image classification provided by OOIC techni- 
que, (3) last but not the least, enhance the overall predictive 
capability of MC models with data input from OOIC derived 
LULC maps. Therefore, the objective of this study is to present 
a method that combines OOIC with MC modeling along with 

an MLP neural network algorithm for LULC change detection 
and prediction, through a case study in the Kiskatinaw River 
Watershed (KRW) in Canada. The study watershed is a remote 
and forested area located in the northeastern part of British 
Columbia and is marked by the significant insufficiency of 
spatial data availability. No prior research related to LULC 
change and modeling within the watershed was reported to 
date. Taken together, the present study is not only contributing 
to the improvement of science regarding land use prediction 
but also providing valuable spatial information to the study 
watershed for many future studies. Thus, the specific goals of 
this study are (i) to detect LULC change in KRW from 1984 
to 2010, (ii) to identify the transition probability of various 
LULC classes based on the current trend of change, and (iii) 
to predict LULC up to 2020. The Landsat TM and ETM+ sate- 
llite images for years 1984, 1999 and 2010 were used for cap- 
turing LULC changes and for further analysis. The obtained re- 
sults can provide a sound basis for informed watershed ma- 
nagement in the KRW.  

2. Overview of Study Watershed 

As a densely forested watershed with an area of 2,836 
km2, Kiskatinaw River Watershed (KRW) is located in north-
eastern British Columbia (BC), Canada (Figure 1). It represents 
a rain-dominated hydrological system with an annual average 
precipitation of 499 mm, including 320 mm of rain and 179 
mm of snow. The Kiskatinaw river (i.e., the main channel) plays 
a vital role in northeastern BC’s ecosystem. Its average annual 
flow rate is 10 m³/s, but the flow can drop to 0.052 m³/s in Ja- 
nuary (DEUS, 2003). KRW has a number of water use values, 
such as drinking water supply, agriculture, timber harvesting, 
wildlife, cattle grazing, oil and gas exploration, mineral resour- 
ces extraction, and recreational parks. In this study, 11 LULC 
types were identified based on preliminary reconnaissance sur- 
vey and interviews with relevant stakeholders in KRW. These 
include cropland (CL), coniferous forest (CF), deciduous forest 
(DF), mixed forest (MF), planted and regrowth forest (P/RF), 
forest cut block (CB), forest fire affected land (FF), pasture 
(PS), waterbody (WT), wetland (WL), and built-up area (BA). 
KRW is included in the Montney shale gas play which is one 
of the major shale basins in North America. Recent shale gas 
exploration and other anthropogenic activities (e.g., removal 
of trees affected by mountain pine beetles, increasing agricul-
tural and farming activities) have been changing the LULC 
dynamics in this watershed. 

3. Methods 

3.1. Data Description  

Both Landsat 4/5 Thematic Mapper (TM) and Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) satellite images 
were employed in this study. The imagery was selected by con- 
sidering a number of factors, including (a) study objective (i.e., 
capturing LULC change from early 1980s to 2010), (b) availa- 
bility of satellite images, (c) quality of images (i.e., cloud free 
analyzable imagery), and (d) acquisition time of image (i.e., 
reducing seasonal variability). As a result, three images were 
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Figure 1. Overview of KRW watershed and its channel network. 
 

selected and downloaded from the data archive at USGS Earth 
Resources Observation and Science Center (EROS) as indica- 
ted in Table 1, including 1984 Landsat 4/5 TM imagery, 1999 
Landsat ETM+ imagery, and 2010 Landsat 4/5 TM imagery 
which represent the early stage of industrial development, the 
beginning of oil and gas industry booming, and the current land 
use status in KRW, respectively. In order to keep the analysis 
free from seasonal variability effects, all of the images were 
either from late July or early August within a span of 10 ~ 18 
days. Two separate scenes with the path/row of 48/21 and 48/22 
were used to cover the entire watershed. The downloaded ima- 
ges were Landsat level 1T products which were corrected at 
the source for radiometric, geometric and precision errors. No 
additional atmospheric correction was incorporated because 
this study used single-date images (of each year) for land use 
classification under which atmospheric correction had minimal 
effects (Fraser et al., 1977; Kawata et al., 1990; Song et al., 
2001). Moreover, the training data for classification were ga- 
thered from the respective classified images, and atmospheric 
correction cannot enhance the classification accuracy in such 
cases (Song et al., 2001).  

 

3.2. Image Pre-processing  

Figure 2 presents the framework of image pre-processing 
and classification that involves the use of several software pa- 
ckages. Pre-processing was mostly performed using PCI Geo- 
matica 10.2, and image analysis was conducted with IDRISI 
Selva 17.0, while ArcGIS 10.1 and Quantum GIS 1.7 were used 

Pre-processing Landsat imagery downloaded for 1984, 1999 & 2010 
(scene from Path 48, Row 21 & Path 48, Row 22) 

Layer stacking of bands (1-5 & 
7): Transfer & Translate  

Mosaicing of scenes, 
Clipping to KRW area 

Image classification 

Segmentation of image Generation of training profile 

MAXLIKE classification Final image classification 

Post-classification  
analysis Accuracy assessment  

Manual editing of the classified output to 
include missing features  

LULC maps generation for 
1984, 1999 & 2010  

 
Figure 2. Overview of Landsat image processing and  

 analysis framework. 
 
used at different phases of the analysis and map generation. 
After image downloading, the individual Landsat bands were 
stacked sequentially from band 1 to 7 using PCI Geomatica. 
The two new image scene files were then mosaicked to form a 
single dataset which was later clipped to the full extent of the 
study watershed. 

