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ABSTRACT. A central problem in time series analysis is the detection of outliers, with further complications presented by irregular 
time series data measured having spatiotemporal components. This paper presents one Heuristic and two Supervised Machine Learning 
algorithms for the detection of outliers in this context in univariate time series data, with comparison of results to Chen and Liu's (1993) 
automatic outlier detection methodology. Due to the recent trend of set up of large environmental databases across many states in the 
US and around the world, which allow submission of pollutant measurement data from virtually any source, these procedures are 
applied to the measurements of various surface water pollutants in the California Environmental Data Exchange Network (CEDEN) 
for understanding and exploring the viability of such databases and the proposed methods. The proposed methodologies though not as 
robust, give similar results to existing methodologies given the nature of the data, but can be far less time intensive to implement 
providing interesting insights into the database. Thus, the algorithms presented can be widely used with minimal computing resource 
requirements with very tractable results even with very large datasets. The methodologies have wide applicability in a variety of 
contexts and a wide variety of databases with similar measurement challenges across many disciplines, specifically in the envi- 
ronmental setting. In particular, the results have large potential regulatory impact on accepted levels of different pollutants in 
California water bodies, as well as the amounts to be charged for industrial discharge into those water bodies, and is intended to 
provide direction for further research and regulatory investments. Based on the results it seems reasonable to assume that there is 
further room for the inclusion of nongovernmental agency pollutant measurements in the debate of environmental pollution, 
specifically in California. However, the results also indicate that the use of such databases in a more inclusive way for regulatory 
matters must be carefully evaluated on an individualized basis. That is to ensure that poorly collected/handled measurements, do not 
inundate the database over and above those collected with more rigor, thus potentially making inference on the true population 
distribution of the pollutants more difficult; being especially relevant for those pollutant measurements, which require more delicate 
sampling procedures. 
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1. Introduction 

We live in a world that is increasingly aware of the 
environmental impact of human activities from the large 
negative impacts of climate change to the destruction of our 
natural resources (Diamond, 2005; Xia et al., 2015). To better 
track this impact there are extensive regulations in most US 
states, including California, and many countries around the 
world, for tracking the amount of pollution in natural 
resources such as rivers and lakes (water bodies). In a time 
when historic droughts severely affect countries around the 
world and states such as California in particular, in countless 
ways, from water conservation to spending on new infra- 
structure, it has never been more important to track the quality 
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of precious water resources of the world. In California, for 
example, the California Water Code Section 13260, states that 
anyone discharging or proposing to discharge waste that could 
affect the quality of water of the State, other than into the 
sewer system, are required to file a Report of Waste Discharge 
(ROWD) to the Regional Water Quality Control Board 
(RWQCB) (CA, Waste Discharge Form). In addition, all such 
dischargers, regulated under Waste Discharge Requirements 
(WDR) and National Pollutant Discharge Elimination System 
(NPDES) are subject to an annual fee (except dairies which 
pay a filing fee only) (NPDES Reporting Requirement 
Handbook). It is, therefore, also vitally important to have 
accurate data on hand to set the prices and allowable amounts 
for such discharge activities. To that end California has set up 
the California Environmental Data Exchange Network 
(CEDEN), tracked and maintained by various regional data 
centers as part of CEDEN (CEDEN website).  

The utility of such a database is without question. Yet the 
setup of the exchange is such that anyone fulfilling certain 
filing criteria can contribute data they have collected on the 
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California water bodies, including academic, nonacademic 
and governmental reporting agencies. A natural question then 
presents itself as to the quality of the database in terms of 
accuracy of the measurements submitted to it. Furthermore, as 
the data that are collected by the various sources, are often, 
uncoordinated it is irregular in nature and can be unstan- 
dardized in methodology of collection, as well as, units of 
measurements reported. Thus, the aim here is to understand 
the outlier issues in this context of data generation process 
and sampling inconsistencies through existing statistical 
techniques and some extensions engendering new techniques. 
In addition, the success and viability of this data source can in 
turn be used as a model for further regulatory guidance in 
other states and countries around the world.  

The nature of the data means that it is highly correlated to 
past observations for each type of pollutants or analytes 
measured, and is therefore ideal for analysis as time series 
data. However, while some of the measurements by regulatory 
agencies can and are carried out at regular intervals, those 
measurements as carried out by other agencies need not be, 
making outlier detection nontrivial. Thus, it becomes 
important to understand how this correlation may change not 
only due to the presence of outliers, but how these outliers 
may change inference on our model of choice, acceptable 
levels of the pollutants in relevant water bodies and how 
much to charge potential dischargers. It is therefore, important 
to understand the leverage in regression terms that these 
measurements can have on both inference and prediction on 
the observed ensemble.  

As such, there are multiple avenues by which the time 
series outlier detection question has been answered in the 
literature, and this article presents another approach that takes 
advantage of the error term in the models having certain 
distributional properties and considers three new approaches, 
for detecting outliers, one for general modeling purposes and 
the other two for irregular time series data with irregular 
spatiotemporal aspects. To that end, it is well known that 
simulation can be of particular importance in such a search. 
For example, there are multiple recent papers that rely on 
simulations to identify outliers while looking at the ordered 
properties of the random sample (Basu and Meckesheimer, 
2007; Harvey et al., 2013), for a summary see (Gupta et al., 
2013), however when the time series data is irregular such 
tests may give erroneous results. Another common 
methodology is to refer to the asymptotic distributions of such 
outliers (see for example, Fox, 1972; Tsay, 1988; Chen and 
Liu, 1993; Chen and Tiao, 1990), and thus based on these 
distributions and an index value, a particular observation is 
identified as one type of outlier or another. In addition, there 
have been further extensions made through Bayesian Analysis 
as well (see for example, West and Harrison, 1997; Gelman et 
al., 2014). In the spatiotemporal setting various outlier 
detection methodologies in a multitude of contexts have been 
put forward including (Jun et al., 2005; Lasaponara, 2006). 
Such methodologies all have their strengths and weaknesses, 
with one of the major problems being that when there is high 
dimensionality of particular data, most procedures with simu- 

lation or otherwise, can be particularly computer intensive 
even in the current era of abundant cheap computing power, 
and therefore, it is itself time relevant.  

Accordingly, while machine learning in environmental 
science has been seeing more and more applications 
(Marvuglia et al., 2015), this work seeks to present new 
machine learning approaches for the outlier detection 
literature, which have been shown to be very effective in 
analyzing large environmental databases when an appropriate 
training dataset is available for the right spatiotemporal 
context. Therefore, what is presented here is an application of 
some of these select methodologies along with these new 
algorithms, to understand the underlying reliability of the 
CEDEN datasets. As such, one heuristic and two machine 
learning methodologies are introduced, two of which are 
based on inference and the other on the predictive ability of 
the model applied. While simple, the algorithms still give very 
tractable results which for comparison is used against results 
found under Chen and Liu’s 1993, algorithm for automatic 
detection of outliers. Thus, in what follows, the Materials and 
Methods section explains the models used in the analyses with 
some further summary of existing outlier methodologies. The 
Data section specifies the particular issues in dealing with a 
dataset of the size and complexity of CEDEN, and talks about 
the specific transformations and the subsets of data on which 
each methodology is carried out and why. The Results section 
presents the outcomes of the various methodologies applied in 
the context of the CEDEN dataset. The Discussion section, 
compares and contrasts the results and expands on possible 
future extensions of the methodologies in general and on the 
CEDEN data in particular, and finally the conclusion gives a 
brief summary and some further thoughts. 