 
3.3. Object Oriented Image Classification (OOIC) 

OOIC was conducted using the segment classifier in 
IDRISI Selva 17.0 that consisted of three mutually dependent 
modules, “SEGMENTATION”, “SEGTRAIN” and “SEGCLA- 
SS” (Eastman, 2012b). The Landsat bands (1 to 5 & 7) were 
segmented using a moving window to generate a variance image. 
The segmentation process is crucial in OOIC classification 
since it may generate image objects that are too large or too 
small and do not represent the actual object of interest on the 
ground (Blaschke et al., 2014). The study watershed is densely 
forested and comprises numerous small linear features and cut 
blocks which attribute to the industrial disturbances (e.g., na- 
tural gas development). Therefore, the image segmentation and 
moving window parameters were required to capture these 
small-scale disturbances. In general, large similarity tolerance 
value of the moving window generates larger image objects 
(Benz et al., 2004; Martha et al., 2011). Various combinations 
of moving window parameter values were attempted to find 
the segmentation output that best matches the field situation, 
and the following parameter values were then obtained and 
used for segmentation: window width and height of 3 × 3, 

Table 1. Description of Satellite Images Used in LULC Change Detection 

Date of image Satellite imagery Spectral resolution1 Spatial resolution 
July 17, 1984 Landsat 4/5 TM Band 1 to 5 & 7 30 m 
August 4, 1999 Landsat ETM+ Band 1 to 5 & 7 30 m 
July 25, 2010 Landsat 4/5 TM Band 1 to 5 & 7 30 m 
1 Thermal band 6 was excluded from the analysis. 
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weight mean factor of 0.5, weight variance factor of 0.5, and 
similarity tolerance value of 10. After this step, the “SEGTR- 
AIN” module was used to create a training profile from the 
sampled training data and a signature file (for each LULC type). 
A combination of band 5-4-3 (short-wave infrared - near in-
frared - red bands) was selected for generating RGB compo-
site images. Previous research found that short-wave infrared 
and infrared bands along with visible band could provide ma- 
ximum information and color contrast to differentiate LULC 
features particularly across the diverse forest and agriculture 
landscape like this study watershed (Lymburner et al., 2000; 
Cohen and Goward, 2004). In addition, several factors were 
considered in selecting field sampling locations for creating 
training profile, including (a) at least 30 sampling polygons 
for each LULC type, (b) spatial distribution of data polygons, 
and (c) physical accessibility to sampling locations. The gene- 
rated training file was used for a supervised classification th- 
rough the maximum likelihood algorithm in IDRISI. The “SE- 
GCLASS” module was then used to complete the final image 
classification based on the maximum likelihood output and the 
segmented image. Such procedures would result in less noisy, 
smoother and improved classification outputs which were im- 
ported into ArcGIS 10.1 for land use map creation. They were 
also analyzed on IDRISI Selva 17.0 for accuracy assessment, 
change detection and LULC modeling (Figure 2). 

 
3.4. Accuracy Assessment 

Accuracy assessment is usually performed either using a 
new set of field reference data or by comparing with a previ-
ously classified reference map for selected sampling points 
(Olofsson et al., 2014). In this study, accuracy assessment was 
only conducted using field data of KRW for the image classi-
fication output of 2010 because no reference data and LULC 
maps were available for 1984 and 1999. A stratified random 
sampling method was used for field reference data collection 
by dividing KRW into a rectangular matrix of cells with each 
cell having an area of 25 km2, and this resulted in 113 cells in 
total. Then, 5 random points were generated within each cell. 
A minimum of 20 sampling points was selected for each LULC 
type by randomly adding extra points within the cells when 
necessary for the LULC types covering a small area (e.g., cro- 
pland, water). Each of these points was checked in the field or 
with higher-resolution satellite imagery where inaccessible. 
Every match between classified LULC map and reference data 
was counted as 1, and the mismatch was counted as 0. These 
were then summarized into an error matrix. The overall accu-
racy (Aoverall), user’s accuracy (Auser), producer’s accuracy 
(Aproducer), and Kappa coefficient (K) were calculated as 
follows (Congalton and Green, 2009): 

,overall T correct TA N N  (1) 
 

,user L correct LA N N  (2) 
 

,producer R correct RA N N  (3) 
 

2( ) ( )K NA B N B    (4) 

where NT,correct and NT represents the total number of samples 
that were correctly classified and the total number of samples 
considered for accuracy assessment, respectively; NL,correct and 
NL refers to the total number of samples which were correctly 
classified for a given LULC type (e.g., cropland, coniferous fo- 
rest) and the total number of samples in that particular LULC 
type, respectively; NR,correct and NR represents the total number 
of samples which were correctly classified for a given LULC 
type and the total number of samples that were classified to 
that particular LULC type, respectively; N is the total number 
of observations included in the error matrix; A is the sum of 
correct classifications contained in the diagonal elements; and 
B is the sum of the products of row total and column total for 
each LULC type in the error matrix (Congalton and Green, 
2009). 

 

3.5. LULC Change Detection and Modeling 

Figure 3 presents the method framework of LULC change 
detection and modeling. The “Change Analysis” module of 
Land Change Modeler (LCM) in IDRISI Selva 17.0 was used 
to evaluate LULC change (i.e., the gain and loss in surface 
area for each LULC type) between time T1 and T2. Two sepa-
rate sets of time period were used, including one from 1984 to 
1999 (i.e., T1 = 1984 and T2 = 1999) and another from 1999 to 
2010 (i.e., T1 = 1999 and T2 = 2010). After change analysis, 
the prediction of LULC in the future time period was conduc- 
ted using Markov Chain (MC) modeling by assuming that fu- 
ture LULC state Xt +1 at the time (t + 1) depends on the current 
state Xt. The transition probability that a cell (i.e., pixel) of 
LULC type um alters into LULC type un from time t to time (t 
+ 1) was estimated to obtain a transition probability matrix P.  
The LULC state Xt + 1 can then be estimated as follows (Benito 
et al., 2010):    

 
Xt + 1 = Xt × P  (5) 

 
where P is a matrix of m × m, and m denotes the number of 
states (i.e., the number of LULC classes). P between a pair of 
LULC classes i and j can be stated as: 

 

1
1

m
ijj

P


   i = 1, 2, 3, …, m  (6) 

 
The LULC transition (i.e., the surface area of LULC ch- 

ange from one type to another) occurred between 1984 and 

2010 were calculated by LCM, and the transition maps were 
then created. Based on these, the future LULC transition was 
estimated in a matrix using a multi-layer perception (MLP) 
neural network technique based on a back propagation algo-
rithm. These processes identified a number of transition sub- 
models, each comprising a single LULC transition (e.g., sub- 
model of cropland change to coniferous forest), governed by 
the same set of driving forces. As shown in Table 2, a set of 
driving variables which could affect LULC change were iden-
tified. The selection of these variables entailed careful consi- 
deration of KRW’s land use activities and data availability as 
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well as reviewing the existing literature. The variables were 
presented as different GIS layers in the modeling process, and 
were tested for their effects on modeling accuracy and skill 
statistics calculated by using the following equations (Eastman, 
2012a):  

 
1

AE
T R




 (7) 

 

1
A A

A

M E
S

E





  (8) 

 
where EA is the expected accuracy (%), T is the number of tran- 
sition in the sub-model (i.e., T = 1 since each sub-model com- 
prises only one transition), R is the number of persistent LULC 

types, S is the measure of model skill (value between -1 to +1), 
and MA is the measured accuracy obtained from MLP analysis. 
The driving variables which resulted in lower accuracy (i.e., 
below 50%) and skill statistics were removed from the analysis, 
and then the remaining variables were considered to control 
the transition process for each sub-model. For generating the 
final transition potential matrix, the MLP analysis implemented 
a training and validation procedure where it evaluated the ac- 
curacy of the model based on a specified set of image pixels 
(i.e., sample size) that experienced transition from one LULC 
class to another. In this study, the sample size was set to the 
smallest number of pixels that faced transition, and 50% of 
these samples were used for training and rest were used for va- 
lidating the model. In the MLP process, it was also attempted 
to achieve the least root mean square error by changing the 
model parameters, including the number of hidden layer nodes 

Table 2. Driving Variables Used for LULC Transition Potential Modeling 

Driving variable layer Role 
Distance to gas development 
infrastructure 

Shale gas development leads to forest clearcutting, road development, high amount of water extraction 
from the river, etc. 

Forest cut blocks planned for 
future harvesting 

Forestry cut blocks planned and mapped for future harvesting dictates the plantation and regrowth process, 
hence the shifting of forest types 

Cumulative kill by mountain 
pine beetle infestation 

Active management of mountain pine beetle attack is on action in KRW since its detection in 2004 which 
includes aggressive forest harvesting. This driver comprises the location and number of cumulative kill by 
pine beetle infestation 

Distance to major channel 
network 

The channel network controls the general hydrology, wetland dynamics, gas development activities, etc. in 
this watershed 

Digital elevation model 
(DEM) and topographic 
wetness index (TWI) 

These two variables determine the hydrological flow path (i.e., overall hydrological process), hence control 
the wetland dynamics in KRW. TWI is defined as Ln(Aupslope/tanL) (Sørensen et al., 2005) where Aupslope = 
local upslope area draining through a certain point per unit contour length, and tanL = local slope  
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Soft prediction: 
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Hard prediction: 
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Figure 3. LULC change analysis and modeling framework. 
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in the neural network. After evaluating each of the sub-models 
using the aforementioned techniques, MLP generated an accu- 
rate estimation of transition potentials in a matrix for the given 
driving variables.           

In the final step of LULC modeling, the transition proba- 
bilities estimated from MLP neural network analysis were used 
in LCM to generate the future LULC scenario in 2020 by using 
MC modeling. A transition area matrix was obtained through 
the multiplication of each column in the transition probability 
matrix by the number of pixels in a corresponding LULC type. 
It recorded the number of pixels that were expected to convert 
from one LULC type to another. Based on these transition ma- 
trices, the MC model then generated both hard and soft predic- 
tions of LULC within KRW. The hard prediction led to a LULC 
map derived by a multi-objective land allocation algorithm in 
LCM which considered all of the calculated transitions for cr- 

eating lists of host classes (i.e., losing land area) and claiming 
classes (i.e., gaining land area) (Eastman, 2012a). On the other 
hand, soft prediction identified the vulnerability of LULC 
change. Vulnerability was defined as the probability of LULC 
change for a set of transitions. It was calculated based on a me- 
thod of logical “OR” aggregation by assuming that a location 
was more vulnerable to LULC change if it was subject to seve- 
ral transitions than if it was only subject to a single transition. 
The output of logical “OR” aggregation for a pixel is equal to 
(a + b - ab), where ‘a’ represents the probability of that pixel 
transition to one LULC type and ‘b’ represents its transition 
probability to another LULC type. For example, if a particular 
pixel has a probability of 0.40 to be changed to one LULC type 
and 0.30 to another LULC type, the logical “OR” operation 
would evaluate the LULC change vulnerability as (0.40 + 0.30 
- 0.40 × 0.30 = 0.58). Both predictions were performed for the 

1984 2010 1999 

25 km 

Built-up area 
Coniferous forest
Cropland 
Cut block 

Deciduous forest
Forest fire
Mixed forest
Pasture

Planted or regrowth 
Water 
Wetland

 
Figure 4. Landsat images (5-4-3 band combination) (above) and classified LULC maps (below) in KRW for 1984 (left), 1999 

(middle) and 2010 (right). 
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year 2020. 