2. Materials and Methods 

Time series data can be explained in various ways, but 
the model that is considered here is the additive model. In 
particular, consider: 

 

t t t t tY T Z S R     (1) 

 
where, Tt is a monotone function of time, Zt is the long term 
nonrandom cyclical trend function, St is the nonrandom 
short-term cyclical influence such as a seasonal component 
and Rt is a random variable accounting for all deviations from 
the non-stochastic model (Falk, 2012). Of course, if we 
assume that the model is instead multiplicative or partially 
multiplicative, we may safely make selective transformations 
to arrive back at the desired additive model, after sequential 
demeaning of the data or transformed data, with the 
accompanying change in the interpretation of the parameter 
estimates. In addition, the seasonal component itself may have 
multiple variations in this, with the inclusion of multiple 
seasonal terms (Taylor, 2003), i.e.  

 
1 2

t t t t t tY T Z S S R      (2) 
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where 1
tS  and 2

tS are two seasonal series with integer 
periods. (De Livera et al., 2011) extends this seasonal 
framework to also include non-integer periods with infinitely 
many seasonal patterns such that 

 

1 {1,... }n i
t t t i t tY T Z S R i      (3) 

 
On the other hand, an outlier in time series data can be of 

multiple types (Fox, 1972; Tsay, 1988):  

When a gross error effects an observation (measurement 
error), called an Additive Outlier (AO). 

When a single innovation is extreme. These outliers 
effect all subsequent observations as well and are called 
Innovational Outliers (IO). 

Level Shifts when there is a change in the structure of the 
time series’ underlying data such that it can either have a 
permanent effect, Level Shift (LS) or a transient consequence. 

 

2.1. Generalized Methodologies and Algorithms 

Outlier detection is a central problem in any data ana- 
lysis. As such, it has been the topic of voluminous 
publications in academia. At a high level they may be 
segregated into multiple methodologies (Agarwal, 2013), with 
a certain amount of overlap, such as Extreme Value Analysis 
(Pickands, 1975), Probabilistic and Statistical Models 
(Agarwal, 1996; Dempster et al., 1977; Gao et al., 2006), 
Linear and Nonlinear Models (Agarwal, 2001; Jolliffe, 2002; 
Rousseeuw et al., 2003), Proximity-based Models (Knorr et 
al., 1998; Ramaswamy et al., 2000), Information Theoretic 
Models (Keogh et al., 2004; Lee et al., 2001) etc., with each 
having their own strengths and weaknesses based on the 
assumptions that underlie them. For example, Extreme Value 
Analysis, as the name implies is dependent on any realization 
of an ensemble being too large or small, based on the 
“statistical tail of the underlying distribution” (Agarwal, 
2013). A Probabilistic and Statistical model, relies on an 
established distribution for the data, with the key assumption 
being that of the distribution, for example Expectation- 
Maximization algorithm. Linear Models, segregate the data 
into optimal subspaces of smaller dimensions as determined 
by minimizing deviations of observed data from the subspace, 
for example Linear Regression and PCA analysis. Proximity- 
based Models rely on some form of distance measure, based 
on either an assumption as to actual number of groups 
observed in the data or an algorithm that determines the 
optimal number of groups, by minimizing some distance 
measure, for example, Clustering or Nearest Neighbor me- 
thods. Somewhat separately, Information Theoretic Models 
look at methods of summarizing the data with any significant 
deviations from the summary considered outliers and 
measures such as Kolmogorov Complexity being used as 
guides to understanding such deviations within the data.  

The key in all such methods is the assumptions under- 
lying the Data Generating Process (DGP), for the observed 
ensemble. As such, the guiding principle of the algorithms 

presented is based on the insight that outliers are a function of 
the model fitted to the observed ensemble. That is, different 
models should identify different outliers if fitted on the same 
dataset. Therefore, outlier detection in a limited sense can be 
seen as a proxy for model selection and vice versa (note that it 
has been demonstrated for many other automatic outlier 
detection methodologies that transcription errors, improper 
units in measurement, irregular sample handling as well as 
problems with equipment recalibration etc. may give erron- 
eous results, as they may not always be caught if too 
numerously prevalent in the underlying data). Similarly, 
further complications arise when the time series data is 
irregular and spatiotemporal in nature, with large datasets, the 
norm for todays’ data oriented world, presenting an added 
layer of complexity. Therefore, the algorithms presented do 
not rely on fitting any particular model, but rather on the 
appropriateness of the model fit to the data under certain 
assumptions of the error terms. The best fitted model, as such, 
will give the least amount of outliers, which by transitivity 
implies that model fit estimates such as minimized sum of 
squared error, Akaike Information Criteria (AIC), Bayesian 
Information Criteria (BIC), Deviance Information Criteria 
(DIC) or Crossvalidation etc. can be used to that end.  

The reasoning for three particular outlier detection me- 
thodologies presented is multi-fold. The Heuristic Algorithm 
is intended to be a first step in data analysis, to understand 
what may be the extent of outliers in the time series or non- 
time series data and if indeed more detailed analyses are 
warranted of any potential outlier problems. On the other 
hand, the Supervised Machine Learning Algorithms are 
presented as an extension of the Heuristic Algorithm, in the 
presence of the proper spatiotemporal training set, to over- 
come irregular temporal sampling patterns, when a training 
set is present which may be used as a benchmark being 
relatively free from outliers (such as government sampling 
agencies especially within the environmental context). Thus, 
both of the machine learning algorithms can be used in the 
presence of irregular sampling patterns, if properly demeaned 
for many different sources, such as say, for environmental 
pollutant measurements, done by mandated government agen- 
cies, as well as, non-mandated government agencies. The 
second Supervised Algorithm, however, does require more 
consistency in the data and therefore, is more susceptible to 
measurements being irregular, especially if the number of 
observations in the training data is small. In addition, as with 
any modeling scheme, without understanding the nature of the 
data, it is hard to irrevocably assert the validity of one or more 
of the assumptions for the algorithms presented.  

As such, any combination of the algorithms can be used 
to understand potential issues in the data under question, with 
the application of the Heuristic Algorithm recommended to be 
the initial step in the process. Thus, as the algorithms do not 
assume the fit of any particular model, and rely only circum- 
stantially on certain assumptions on the error terms of the 
model fits, which is entirely consistent with many modeling 
schemes, it is imperative that the modeler be cognizant of the 
many ways to determine the best model fit.  
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The various model fitting criteria in the literature lay 
forth the different advantages and disadvantages of using 
these criteria in different contexts. Therefore, it is assumed 
that in determining which model to use, the researcher will 
take such information into account before applying the 
heuristic and machine learning algorithms presented. As such, 
no focused attempt is made to identify which of these 
statistics are the most applicable in any given modeling 
context, to determine the applicability of the model, but it is 
rather left up to the researcher to decide from the many 
excellent sources which attempt to answer some of these 
questions (see for example, James et al., 2013; Agresti, 2013; 
Gelman et al., 2014 among many others). That is, given the 
nature of the data which the researcher has chosen to inves- 
tigate, even before applying the outlier detection metho- 
dologies discussed, s/he is assumed to be cognizant of the 
appropriateness of the model fit criteria being used to 
determine the best model. Furthermore, the modeler should 
also be aware of the assumptions underlying the algorithms, 
before deciding on which model may be appropriate, as if the 
assumptions of the algorithms cannot be supported, neither 
can the application of any one particular model, building on 
those assumptions. Inherent in that line of reasoning is that the 
researcher must be careful not to over fit the data, and may 
use a host of existing machine learning algorithms, applying 
them separately, or in conjunction with the algorithms pre- 
sented, to understand the extent of outliers in their respective 
datasets. This is because the goal of the algorithms, is not to 
identify the best model fit for a particular dataset, but rather, 
understanding what the extent of outliers may be within that 
dataset given the application of the model chosen. 