4. Results and Discussion 

4.1. LULC Maps and Image Classification Accuracy 

Figure 4 presents the Landsat images (5-4-3 band combi- 
nation) of KRW in the three study years and their LULC cla- 
ssification maps, while Table 3 lists the classification accuracy 
assessment results. It was observed that the dominant LULC 
types in KRW were forests. The total forest cover including 
coniferous, deciduous, mixed, and planted or re-growth forest 
accounted for 79.95, 85.59 and 86.28% of the watershed in 
1984, 1999 and 2010, respectively. It can also be found that the 
overall accuracy and Kappa coefficient reached 90.45% and 
0.89, respectively, indicating excellent agreement between cla- 
ssified output and reference data (Monserud and Leemans, 
1992). In particular, the producer’s and user’s accuracy for 
coniferous forest and water body classification reached 100% 
as the spectral signatures of these LULC types were obvious 
and greatly different from other LULC types. In fact, the co-
niferous forest appears in dark green and water in dark blue co- 
lor in the Landsat 5-4-3 composite image. Only three LULC 
types had a user’s accuracy of below 90%, including cropland 
(80%), pasture (85%), and wetland (75%). This was caused by 
similar spectral signatures between cropland and pasture as 
well between wetland and other LULC types partly due to he- 
terogeneity. 
 

Table 3. Accuracy Assessment for the Classification of Land-
sat Image in 2010 

LULC type User’s Accuracy  
(%) 

Producer’s Accuracy 
(%) 

Cropland 80.00 84.21 
Coniferous forest 100.00 100.00 
Deciduous forest 95.00 90.48 
Mixed forest 90.00 85.71 
Planted/regrowth forest 95.00 90.48 
Cut block 90.00 85.71 
Pasture 85.00 77.27 
Water 100.00 100.00 
Wetland 75.00 93.75 
Built-up area 90.00 94.74 
Forest fire 95.00 95.00 

Overall Accuracy: 90.45%; Kappa coefficient: 0.89 

 

4.2. Analysis of LULC Changes from 1984 to 2010 

Table 4 summarizes the surface area covered by different 
LULC types in KRW. This forested watershed had a large ma- 
ture forest cover from 1984 to 2010. Subtle changes were ob- 
served for the mature coniferous, deciduous and mixed forest 
types. The noticeable change of planted or re-growth forest 
type and cut blocks from 1984 to 2010 indicates the impacts 
of forestry in this area, although cut blocks in recent images 
were also attributed to the development of oil and gas industry. 
Cropland and pasture were hard to differentiate during the im-
age classification process in many cases, but they combinedly 

showed a considerable change between 1984 and 2010, highli- 
ghting the amplified agricultural and farming activities within 
KRW. An increase of 29.07 km2 of built-up area from 1984 to 
2010 is indicative of the industrial boom in this area, particu-
larly shale gas development activity. The forest fire at Hour 
Glass of KRW (in 2006) affected 33.19 km2 of surface area 
which was identified as dead and burnt forest patch. The im-
age classification analysis also identified a striking change 
(i.e., 270.92 km2) in wetland, while most of the wetland deple- 
tion (233.40 km2) occurred between 1984 and 1999. This sig-
nificant depletion warrants further investigation to understand 
the wetland change dynamics. Considering the significance of 
such wetland depletion and classification accuracy (user accu- 
racy – 75%) of the wetland, the analysis method in this study 
should be revisited for this particular LULC type in future. The 
combination of multiple data and different training and samp- 
ling techniques may produce more accurate output for wetland 
detection (Zhang et al., 2011). 

Figure 5 presents the gain and loss of surface areas for all 
LULC types in KRW. From 1984 to 1999, there was a high ne- 
gative change for the deciduous forest (i.e., -135.86 km2) and 
wetland (-233.40 km2), indicating higher loss than any gain in 
the surface area for these two LULC types. In contrast, other 
LULC types had a higher gain than loss, leading to a positive 
net change of surface area, including cropland (8.43 km2), coni- 
ferous forest (116.39 km2), mixed forest (99.60 km2), planted 
and re-growth forest (80.14 km2), pasture (45.1 km2), and built- 
up area (21.15 km2). The change of forest types may be attri- 
buted to the active forest industrial activities. From 1984 to 
1999, the deciduous forest harvesting seemed higher than other 
forest types. A large increase in planted and re-growth forest 
indicates that the harvested forest area was recovered by a 
planned and managed forestry practice in KRW. The increase 
in cropland, pasture, and built-up area highlights the escalating 
land use activity. However, during the period from 1999 to 
2010, more LULC types were associated with a negative net 
change of surface area, including cropland (-12.88 km2), coni- 
ferous forest (-67.61 km2), mixed forest (-85.69 km2), cut block 
(-17.08 km2), water body (-0.7 km2), and wetland (-37.52 km2). 
The negative change of coniferous and mixed forest could be 
caused by their harvesting. There was a continuing depletion 
trend of the wetland during this time period although at a slo- 
wer rate than the period from 1984 to 1999. Other LULC types 
exhibited a positive net change of surface area from 1999 to 
2010, including deciduous forest (154.55 km2), planted and 
re-growth forest (17.15 km2), pasture (8.67 km2), built-up area 
(7.92 km2), and the forest fire affected area (33.19 km2). The 
increase in deciduous forest confirms that the harvested forest 
has been restocked. The small but constantly increasing built-up 
area underscores the ongoing development activities in KRW.  

 
4.3. Transition Potential and LULC Change Prediction 

Each LULC transition sub-model was evaluated for its 
combination of governing driving variables. For example, the 
sub-model of planted or re-growth forest transition to decidu-
ous forest required two governing driving variable layers, incl- 
uding “forest cut blocks planned for future harvesting” and  
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Figure 5. Analysis of LULC change during two periods, (a) 

1984 ~ 1999, (b) 1999 ~ 2010. 

“cumulative kill by mountain pine beetle infestation”. Four 
governing driving variables were identified for the sub-model 
of wetland transition to pasture, including “distance to gas de- 
velopment infrastructure”, “distance to major channel net-
work”, “topographic wetness index (TWI)”, and “digital ele-
vation model (DEM)”, with the modeling accuracy and skill 
measure of 78.55% and 0.57, respectively. It should be noted 
that the performance of LULC transition sub-model was affec- 
ted by insufficient spatial data for planning, policy and regu-
latory variables in KRW.  

Table 5 lists the LULC transition probability matrix from 
2010 to 2020 which was estimated based on the aforemen-
tioned transition sub-models (that captured the LULC transi-
tions from 1984 to 1999 and from 1999 to 2010). Coniferous 
(0.92) and deciduous (0.82) forests showed a high probability 
of maintaining their current status. However, the mixed forest 
only had a probability of 0.54 for maintaining its current state, 
and it could convert to coniferous forest at a probability of 
0.19. The probability of planted or re-growth forest conversion 
to deciduous forest was 0.33, while it will remain its current 
state at a probability of 0.40. Such probability estimates repre- 
sent the planned and healthy forestry practices in KRW since 
no major depleting trend for any forest type is expected. The 
probability matrix also shows that the transition from cropland 
to pasture (0.51) and vice-versa (0.14) will be continuing, and 

Table 4. Surface Area Covered by Each LULC Type in a Particular Year in KRW (Total Study Area: 2,836 km2) 

LULC type Study year 
1984 1999 2010 

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%) 
Cropland (CL) 23.27 0.82 31.70 1.12 18.82 0.66 
Coniferous forest (CF) 1059.06 37.35 1175.45 41.44 1107.84 39.05 
Deciduous forest (DF) 796.65 28.09 660.79 23.30 815.34 28.83 
Mixed forest (MF) 351.97 12.41 451.57 15.91 365.88 12.87 
Planted/regrowth forest (P/RF) 59.94 2.10 140.08 4.94 157.23 5.53 
Cut block (CB) 44.70 1.58 43.46 1.54 26.38 0.93 
Pasture (PS) 6.53 0.23 51.63 1.82 60.30 2.12 
Water (WT) 21.49 0.76 21.18 0.75 20.48 0.72 
Wetland (WL) 454.22 16.02 220.82 7.79 183.30 6.45 
Built-up area (BA) 18.17 0.64 39.32 1.39 47.24 1.67 
Forest fire affected land (FF) 0.00 0.00 0.00 0.00 33.19 1.17 

 
Table 5. Probability Matrix of LULC Transition from 2010 to 2020 

Given  
LULC 
type 

Probability of transition to 

CL CF DF MF P/RF CB PS WT WL BA 

CL 0.16 0.00 0.05 0.00 0.10 0.01 0.51 0.00 0.13 0.04 
CF 0.00 0.92 0.01 0.02 0.01 0.01 0.00 0.00 0.02 0.01 
DF 0.00 0.00 0.82 0.06 0.10 0.00 0.00 0.00 0.01 0.01 
MF 0.00 0.19 0.14 0.54 0.03 0.02 0.01 0.00 0.06 0.01 
P/RF 0.04 0.00 0.33 0.00 0.40 0.00 0.10 0.00 0.13 0.00 
CB 0.04 0.04 0.05 0.37 0.06 0.02 0.13 0.00 0.26 0.03 
PS 0.14 0.00 0.03 0.00 0.03 0.05 0.59 0.00 0.15 0.01 
WT 0.00 0.00 0.00 0.01 0.00 0.00 0.04 0.92 0.03 0.00 
WL 0.00 0.23 0.14 0.30 0.00 0.00 0.02 0.00 0.31 0.00 
BA 0.04 0.01 0.02 0.00 0.00 0.03 0.03 0.00 0.03 0.84 

1984 ~ 1999 

1999 ~ 2010 
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Figure 6. Vulnerability to LULC change in KRW from 2010 
to 2020. 

 
Table 7. Surface Areas of LULC Types Obtained from Hard 
Predictions 

LULC 
type 

2010  2020  
Area (km2) Ratio (%) Area (km2) Ratio (%) 

CL 18.82 0.66 18.82 0.66 
CF 1107.84 39.06 1164.88 41.08 
DF 815.34 28.75 800.01 28.21 
MF 365.88 12.90 324.51 11.44 
P/RF 157.23 5.55 201.88 7.12 
CB 26.38 0.93 34.13 1.21 
PS 60.30 2.13 63.57 2.24 
WT 20.48 0.72 20.79 0.73 
WL 183.30 6.46 115.41 4.07 
BA 47.24 1.67 58.81 2.07 
FF 33.19 1.17 33.19 1.17 

there is a probability of 0.92 that the open water bodies will 
not change. It can be found from Table 5 that wetland to forest 
conversion will remain active, with the probability of 0.23 for 
transition to coniferous forest, 0.14 for transition to deciduous 
forest, and 0.30 to mixed forest, respectively. There is only a 
probability of 0.31 that wetland extent will be unaffected, alth- 
ough there is a noticeable likelihood of alteration of other 
LULC types to wetland, such as the transition from cropland 
to wetland (0.13), from planted or re-growth forest to wetland 
(0.13), from cut block to wetland (0.26), and from pasture to 
wetland (0.15).  