Of course, in general for large datasets finding outliers 
can be especially time consuming no matter what type of 
outlier detection methodology is employed. The focus for this 
paper, thus, is to employ a methodology that can be used 
efficiently regardless of the amount of data with little iteration 
needed for quick convergence, under certain regularity assum- 
ptions. As such, the algorithms presented serve different 
purposes, to ascertain the applicability of the model applied to 
the data, so that the appropriate outlier detection methodology 
can be used. The initial step in the analysis is the application 
of a general heuristic methodology that determines the 
appropriateness of the model being considered. Upon which if 
the model is found to be suitable and an appropriate spatio- 
temporal training dataset is present, the supervised machine 
learning algorithms can be used to understand with greater 
accuracy the outlier problems in the data. Therefore, in the 
absence of an appropriate training dataset, while the heuristic 
algorithm may be used as a guide to understanding the outlier 
problem within the data, more time consuming algorithms 
such as Chen and Liu’s (1993) algorithm must be used.  

The real benefit of the supervised algorithms, come into 
play when the nature of the dataset is irregular. In what 
follows, the supervised algorithms consider the long-term and 
short-term trend of the training and test datasets to be 
independent with only the stochastic component assumed to 
come from the same population distribution or DGP. Thus, 

when the algorithms are implemented on the appropriately 
demeaned time series data, the error terms from the fitted 
model and/or between predictions and observed, can be used 
as a guide to understanding the outlier problem in the ense- 
mble (the observed realization of the true population time 
series). In essence, the methodologies as mentioned here are 
mainly used to find the AO type outliers. The inherent 
assumption is that if there is a permanent or temporary level 
shift on the observed ensemble, the measurement errors 
should reflect this if the underlying model that is fit, correctly 
takes into account the level shift. Furthermore, given the 
assumptions of the error structure which will be further elabo- 
rated below, the Supervised Machine Learning Algorithms 
may be looked at as specific applications of the Heuristic 
Algorithms under certain assumptions on the sampling 
schemes and of course, the distribution of the error term as 
elaborated above.  

 

2.1.1. Heuristic Algorithm (Heuristic) 

1. Fit any model of choice to the ensemble.  

2. On the best-fitted model’s error, under assumptions of 
it being distributed Gaussian with finite mean and variance, 
perform a LjungBox test of autocorrelation. If the errors are 
uncorrelated, then they are also independent, under 
assumptions of normality, and thus proceed to step 3 
otherwise stop. 

3. Therefore, upon standardizing the errors, under assum- 
ption of it being distributed Gaussian, should now be identi- 
cally distributed with ~ (0,1)i N . Thus, now we have an i.i.d 
ensemble.  

4. Identify those errors, which are more than ±X stan- 
dard deviations away from the expected mean of 0 in absolute 
value, as ((1–α)*100)% of the density of the Standard Normal 
should lie in this range.  

5. Apply ordinal ranking to these potential outliers ac- 
cording to how many standard deviations away from 0 they 
are, in absolute value from furthest away to least-furthest, and 
let | τ | represent the cardinality of this set. If there are ties, go 
back and determine the best model fit by sequentially 
excluding the ties, to determine outlier index based on 
best/worst model fit as appropriate. 

6. Since at any alpha level, there is (α/100)% chance that 
some outliers would be detected just by randomness, identify 
how many such potential random outliers may be in the 
ensemble through, (α/100)*|D| = |x| = υ, where |D| is the 
cardinality of the set of errors and υ is the integer ceiling. 

7. Identify the lowest υ ranked outliers as randomness 
and not outliers, if and only if they are within X± υ, where 
υ∈R+. Let the cardinality of this set be υ′ such that υ′ ≤ υ. 

8. Thus, identify the indices with the highest ranked | τ | - 
υ′ potential outliers as the required outliers if and only if | τ | - 
υ′ > 0. Note that any other appropriate interval range and 
cutoff point can also be used as seen fit by the modeler with 
the corresponding changes made to the algorithm. 



 K. P. Chowdhury / Journal of Environmental Informatics 33(1) 1-16 (2019) 

 

5 

2.1.2. Supervised Machine Learning Algorithm I (Supervised I) 

1. Fit any model of choice to the long term and seasonal- 
ly demeaned training ensemble.  

2. On the best-fitted model’s error, under assumptions of 
it being distributed Gaussian with finite mean and variance, 
perform a LjungBox test of autocorrelation. If the errors are 
uncorrelated, then they are also independent, under assump- 
tions of normality, and thus proceed to fit this model on the 
long-term and seasonally demeaned Test data on the same 
spatiotemporal context (the long-term and seasonal trends 
allowed to be different between the Training and Test data- 
sets), and go to step 3 otherwise stop.  

3. If the model fits were accurate then for the Test data 
fit, the error term should have a mean of 0 with some 
variance, which can be approximated by the error variances in 
the sample realization. Therefore, upon standardizing the 
errors, under assumption of it being distributed Gaussian, they 
should now be identically distributed with ~ (0,1)i N . Thus, 
now we have an i.i.d ensemble. 

4. Identify those errors, which are more than ±X 
standard deviations away from the expected mean of 0 in 
absolute value, as ((1–α)*100)% of the density of the 
Standard Normal should lie in this range. 

5. Apply ordinal ranking to these potential outliers 
according to how many standard deviations away from 0 they 
are, in absolute value from furthest away to least-furthest, and 
let | τ | represent the cardinality of this set. If there are ties, go 
back and determine the best model fit by sequentially 
excluding the ties, to determine outlier index based on 
best/worst model fit as appropriate. 

6. Since at any alpha level, there is (α/100)% chance that 
some outliers would be detected just by randomness, identify 
how many such potential random outliers may be in the 
ensemble through, (α/100)*|D| = |x| = υ, where |D| is the 
cardinality of the set of errors and υ is the integer ceiling. 

7. Identify the lowest υ ranked outliers as randomness 
and not outliers, if and only if they are within X± υ, where 
υ∈R+. Let the cardinality of this set be υ′ such that υ′ ≤ υ 

8. Thus, identify the indices with the highest ranked | τ | - 
υ′ potential outliers as the required outliers if and only if | τ | - 
υ′ > 0. Note that any other appropriate interval range and 
cutoff point can also be used as seen fit by the modeler with 
the corresponding changes made to the algorithm. 

 

2.1.3. Supervised Machine Learning Algorithm II (Supervised II) 

1. Fit any model of choice to the long term and sea- 
sonally demeaned training ensemble.  

2. On the best fitted model’s error, under assumptions of 
it being distributed Gaussian with finite mean and variance, 
perform a LjungBox test of autocorrelation. If the errors are 
uncorrelated, then they are also independent, under assump- 
tions of normality, and thus proceed to predict the long term 
and seasonally demeaned Test data on the same spatio- 
temporal context (the long term and seasonal trends allowed 

to be different between the Training and Test datasets), and go 
to step 3 otherwise stop. 

3. Standardize the difference in prediction vs. actual such 
that they should now be distributed with ~ (0,1)i N . Thus, 
now we have an i.i.d. ensemble. 

4. Identify those errors, which are more than ±X 
standard deviations away from the expected mean of 0 in 
absolute value, as ((1–α)*100)% of the density of the 
Standard Normal should lie in this range. 

5. Apply ordinal ranking to these potential outliers 
according to how many standard deviations away from 0 they 
are, in absolute value from furthest away to least-furthest, and 
let | τ | represent the cardinality of this set. If there are ties, go 
back and determine the best model fit by sequentially 
excluding the ties, to determine outlier index based on best/ 
worst model fit as appropriate. 

6. Since at any alpha level, there is (α/100)% chance that 
some outliers would be detected just by randomness, identify 
how many such potential random outliers may be in the 
ensemble through, (α/100)*|D| = |x| = υ, where |D| is the 
cardinality of the set of errors and υ is the integer ceiling. 