A transition area matrix (Table 6) was obtained based on 
the transition probability matrix, and the soft and hard predic-
tion maps were then produced. Figure 6 presents the soft predic- 
tion output as a vulnerability map of LULC change from 2010 
to 2020. Figure 7 presents the hard prediction as the LULC 
map of 2020, with forest fire affected area in 2010 LULC map 
being excluded from the transition modeling process. The soft 
prediction provides a more comprehensive assessment of LULC 
change potential by illustrating the areas with varying degree 
of vulnerability. It can be found that most of the southern por-
tion of KRW is highly vulnerable to LULC change in 2020. 
This is reasonable because this part of the watershed has a large 
area of wetland which has exhibited the most significant deple- 
tion in the past years. The considerable vulnerability was also 
observed in the northern portion of KRW where the continu-
ing intensified oil and gas development along with increased 
agricultural and farming activities are expected. The middle 
portion of KRW is characterized by mixed vulnerability to 
change while most of the open water body showed nearly no 
vulnerability to change. 

Table 7 lists the surface areas of LULC types in 2010, and 
2020 calculated from the hard predictions (Figure 7). Only sli- 
ght LULC changes for these years were expected. For exam-
ple, forest cover will experience minor changes with a surface 
area increase of 45 km2 from 2010 to 2020. An increase of 
11.57 km2 for built-up area and 7.74 km2 for cut block area 
from 2010 to 2020 were also predicted, and this may be due to 
the expected escalating industrial activities during the predic-
tion period. In addition, the depleting trend of wetland appears 
to continue, with another 67.89 km2 of decline from 2010 to 
2020. Such wetland depletion needs further examination to 

Table 6. Expected Transition of Pixels from 2010 to 2020 

Pixels in Expected transition to 
CL CF DF MF P/RF CB PS WT WL BA 

CL 20913 0 0 0 0 0 0 0 0 0 
CF 0 1192282 4501 10791 5488 7338 0 0 9558 3453 
DF 0 0 831158 28544 43795 0 0 0 3960 3141 
MF 0 38905 29027 319499 6464 0 0 0 12602 0 
P/RF 0 0 29036 0 145759 0 0 0 0 0 
CB 0 0 0 0 0 29312 0 0 0 0 
PS 0 0 0 0 0 0 66995 0 0 0 
WT 0 0 0 0 0 0 0 15051 0 0 
WL 0 22838 14210 30223 0 0 2068 0 134392 0 
BA 0 0 0 0 0 0 0 0 0 52499 

8

Vulnerability to change

0.70 - 0.80
0.80 - 0.90
0.90 - 1.00
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identify the probable causes. 
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Water

Wetland 25 km

Figure 7. LULC map of 2020 from hard prediction. 

5. Conclusions

A combination of satellite image classification, GIS ana- 
lysis, and neural network aided Markov Chain (MC) modeling 
was used for land use and land cover (LULC) change detec-
tion and prediction in the Kiskatinaw River Watershed (KRW) 
of Canada. A total of 11 LULC types were classified, includ-
ing cropland, coniferous forest, deciduous forest, mixed forest, 
planted and regrowth forest, forest cut block, forest fire affec- 
ted area, pasture, water body, wetland, and built-up area. Land- 
sat TM and ETM+ satellite images of the watershed in three 
study years (1984, 1999 and 2010) were analyzed using object 
oriented image classification, with an overall accuracy of
90.45%. The results revealed that the total forest cover accoun- 
ted for 79.95, 85.59 and 86.28% of KRW in 1984, 1999 and 
2010, respectively. The dynamic variation of different forest 
types, an increase in built-up area and a significant depletion 
of wetland were also observed. In particular, the wetland was 
found to be depleted by 270.92 km2 from 1984 to 2010 in the 
study watershed of 2836 km2. After image classification, a 
multi-layer perception neural network aided Markov Chain 
model was used to predict the change of LULC in 2020. A vul- 
nerability map of LULC change in KRW was generated, and 
the surface area change of each LULC type was obtained. The 
modeling prediction indicated a slight variation of LULC types 
in 2020, but a wetland depletion of another 67.89 km2 was ex- 
pected in 2020. This study illustrates that the combination of 
different tools using Landsat satellite imagery data can provide 
an effective means for LULC change detection and prediction. 
A successful integration of highly accurate OOIC based LULC 
mapping and powerful MC modeling was performed. Although 
there was insufficient availability of spatial data for this less- 
studied watershed, the output of the remote sensing based spa- 

tial analysis could be adequate to serve as the groundwork for 
any future research within the study watershed including land 
use planning, water resource management, forest resource ma- 
nagement, and wetland conservations. The research methods 
are also easily transferrable for LULC change analysis in other 
watersheds with similar contexts.   

Acknowledgements: This research was funded by the City of Daw-
son Creek, Geoscience BC, British Columbia Oil and Gas Commis-
sion, Encana, and BP Canada. 

References 

Almeida, C.M., Gleriani, J.M., Castejon, E.F., and Soares-Filho, B.S. 
(2008). Using neural networks and cellular automata for model-
ing intra-urban land use dynamics. Int. J. Geogr. Inf. Sci., 22(9), 
943-963. https://doi.org/10.1080/13658810701731168 

Benito, P., Cuevas, J., Parra, R., Prieto, F., Barrio, J., and Zavala, M. 
(2010). Land use change in a Mediterranean metropolitan region 
and its periphery: assessment of conservative policies through 
CORINE Land Cover data and Markov models. Forest Syst., 
19(3), 315-328. https://doi.org/10.5424/fs/2010193-8604 

Benz, U.C., Hofmann, P., Willhauck, G., Lingenfelder, I., and Heynen, 
M. (2004). Multi-resolution, object-oriented fuzzy analysis of 
remote sensing data for GIS-ready information. ISPRS J. Photo-
gramm. Remote Sens., 58(3-4), 239-258. https://doi.org/10. 1016/ 
j.isprsjprs.2003.10.002

Blaschke, T. (2010). Object based image analysis for remote sensing. 
ISPRS J. Photogramm. Remote Sens., 65(1), 2-16. https://doi.org 
/10.1016/j.isprsjprs.2009.06.004 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., 
and Tiede, D. et al. (2014). Geographic object-based image anal-
ysis – towards a new paradigm. ISPRS J. Photogramm. Remote 
Sens., 87, 180-191. https://doi.org/10.1016/j.isprsjprs.2013.09.014 

Cai, Y.P., Huang, G.H., Yang, Z.F., Lin, Q.G. and Tan, Q. (2009a). Co- 
mmunity-scale renewable energy systems planning under uncer-
tainty-An interval chance-constrained programming approach. 
Renew. Sustain. Energ. Rev. 13, 721-735. https://doi.org/10.1016/ 
j.rser.2008.01.008

Cai, Y.P., Huang, G.H., Yang, Z.F. and Tan, Q. (2009b). Identification 
of optimal strategies for energy management systems planning 
under multiple uncertainties. Appl. Energ., 86, 480-495. https:// 
doi.org/10.1016/j.apenergy.2008.09.025  

Chen, J., Mao, Z., Philpot, B., Li, J., and Pan, D. (2013). Detecting 
changes in high-resolution satellite coastal imagery using an im-
age object detection approach. Int. J. Remote Sens., 34(7), 2454- 
2469. https://doi.org/10.1080/01431161.2012.743691 

Cohen, W., and Goward, S. (2004). Landsat's role in ecological appli- 
cations of remote sensing. Bioscience, 54(6), 535-545. https://doi. 
org/10.1641/0006-3568(2004)054[0535:LRIEAO]2.0.CO;2 

Congalton, R., and Green, K. (2009). Assessing the Accuracy of Re-
motely Sensed Data: Principles and Practices, CRC/Taylor & 
Francis, Boca Raton, Florida, USA. 

DEUS (Dobson Engineering and Urban Systems Ltd). (2003). 
Kiskatinaw River Watershed Management Plan, City of Dawson 
Creek, BC, Canada. 

Eastman, J.R. (2012a). Run Transition Sub-Model - Land Change 
Modeler, IDRISI Help System, IDRISI Selva, Clark University, 
Worcester, MA, USA. 

Eastman, J.R. (2012b). SEGCLASS, IDRISI Help System, IDRISI 
Selva, Clark University, Worcester, MA, USA. 

Fan, Y.R. and Huang, G.H., (2012). A robust two-step method for so- 
lving interval linear programming problems within an environ-



S.S. Paul et al. / Journal of Environmental Informatics 31(1) 30-40 (2018) 

 

40 

mental management context. J. Environ. Inf., 19, 1-9. https://doi. 
org/10.3808/jei.201200203 

Fraser, R.S., Bahethi, O.P., and Al-Abbas, A.H. (1977). The effect of 
the atmosphere on the classification of satellite observation to 
identify surface features. Remote Sens. Environ., 6(3), 229-249. 
https://doi.org/10.1016/0034-4257(77)90005-0 

Frohn, R., Autrey, B., Lane, C., and Reif, M. (2011). Segmentation 
and object-oriented classification of wetlands in a karst Florida 
landscape using multi-season Landsat-7 ETM+ imagery. Int. J. 
Remote Sens., 32(5), 1471-1489. https://doi.org/10.1080/014311 
60903559762 

Guan, D., Gao, W., Watari, K., and Fukahori, H. (2008). Land use 
change in Kitakyushu based on landscape ecology and Markov 
model. J. Geogr. Sci., 18(4), 455-468. https://doi.org/10.1007/s11 
442-008-0455-0 

Hansen, M., and Loveland, T. (2012). A review of large area moni-
toring of land cover change using Landsat data. Remote Sens. 
Environ., 122, 66-74. https://doi.org/10.1016/j.rse.2011.08.024 

Iacono, M., Levinson, D., El-Geneidy, A., and Wasfi, R. (2015). A 
Markov Chain model of land use change. TeMA J. Land Use Mo-
bility Environ., 8(3), 263-276. 

Jia, K., Liang, S.L., Liu, J.Y., Li, Q.Z., Wei, X.Q., Yuan, W.P., and 
Yao, Y.J. (2015). Forest cover changes in the Three-North Shelter 
Forest Region of China during 1990 to 2005. J. Environ. Inf., 
doi:10.3808/jei.201400268.https://doi.org/10.3808/jei.201400268 

Kawata, Y., Ohtani, A., Kusaka, and T., Ueno, S. (1990). Classifica-
tion accuracy for the MOS-1 MESSR data before and after the 
atmospheric correction. IEEE Trans. Geosci. Remote Sens., 28(4), 
755-760. https://doi.org/10.1109/TGRS.1990.573015 

Li, Y.P., Huang, G.H., and Chen, X., (2011). Planning regional energy 
system in association with greenhouse gas mitigation under un-
certainty. Appl. Energ., 88, 599-611. https://doi.org/10.1016/j.ap 
energy.2010.07.037 

Li, Y.P., Huang, G.H., Huang, Y.F., Zhou, H.D., (2009). A multistage 
fuzzy-stochastic programming model for supporting sustainable 
water resources allocation and management. Environ. Model. 
Soft., 24, 786-797, https://doi.org/10.1016/j.envsoft.2008.11.008 

Lin, Y.P., Chu, H.J., Wu, C.F., and Verburg, P.H. (2011). Predictive 
ability of logistic regression, auto-logistic regression and neural 
network models in empirical land-use change modeling – a case 
study. Int. J. Geogr. Inf. Sci., 25(1), 65-87. https://doi.org/10.10 
80/13658811003752332 

Liu, Y., Guo, Q., and Kelly, M. (2008). A framework of region-based 
spatial relationships for non-overlapping features and its applica-
tion in objectbased image analysis. ISPRS J. Photogramm. Re-
mote Sens., 63(4), 461-475. https://doi.org/10.1016/j.isprsjprs. 
2008.01.007 

Lymburner, L., Beggs, P., and Jacobson, C. (2000). Estimation of 
canopy-average surface-specific leaf area using Landsat TM data. 
Photogramm. Eng. Remote Sens., 66(2), 183-191. 