7. Identify the lowest υ ranked outliers as randomness 
and not outliers, if and only if they are within X± υ, where 
υ∈R+. Let the cardinality of this set be υ′ such that υ′ ≤ υ. 

8. Thus, identify the indices with the highest ranked | τ | - 
υ′ potential outliers as the required outliers if and only if | τ | - 
υ′ > 0. Note that any other appropriate interval range and 
cutoff point can also be used as seen fit by the modeler with 
the corresponding changes made to the algorithm. 

 

2.2. Specific Applications 

Given the goals of the generalized algorithms outlined 
above specific applications are attempted on the CEDEN data. 
To that end, models of a state space, where an error is 
assumed to come from a single source (De Livera et. al., 
2011) are considered. For the single source of error model, the 
Box-Cox transform, Autoregressive Moving Average Error 
(ARMA), Trend and Seasonal components (BATS) model and 
Trigonometric Box-Cox transform, Autoregressive Moving 
Average Error (ARMA), Trend and Seasonal components 
(TBATS) model (De Livera et al., 2011) were considered. For 
a more general approach the Seasonal, Autoregressive 
Integrated Moving Average model with drift (SARIMAd) was 
also considered.  

Thus, for the heuristic application, the TBATS, BATS 
and SARIMAd models are applied to the variance adjusted 
data by individual pollutants measured across the state for all 
available time periods, with the best fitted model being 
considered based on the minimized sum of squared error 
statistic. Once fit, the outliers are detected according to 
Application 1 (Heuristic) given below (Application 1). Se- 
condly, the automatic approach to detecting outliers as given 
in Chen and Liu’s 1993 paper (Chen and Liu, 1993; Lacalle, 
2014b) is applied, a summary of which is given below in 
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(Application 2). Next for the Supervised Algorithm I, (Appli- 
cation 3) it is assumed that the government mandated 
programs such as the Surface Water Monitoring Program 
(SWAMP) tasked with official measurements of the water 
bodies of California to be a representative sample from the 
underlying DGP for each type of analyte (training data) and 
apply the model parameters retrieved to Non-SWAMP data 
and subsequently assessing the fitted model for outliers 
according to Application 3 (Supervised I) given below. The 
key assumption made in order to apply this methodology dealt 
with the underlying irregularity of the measurements as 
mentioned in outlining the first general supervised algorithm 
above. While the Heuristic methodology considered all the 
data for each analyte without regard to the source of the 
measurements, in considering both the source and the 
geospatial location it is possible to subset the data so as to 
restrict the sample to a non-dispersed population set and 
achieve better model fits and inference.  

As such, this approach considered that because of ir- 
regularity of the measurements between the different sources, 
the underlying long term and seasonal trends will vary 
between the two samples. Therefore, these parameters for the 
SARIMAd models are allowed to vary between the two 
samples, however, the underlying stochastic model from 
which the data is assumed to be generated (DGP) is kept 
fixed. That is the ARMA errors are assumed to have the same 
order (p, q) for measurements recorded by both SWAMP and 
Non-SWAMP data at the analyte by county level. In this way, 
not only is it possible to correct for the irregularity of the 
measurements, but also to test whether the two samples can be 
considered to be coming from the same population density 
(any trend or seasonality in the datasets are ascertained using 
spectral decomposition). 

Finally, one more supervised analysis on the SWAMP vs. 
Non-SWAMP data is carried out based on the forecast of the 
model fitted to demeaned SWAMP data by analyte at the 
county level, and comparing that forecast to the demeaned 
Non-SWAMP data. The assumptions for this were the same as 
in Application 3, that is given the irregular nature of the data, 
while the trend and seasonal components can vary between 
SWAMP and Non-SWAMP data, the stochastic component 
comes from the same population density. This is given in 
Application 4 (Supervised II). Thus, a summary of the 
specific applications, are given below.  

 

2.2.1. Specific Application Methodology 1 (Application 1)  

For a mathematical exposition of the BATS, TBATS and 
SARIMAd models described above please see Appendix 1. 
The complete algorithm for the specific heuristic algorithm 
application is given below.  

Application 1 (Heuristic):  

1. Fit BATS, TBATS and SARIMAd models to each 
analyte and find the best model fit, by minimizing sum of 
squared error.  

2. Apply the Heuristic Algorithm to the error terms of the 

best-fitted model to identify outliers with σν = 1 and χα = 2. 

 

2.2.2. Existing Outlier Detection Methodology - Application 2  

The second methodology applied was the one described 
in (Chen and Liu, 1993) with implementation through 
(Lacalle, 2014a, b) in R. A comprehensive methodology for 
detection of outliers using the ARIMA models, the major 
disadvantage of which being that when the dimensionality of 
the data gets high, convergence can indeed be difficult in a 
reasonable amount of time. Nevertheless, the ease with which 
it can be applied given existing resources is still very 
attractive. As such the model can be described as follows: 

 

*
1

( )
( )

( ) ( )t t t

A B
I t

G B H B
Y Y     

1 1( )t t Indicator for timwhere I e t t   (4) 

( )
.

( ) ( )

A B
and Outlier Effect at Each Time Period t
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They further differentiate an outlier effect into 4 types: 

1. Innovative outlier (IO): 

 
( ) ( )

( ) ( ) ( ) ( )

A B B
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
 

  (5) 

 
2. Additive outlier (AO): 

 
( ) ( )

1
( ) ( ) ( ) ( )

A B B

G B H B B B


 

   (6) 

 
3. Temporary change outlier (TC): 
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4. Level shift outlier (LS): 
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
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 (8) 

 
where B is the backward shift operator and θ, φ and α are the 
Autoregressive, Moving average and Difference polynomial 
operators in B, with the parameter δ modeled to control the 
pace of the dampening effect of an extraordinary event in the 
ensemble. Thus, the authors can model the behavior of error 
terms and determine based on their assumptions for the 
various types of errors the specific indices which may be 
considered as outliers (please see Appendix 2 for further 
details). More specifically, a reduced form summary of the 
algorithm can be given as follows. 

Algorithm 2 (Chen and Liu, 1993):  

1. Inner Loop 1: Calculate maximum likelihood estimates 
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and 44 - 45. If the maximum of 44 - 45 is greater than a pre- 
determined cutoff value (3.5), there may be an outlier effect 
for that time period for that particular type of outlier with the 
maximum estimate, if no such outlier effect found stop. 
Otherwise, recalculate maximum likelihood estimates after 
removing the outlier effect and repeat procedure. If the total 
number of outliers in all of the inner loops is greater than 0, 
and no extra outliers are detected go to next step.  

2. Inner Loop 2: Say m outliers in time periods 1, , mt t  
are detected, then ωj’s can be estimated using 48. Then 
compute ˆ ( ), {1, , }jstd j m      :  

 

ˆ , {1,..., }
( )j

j m
std




    (9) 

 
If: 

 
min ˆ ˆj v C    (10) 

 
with C being the same critical value as before, delete this 
outlier at time point tν, and recalculate this step. Otherwise 
obtain the adjusted series by removing the outlier effects 
using the latest estimate of ωj. Then calculate the maximum 
likelihood estimates again, and if the standard deviation from 
previous estimates is greater than ε recalculate this particular 
step till it is less than ε.  

3. Outer Loop: Compute the residuals by filtering the 
original series based on the parameter estimates obtained in 
the last step. Use the residuals obtained in this step and 
recalculate steps 1 and 2 with parameters estimates in step 1 
being fixed and the last two sub-steps of step 2 being omitted. 
Thus, the estimated ωj’s of the last iteration of step 2 are the 
final estimates of the effect of the detected outliers.  

 

2.2.3. Specific Application Methodologies 3 and 4 
(Application 3/Application 4)  

In addition, as mentioned previously the nature of the 
data lead to two further avenues for comparison of outliers 
among the considerable amounts of data gathered from 
different sources. Through conversation with various govern- 
mental sources it was apparent that the SWAMP monitoring 
program tended to have the most rigorous data collection and 
validation methodology. As such, the above-mentioned mo- 
dels were fit to those analytes which had sufficient sample 
sizes (greater than or equal to 15 observations) and were 
collected by both the SWAMP and Non-SWAMP programs. 
The model parameters were then applied to Non-SWAMP 
based collected data. If the model fit was appropriate, the two 
supervised machine learning analyses of outliers based on the 
errors were done to ascertain the number of outliers and are 
given in Application 3 and Application 4 below (Casella and 
Berger, 2002; James et al., 2013):  

Application 3 (Supervised I): 

1. Fit the TBATS, BATS and SARIMAd models to the 

properly variance adjusted data by each analyte on a maxi- 
mum of 5,000 latest observations for all years other than the 
latest two years of data collected.  

2. On the best fitted model, carry out Supervised Algo- 
rithm I in the same spatial context on all Non-SWAMP data in 
the latest two years of data collected, to identify all potential 
outliers with: 

 
1 2and     (11) 

 
Finally, a forecast based machine learning algorithm was 

used to identify the error and it is given below.  

Application 4 (Supervised II):  

1. Fit the TBEST, BEST and SARIMAd models to the 
LOESS de-seasonalized and de-trended SWAMP data by 
analyte at the county level for data for all years other than the 
two latest years of data collected.  

2. Based on the best-fitted model carry out Supervised 
Algorithm II to identify all potential outliers for all Non- 
SWAMP observations for the latest two years of samples 
collected in the same spatial context.  

 

2.3. Ground Truth Comparison of Selected Algorithms  

Furthermore, a first step in comparing any two algo- 
rithms is to run them independently on a ground truth dataset 
with known position of outliers to understand the strengths 
and weaknesses of each. To compare the large number of 
iterations for the algorithms, in order to simulate the size of 
datasets on which the algorithms would be run, a novel 
approach was used to run the comparison based on True 
Positives (TP) and False Positives (FP) on the same datasets 
and looking at the FP over TP statistics for not only cardinal 
comparison, but also ordinal comparison. As such, let:  

 

| |

| ( ) |S t G
PositiveTrue

G


  (12) 

| ( ) |

| |

S t G
PositiveF

G
alse

D





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where t is a given threshold, which in the current cases are the 
standard deviations away from the mean value; S(t) is the 
declared set of outliers by an algorithm given t; G is the true 
set of outliers, the Ground Truth Set; and D is the entire data 
set (Agarwal, 2013). Given this construct, often called the 
Receiver Operating Characteristics Curve (ROC), it is com- 
mon practice to graph the data such that any curve that strictly 
dominates the other, is identified as the superior algorithm. 
However, such a procedure is only effective as a graphical 
representation if the values are consistently away from 0, 
which may or may not be the case in general, and in the 
presence of inconsistent results that vary drastically, were 
there to be many iterations run, the graph would be very much 
un-interpretable. Consequently, a new metric for comparing 
the algorithms was considered: 
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| ( ) |

| |
1

| ( ) |

| |

S t G

D G
S t

Statistic
G

G



  (14) 

 
Thus, for each iteration of the algorithms run, this 

statistic can be calculated individually for each and compared 
to understand if the performance for any one or the other was 
“Superior”, “Inferior”, “Same” or “Cannot Be Compared”. 
With the algorithm having the smaller numeric value consi- 
dered to be “Superior” to the other. On the other hand, the 
reason for there being instances of non-comparison is that the 
statistic may be subject to instances of division by 0. In such 
cases, while we may still be able to make inference as to the 
applicability of the algorithms in comparison to each other, 
this may not be universally the case. As such, consider the 
following algorithm. 

 

2.3.1. General Algorithm for Comparing Outlier Detection 
Algorithms  

Without loss of generality let the first algorithm for com- 
parison be A1 and the second, A2. Thus,  

1. For each iteration for comparison, ensure that any 
ensemble with more than half of the data artificially 
constructed to be outliers is discarded. That is if more than 
half of the data are randomly chosen to be outliers that sample 
cannot be used as a comparison and should be thrown out.  

2. For all remaining iterations proceed as follows:  

(a) For any iteration, if A2 could not be fit on the data yet 
A1 could be, then consider A1 as the “Superior” algorithm as 
long as: 

 
0| ( ) |S t G   (15) 

 
If: 

 
| ( ) | 0S t G   (16) 

 
then no comparison should be made and thus we “Cannot 

Compare” A1 to A2 (as it becomes subjective as to what is 
considered an acceptable measure of comparison, to the 
researcher). 

(b) There are quite a few combinations of possibilities for 
Statistic 1, for the algorithms under consideration, thus they 
must be compared separately. For each algorithm, Statistic 1 
may be either 0, ∞ or a number x in the positive reals, for both 
A1 and A2. Thus, there are 9 permutations to consider: 

i. Case 1: Statistic 1 is ∞ for both A1 and A2.  

 A. We “Cannot Compare” A1 to A2. 

ii. Case 2 and 3: Statistic 1 is ∞ for one algorithm and 0 
for the other. 

 A. If Statistic 1 for A2 is ∞, with Statistic 1 = x2/0, 
where, x2 belongs to the positive reals. Where as for A1 it is 0, 

then A1 is “Superior” to A2, and vice versa. 

iii. Case 4 and 5: Statistic 1 is ∞ for one algorithm and 
some, x in the positive reals, for the other. 

 A. If Statistic 1 for A2 is ∞, with Statistic 1 = x2/0, 
where, x2 belongs to the positive reals. Where as for A1 it is 
some x1, in the positive reals, then A1 is “Superior” to A2, and 
vice versa. 

iv. Case 6: If Statistic 1 for both A1 and A2 are 0’s. 

 A. If Statistic 1 for both algorithms is 0, then: 

 
( ) 1 ) 2(S t G for A S t r AG fo    (17) 

 
Thus, they are the “Same”.  

v. Case 7 and 8: If Statistic 1 for one of the algorithms is 
0 while the other is some x in the positive reals. 

 A. If Statistic 1 for A1 is 0 then A1 is “Superior” to A2 
and vice versa. 

vi. Case 9: If Statistic 1 for both A1 and A2 is some x ∈ 
R+.  

 A. If x1 represents Statistic 1 for A1 and x2 for A2, then 
if x1 < x2 and: 

 

1 2{ , }x x R  (18) 

 
then A1 is “Superior” to A2 and vice versa. If x1 = x2 then 
they are the “Same”.  

 

2.3.2. Specific Application of Outlier Detection Algorithm 
Comparison  

This particular analysis was broken up into two parts. In 
the first, a ground truth time series dataset was created where 
the underlying distribution for the ensemble was Gaussian, 
aligning well with the assumptions of Heuristic, Supervised I 
and Supervised II algorithms (GT I). In the second case, the 
ensemble was created from a Poisson distribution (GT II). For 
both GT I and GT II, the time series model was an ARMA(2, 
2), where the Autoregressive coefficients were (0.9, 0.1) and 
the moving average coefficients being (-0.8879, 0.1). For 
positions of the outliers a separate Poisson distribution was 
used with varying values for the parameter λ of the 
distribution, with a range of λ = 0.02 to 12.023 in an 
increment of .04. That is, for varying values of the parameter 
if a value of 1 was drawn from this Poisson distribution for 
any corresponding position for the univariate ensemble, that 
position was considered to be the position of an outlier. In 
addition, at these positions varying magnitude of outliers were 
created, from 0.1 to 90.1 units, in an increment of 10, away 
from the average of the ensemble, to understand the effect- 
tiveness of the algorithms in terms of the magnitude of the 
outliers.  