Lyons, M.B., Phinn, S.R., and Roelfsema, C.M. (2012). Long term 
land cover and seagrass mapping using Landsat and object-based 
image analysis from 1972 to 2010 in the coastal environment of 
South East Queensland, Australia. ISPRS J. Photogramm. Re-
mote Sens., 71, 34-46. https://doi.org/10.1016/j.isprsjprs.2012. 
05.002 

MacLean, M., Campbell, M., Maynard, D., Ducey, M., and Congal-
ton, R. (2013). Requirements for labeling forest polygons in an 
object-based image analysis classification. Int. J. Remote Sens., 
34(7), 2531-2547. https://doi.org/10.1080/01431161.2012.747017 

Martha, T.R., Kerle, N., Van Westen, C.J., Jetten, V., and Kumar, K.V. 
(2011). Segment optimization and data-driven thresholding for 
knowledge-based landslide detection by object-based image 
analysis. IEEE T. Geosci. Remote Sens., 49(12), 4928-4943. 
https://doi.org/10.1109/TGRS.2011.2151866 

Mas, J.F., Kolb, M., Paegelow, M., Olmedo, M.T., and Houet, T. 
(2014). Inductive pattern-based land use/cover change models: A 
comparison of four software packages. Environ. Model. Software, 
51, 94-111. https://doi.org/10.1016/j.envsoft.2013.09.010 

Monserud, R., and Leemans, R. (1992). Comparing global vegetation 
maps with Kappa statistic. Ecol. Model., 62(4), 275-293. https:// 
doi.org/10.1016/0304-3800(92)90003-W 

Myint, S., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q. 
(2011). Per-pixel vs. object-based classification of urban land 
cover extraction using high spatial resolution imagery. Remote 
Sens. Environ., 115(5), 1145-1161. https://doi.org/10.1016/j.rse. 
2010.12.017 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, 
C.E., and Wulder, M.A. (2014). Good practices for estimating 
area and assessing accuracy of land change. Remote Sens. Envi-
ron., 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015 

Redoux, J., and Defourny, P. (2007). A quantitative assessment of 
boundaries in automated forest stand delineation using high-reso- 
lution imagery. Remote Sens. Environ., 110(4), 468-475. https:// 
doi.org/10.1016/j.rse.2007.02.031 

Revesty, M. (2011). The assessment and predicting of land use chan- 
ges to urban area using multi-temporal satellite imagery and GIS: 
A case study on Zanjan, Iran (1984-2011). J. Geogr. Inf. Syst., 3, 
298-305. https://doi.org/10.4236/jgis.2011.34026 

Rimal, B. (2011). Application of remote sensing and GIS, land 
use/land cover change in Kathmandu Metropolitan City, Nepal. J. 
Theor. Appl. Inf. Technol., 23(2), 80-86. 

Robertson, L.D., and King, D. (2011). Comparison of pixel- and 
object-based classification in land cover change mapping. Int. J. 
Remote Sens., 32, 1505-1529. https://doi.org/10.1080/014311609 
03571791 

Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., and Macomber, 
S. A. (2001). Classification and change detection using Landsat 
TM data: when and how to correct atmospheric effects? Remote 
Sens. Environ., 75(2), 230-244. https://doi.org/10.1016/s0034-42 
57(00)00169-3 

Strigul, N., Florescu, I., Welden, A.R., and Michalczewski, F. (2012). 
Modeling of forest stand dynamics using Markov chains. Environ. 
Model Software., 31, 64-75. https://doi.org/10.1016/j.envsoft.201 
1.12.004 

Tong, S.T.Y., Sun, Y., and Yang, J. (2012). Generating a future land 
use change scenario with a modified population-coupled Markov 
Cellular Automata model. J. Environ. Inf., 19(2), 108-119. 

Verburg, P.H., Kok, K., Pontius Jr, R.G., and Veldkamp, A. (2006). 
Modeling land-use and land-cover change, Land-Use and Land- 
Cover Change. Springer Berlin Heidelberg, pp. 117-135. https:// 
doi.org/10.1007/3-540-32202-7_5 

Verstegen, J.A., Karssenberg, D., Hilst, F., and Faaij, A.P.C. (2014). 
Identifying a land use change cellular automaton by Bayesian 
data assimilation. Environ. Model. Software, 53, 121-136. https:// 
doi.org/10.1016/j.envsoft.2013.11.009 

Vieira, M., Formaggio, A., Renno, C., Atzberger, C., Aguiar, D., and 
Mello, M. (2012). Object based image analysis and data mining 
applied to a remotely sensed Landsat time-series to map sugar-
cane over large areas. Remote Sens. Environ., 123, 553-562. 
https://doi.org/10.1016/j.rse.2012.04.011 

Weinzettel, J., Hertwich, E., Peters, G., Steen-Olsen, K., and Galli, A. 
(2013). Affluence drives the global displacement of land use. 
Global Environ. Change, 23(2), 433-438. https://doi.org/10.1016/ 
j.gloenvcha.2012.12.010 

Zhang, Y., Lu, D., Yang, B., Sun, C., and Sun, M. (2011). Coastal 
wetland vegetation classification with a Landsat Thematic Map-
per image. Int. J. Remote Sens., 32(2), 545-561. https://doi.org/10. 
1080/01431160903475241 