Therefore, 300 iterations of this ARIMA process, with a 
maximum of 5,000 observations for the Heuristic Algorithm 
and 800 observations for the Chen and Liu algorithm was 
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considered (for time consideration). Within each, a cutoff 
value, in standard deviations from 1 to 5 were considered for 
determining outliers for the Heuristic Algorithm and using the 
default values as set in the Chen and Liu Algorithm. 
Furthermore, each iteration was done over varying magnitude 
of values from either a N(42, 12) or a Poisson(42) distri- 
bution. In addition, the amount of outliers, within each 
iteration was also varied as set forth above using the Poisson 
(λ) distribution. Accordingly, the identified outlier positions 
were filled with: 

 

.1,  10.1,  20.1,  30.1,  40.1,  

50.1,  60.1,  70.1,  80.1,  

90.1
ARIMA

 
  
 
 
 

       (19)  

 
where χ = Iteration Number. In this way, both how the 
algorithms compare for different data generating processes, 
and its sensitivity to magnitude of and varying percentage of 
outliers, within each dataset, could be ascertained. Thus, in 
total for the Heuristic Algorithm an ARIMA model was fit on 
5,000 × 4,050 × 10 = 202,500,000 samples and for the Chen 
and Liu algorithm on 800 × 4,050 × 10 = 32,400,000 samples 
(for time consideration as running the Chen and Liu algorithm 
on 5,000 data rows would have taken far too long) for GT1 
and 5,000 × 7,490 × 10 = 374,500,000 for Heuristic Algori- 
thm and 800 × 7,490 × 10 = 59,920,000 samples for Chen and 
Liu for GT II.  

Finally, two other analyses were done on the results 
obtained above. First, a K-Means clustering algorithm was 
done on both the Heuristic and Chen and Liu datasets, based 
on the percentage of outliers for the ground truth set, as a 
function of the entire dataset. This way the performance of the 
algorithms on datasets with similar amounts of ground truth 
outlier percentages could be compared. Secondly, a simple 
summary based on the general algorithm was done. A sum- 
mary of the results can be found in the Results section.  

3. Data 

The dataset itself was downloaded on March 17th, 2014 
and consisted of a total of 2,875,445 million data points, with 
1,837 unique analytes, excluding missing values. The number 
of missing values in the dataset was significant for many of 
the analytes, however, as any outliers would influence the 
effect of filling in these missing values, for the purpose of the 
analysis it was deemed unnecessary to include them. In 
addition, of these 1,837 analytes, only 1,254 had more than 5 
observations, of which, certain analytes had data that were 
virtually identical, across time periods. Thus, a realistic 
analysis could only be done on about 924 analytes, or 50.2% 
of all the analytes present. However, these analytes covered 
2,023,324 data rows of the entire 2,875,445 million and 
comprised of about 70.4% of the entire dataset. Thus, even 
before any particularly complicated analysis, it can be seen 
that the database and its data quality are immediately under 
scrutiny with as much as 30% of the database being too 

unreliable or sparse to rely on with testable accuracy.  

In addition to the general missing data issues, the 
variance of the dataset by analyte differed considerably. Con- 
sequently, before the application of any of the above- 
mentioned models, the underlying data was adjusted for 
variance stabilization through a square root transformation. 
However, the principle concern with the dataset was that the 
many agencies and individuals submitting data for the same 
analytes can and do report findings in various units. To correct 
for this inconsistency, most of the wet sample measurements 
were converted to picograms per liter or grams per liter and 
most of the dry weight measurements were converted to 
nanograms per gram, both to avoid these issues and any 
possible numerical errors (some of the measurements can be 
extremely small thus any analysis, to avoid numerical singu- 
larity issues where the optimization process does not con- 
verge, must be done on appropriately reweighted data).  

Furthermore, because dry-weight data could not be 
readily converted to wet-weight data, due to the absence of 
relevant information in the database acquired, all models as 
discussed above were applied to two separate subsets of 
CEDEN, namely dry-weight data and wet-weight data. As 
such, the dry-weight data after conversion, consisted of 
286,086 observations of 402 analytes and the wet-weight data 
consisted of 1,637,476 observations of 924 analytes. Conse- 
quently, there are 8 specific outlier detection results to com- 
pare and contrast.  

Also, since in both datasets for the same analytes, there 
could be multiple measurement units, which could not readily 
be converted to the standardized units, only those units, after 
standardization that had the highest frequency of measure- 
ment for any particular measurement unit, were used for the 
final analysis.  

4. Results 

4.1. Ground Truth Algorithm Comparison 

Before moving on to the results seen in the CEDEN 
dataset, it is worthwhile to discuss the results of the algorithm 
run on the ground truth dataset. The results on the more 
summarized algorithm for all cutoff values for the Heuristic 
Algorithm showed very promising results for the Normal 
DGP. A more detailed breakdown by outlier identification 
cutoff value and outlier value can be found in Appendix 3.  

Somewhat paradoxically, the results for GT II were in 
fact better than those for GT I. A possible explanation for this 
could be the relatively weak assumption made in regards to 
the type of outliers and the error terms as opposed to distri- 
butional assumption for multiple statistics, as done in the 
Chen and Liu’s algorithm.  

Furthermore, a detailed breakdown of the percentage of 
outlier, based cluster analysis can be found in Appendix 5 and 
6 for GT I and GT II respectively. The results were com- 
parable, at least for the datasets under consideration as exp- 
lained in the methodology of the ground truth dataset 
algorithms. Similarly, for the Poisson DGP the results were 
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again very promising. A more detailed breakdown by outlier 
identification cutoff value and outlier value can be found in 
Appendix 4. 

 

4.2. CEDEN Results 

For Application 1 (Heuristic), the methodology could be 
fitted to 799 of the total 924 possible analytes for wet-weight 
data and on 363 of the possible 402 analytes for the dry- 
weight data. For Application 2 (Chen and Liu, 1993), the 
methodology could be fit to 776 of the possible 924 analytes 
for the wet-weight data and on 359 of the total possible 402 
analytes for the dry weight data. However, for the supervised 
algorithms, the number of model fits were in general smaller, 
because of geospatial consideration, which subsets the data 
such that only analytes with enough observation and in the 
right counties, to make tractable inference are used. Speci- 
fically, Application 3 (Supervised I) could be fit to 89 of the 
total 342 analytes considered on which SWAMP collected 
data with a slightly higher fit ratio for Application 4 (Super- 
vised II) at 131 out of 342 for the wet-weight data. Of these 
342 analytes, only 206 had greater than 15 observations on 
which a specific, tractable and reliable model could be run, 
meaning the algorithms could be run on 43.20% and 63.59% 
of the wet-weight data respectively. For the dry-weight data, 
Algorithm 3 (Supervised I) could be fit to 40 of the total 216 
analytes on which SWAMP specifically collected data, with a 
fit amount for Application 4 (Supervised II) at 87, out of 216. 
Of these 216, Supervised I could only be considered on 163 
and supervised II on 142 total analytes with a fit percentage of 
24.54% and 61.27% respectively. A summary of the result is 
given in Figure 3. 

To that end, for Application 2 (Chen and Liu, 1993) it 
required 17.11 hours of continuous running on only a 
maximum of 500 observations per analyte on the wet weight 

data alone (15.70 hours, for the dry weight data), even after 
parallelizing, on a MacBook Pro with a 2 GHz quad core 
processor and 8 GB of RAM for the final results to be 
ascertained, that too at the lowest number of iterations for the 
inner loops. If we add to this that the cutoff point for the 
algorithm, in terms of a critical value itself, can be iterated 

Table 1. Comparison Summary of Ground Truth Algorithm 
GT I over all Standard Deviations (1-5) Considered as Cutoff 

Outcome Number of Outcomes Outcome Percentage 

Cannot Compare 1,766 43.60% 
Superior 1,141 28.17% 
Same 776 19.16% 
Inferior 367 9.06% 
Grand Total 4,050 100.00% 

 

Table 2. Comparison Summary of Ground Truth Algorithm 
GT II over all Standard Deviations (1-5) Considered as 
Cutoff 

Outcome Number of Outcomes Outcome Percentage 

Superior 2,449 32.70% 
Same 2,443 32.62% 
Cannot Compare 1,983 26.48% 
Inferior 615 8.21% 
Grand Total 7,490 100.00% 

 

 

Figure 1. Heuristic dry weight results. 
 

  

Figure 2. Heuristic wet weight results. 
 

  
 

Figure 3. Chen and Liu’s dry weight results. 
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over to find the model that minimizes sum of squared error, it 
becomes highly unlikely that the optimized model with the list 
of outliers can be ascertained without very large computa- 
tional resources or a proportional expenditure of time. In 
contrast, both Application 3 (Supervised I) and 4 (Supervised 
II), after parallelizing, could be finished in 6.99 hours (stan- 

dardized) and 2.73 hours (standardized) respectively, with 
Application 1 (Heuristic) taking about 4.03 hours (standar- 
dized), of continuous running time for the wet-weight data. 
For the dry-weight data it took about 4.65 hours (standar- 
dized) for Application 3, 1.17 hours (standardized) for Appli- 
cation 4 (Supervised II) and 1.36 hours (standardized) for 
Application 1 (Heuristic).  

The results overall for all the algorithms on the surface 
seem comparable, especially given that only a subset of the 
data was used for the Chen and Liu algorithm, and the algo- 
rithm was run for the default number of iterations. Interest- 
ingly, as cursory validation of the assumption made regarding 
the consistency of the data collected by SWAMP, in Applica- 
tion 2 (Chen and Liu, 1993) most of the outliers were from the 
Non-SWAMP data.  

While remarkable, it is worthwhile mentioning that as the 
algorithm was run on the smaller subset of the data for time 
consideration, and because the cutoff points as well as the 
number of iterations in the algorithm are flexible, this parti- 
cular result can potentially change drastically as it is a func- 
tion of those particular variables. On the other hand, the cutoff 
points for the other algorithms are comparatively more fixed. 
Overall the dry-weight data showed less outliers than the wet- 

  
 

Figure 4. Chen and Liu’s wet weight results. 
 

  

Figure 5. Supervised I dry weight results. 
 

  
 

Figure 6. Supervised I wet weight results. 

 

Figure 7. Supervised II dry weight results. 
 

  

Figure 8. Supervised II wet weight results. 
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weight data, at 1.67 to 5.72%, vs. for the wet-weight data at 
1.91 to 8.15%. For Figures 1 through 8, which follow below, 
please see Appendix 7, for the relevant analysis, for the index 
of analytes which are plotted on the x-axis from left to right.  

The real difference, in the results, however, become 
apparent when we compare the results of those analytes on 
which all 4 algorithms could be fit. For these analytes, the 
means of the outlier percentages varied substantially in com- 
parison to Algorithm 2 (Chen and Liu, 1996), with Algorithm 
1 (Heuristic) giving the lowest percentage of outliers for the 
wet-weight data (1.34%) and the dry-weight data (1.29%). 
The mean for both datasets were higher in all instances for 
Algorithm 2 (Chen and Liu, 1993). However, what is more 
relevant is that multiple analytes according to both Algorithm 
3 (Supervised I) and 4 (Supervised II) showed no outliers at 
all for the dry-weight data.  

In essence, when we compare the result of analytes on 
which all algorithms could be fit, the range becomes much 
more pronounced. For the dry-weight data, for Algorithm 2 
(Chen and Liu, 1993), the outlier percentage was 5.80%, yet 
the range according to the other algorithms was between 1.29 
to 1.80%; for the wet-weight data, Algorithm 2 (Chen and 
Liu, 1993) indicated about 6.75% outliers as opposed to a 
range of 1.34 to 2.21% for the other algorithms. These differ- 
rences for both the overall analysis and the subset of the data 

on which all four algorithms could be fit, are a direct result of 
the assumptions that go into considering the entire ensemble 
for outlier detection as opposed to a supervised subsetted 
approach. As such, I attempt to provide some detailed expla- 
nations for this in the Discussion (5) section. 

5. Discussion 

Given the results seen above, especially on those analytes 
on which all four algorithms could be fit, it begs to question 
why there is a discrepancy between the outlier results based 
on the different methodologies. One explanation is that as 
from the previous discussions regarding the nature of outlier 
detection, an outlier is a function of the model that is fitted to 
the underlying data. Therefore, as the models are different in 
each of the applications, we should expect them to identify 
different outliers. In addition, a methodology that considers 
the entire ensemble without differentiating between the spa- 
tiotemporal nature of the various subsamples within the 
sample, such as Algorithm 1, should on average show less 
outliers than methodologies that do take that into considera- 
tion. In addition, even if such a methodology could correct for 
this, one would expect convergence to such an outcome to 
take longer than an approach that does consider this from the 
onset such as Algorithm 3 and 4.  

Table 3. Results Summary for all Algorithms Fit and Outlier Percentages 

Summary of Algorithms and Outliers Percentages 

  Heuristic Algorithm 2 (Chen and Liu) Algorithm 3 (Supervised I) Algorithm 4 (Supervised II) 

  Dry Wet Dry Wet Dry Wet Dry Wet 
Fraction of Outliers 
from SWAMP Data 

0.00% 0.00% 1.24% 1.08% N/A N/A N/A N/A 

Fraction of Outliers 
from Non-SWAMP 
Data 

1.66% 2.09% 4.483% 7.073% 1.80% 1.91% 1.98% 2.18% 

Comprehensive Mean 
of Outlier Percentage 

1.67% 2.09% 5.72% 8.15% 1.80% 1.91% 1.98% 2.18% 

Mean of Outlier 
Percentage on 
Analytes with All 
Algorithms Fit 
(Dry-Weight: 105, 
Wet-Weight: 83) 

1.29 1.34 5.80 6.75 1.80 1.92 1.60 2.21 

Number of Analytes 
Fitted 

363 799 359 776 40 89 87 131 

Number of Analytes 
Considered 

402 924 402 924 163 206 142 206 

Total Number of 
Analytes Available 
for Analysis 

402 984 402 984 216 342 216 342 

Percentage of 
Analytes Fitted 

91.90% 86.47% 90.89% 83.98% 24.54% 43.20% 61.27% 63.59% 

Actual Computation 
Time in Hours 

1.38 4.15 15.70 17.11 0.52 0.80 0.28 0.46 

Standardized 
Computation Time in 
Hours 

1.36 4.03 15.70 17.11 4.65 6.99 1.17 2.73 
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In fact, this is exactly what we see in the result with the 
required time needed for convergence in Algorithm 2 (Chen 
and Liu, 1993) in general being far higher than the other 
algorithms. Yet the greatest difference between the algorithms 
in terms of the time difference needed for convergence is the 
sequential nature of Algorithm 2 as opposed to non-sequential 
for the others. Furthermore, considering that three different 
models were considered before the application of the appro- 
priate model, for Algorithm 1, 3 and 4, which minimized sum 
of squared error, the potential time saving in a single model 
context can be even greater. In addition, there are several 
other factors to be considered which are given below.  

 

5.1. Complexity of Large Environmental Databases  

Consider, first and foremost that a database of the size 
and complexity of CEDEN (and many other similar environ- 
mental measurement databases) presents particular challen- 
ges, because the type of measurement by analyte can be very 

disparate with the source and spatiotemporal nature of each 
analyte varying significantly even within the same water body 
and thus, even more so across larger geographical regions. 
Therefore, it becomes increasingly difficult to apply one all- 
encompassing outlier detection methodology which does take 
into consideration all these specifics. Secondly, even if we 
make corrections to the dataset to only pass the relevant sub- 
setted data to a procedure such as Algorithm 2 (Chen and Liu, 
1993), as the dimensionality and size of the data increases, it 
becomes extremely difficult to decide as to which subset of 
the data has a representative sample on which the procedure 
can be reasonably successful. For example, it seems hardly 
tenable that such an algorithm could be used one at a time on 
all the potential 924 analytes and over 1.9 million or so 
observations above, not knowing the bias-variance trade off 
that will be necessitated by this implementation.  

On the other hand, through a simple heuristic algorithm 
we can make very reasonable initial inference on the data, 
treating it as an infimum/supremum of the number of possible 

 

 

 

Figure 9. Summary of dry-weight and wet-weight analytes on which all algorithms could be fit (see Appendix 8 and 9 
respectively for the underlying data with the analytes in alphabetical order plotted from left to right). 
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outliers in our dataset, which then can be further augmented 
by supervised learning to arrive at a much clearer picture 
regarding the outlier problem in our dataset, given the under- 
lying data used to train our model is relatively accurate and 
consistent with the test dataset. Since SWAMP and other such 
pollutant measuring government entities worldwide are man- 
dated to measure pollutant levels in natural resources, it seems 
highly likely that these measurements should be on average 
less variable and more consistent data. As such, they present a 
highly versatile data against which other measurements can be 
compared in the correct spatiotemporal context.  

Thirdly, this becomes even more relevant when we 
consider that some analyte measurement procedures can be 
extremely sensitive to the methodology of measurement that 
is used, and as such, are more likely to not fit into the same 
ensemble measured using a different methodology. Conse- 
quently, even with large amounts of data, outliers if already 
embedded in our dataset, can skew our results not only in 
terms of final tractability, but also in terms of the time 
required for convergence. While the exact time required will 
vary based on many criteria, including computing resources 
available and convergence criteria selected, the time required 
for the proposed algorithms was substantially less than that 
for Algorithm 2 (Chen and Liu, 1993). In addition, the actual 
proposed algorithm run times are more highly correlated with 
the model used to fit the data rather than the outlier detection 
steps of the algorithms. As such, this is one potentially large 
advantage of the heuristic and machine learning algorithms in 
this context over traditional methodologies. Furthermore, the 
versatility of the algorithms presented mean that they may be 
used on any fitted model to understand the model’s error 
structure, under presumptive Gaussian errors and can be 
extended to any number of exploratory data analysis contexts 
accordingly.  

 

5.2. Assumption Regarding Sampling Consistency  

In addition, both Application 1 (Heuristic) and 2 (Chen 
and Liu, 1993) consider multiple samples coming from dif- 
ferent sources as essentially independent and representative of 
the population density (in this case for each analyte). Yet 
when the data is irregular in nature, this may or may not hold 
even if the samples came from the same population. Thus, in 
such circumstances a supervised machine learning algorithm 
can really be useful to purse out any differences in the 
samples. This is because through these algorithms we are 
making no assumptions about the dependence or indepen- 
dence of the different datasets and can simply look at the 
model fits to draw unbiased inference. In addition, upon 
fitting such and other variants, thereof, of the supervised 
algorithms, if there are many outliers, or high variability 
between the methodologies, then the application of the model 
and its fit can and should be questioned. Thus, the results then 
can be used as a guide to implement other methodologies for 
outlier detection as deemed necessary even if at the cost of 
more time required to run the analysis. 

5.3. Limitations, Applicability and Extensions  

However, the algorithms are not without their drawbacks, 
as without a proper training set, of course, the supervised 
algorithms may not be used. That is, if in the spatial context 
the sampling distribution of the training and test datasets vary 
considerably this approach cannot be applied with accuracy. 
Furthermore, the temporal considerations between the training 
and test datasets must also be consistent (though more so for 
Supervised II than Supervised I). Thus, by no means is it an 
omnibus test, nor does it specifically identify outliers into any 
of specific type as has been mentioned above through Appli- 
cation 2 (Chen and Liu, 1993).  

This is the reason why in both Application 3 (Supervised 
I) and 4 (Supervised II), the models were fit to Non-SWAMP 
data in the same counties in which the SWAMP measurements 
were taken. In addition, of course, the algorithms cannot be 
used unless the errors themselves are independent. Though if 
this is not the case, then the algorithm can be used as a 
heuristic indicator of model fit itself, since if the errors from 
our fitted time series model are not independent, the model is 
unlikely to be the correct one for the dataset being considered 
and alternatives must be evaluated and considered. Further- 
more, the test dataset chosen on which Application 4 (Super- 
vised II) is fitted can give results that show more variability if 
the training dataset has any particular peculiarities that set it 
apart, over some unknown prediction window than otherwise. 
However, Application 3 (Supervised I) above should be less 
sensitive to these changes because it can be fit on all available 
test data, given that the test dataset is in the similar time frame 
and spatiotemporal existence as that of the training dataset.  

In addition, there is potentially a very pernicious problem 
with the sampling consistency assumption in any automatic 
outlier detection methodology. Consider, for example, when 
the underlying distribution from which a sample is taken 
varies even if for the same analyte. This is hardly, an unusual 
possibility, given the vast geographical regions over which 
different sampling agencies may take their measurements 
even if for the same analyte. In such a case, the presence of 
measurements that vary substantially essentially makes it far 
harder to identify actual outliers if they outnumber correctly 
collected and measured samples. In the present case, this is 
especially relevant, because for CEDEN, measurements are 
taken statewide for the same analytes and such data can be 
contributed by anyone, as many times as they may deem fit, 
by fulfilling reasonably easy filling requirements. 

Therefore, utility of such databases must be guarded and 
applied with extreme care. This is because, if we have overall 
measurements which are “incorrect” (for whatever reason 
from non-sanctioned entities, without the proper training, 
equipment or expertise or indeed from sanctioned entities) 
which inundate and outnumber properly collected measure- 
ments, then analysis on the entire ensemble will undoubtedly 
give the wrong outlier results, no matter how good the 
algorithm is. In fact, this was very much the case for many of 
the analytes on which the algorithms were fit showing far 
variable results for SWAMP vs. Non-SWAMP measurements. 
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Thus, the results obtained from all the algorithms must be 
approached with a reasonable amount of caution, and should 
be looked at as a first step only and not a final say in the 
actual outlier problem within the dataset, without more in- 
depth analysis. 

In fact, this is perhaps one of the largest contributions of 
this article, though it may not be entirely novel. That is, it is 
simply not enough to have data. It must be reliable data. 
While a small amount of variability is acceptable and war- 
ranted, when measurements from different agencies vary by 
orders of magnitude for the same analyte, using such mea- 
surements along the assumptions of the algorithms presented 
and in fact many other automatic outlier detection methodolo- 
gies may be a slippery slope.   

Despite this however, in certain contexts, especially for 
many analytes in the CEDEN context considered here, a 
supervised machine learning approach can give significant 
advantages over some other traditional methodologies that 
consider the model fit sequentially or otherwise, for outlier 
detection, in terms of model accuracy and time needed for 
convergence. As an example, in the CEDEN dataset this is 
because when the spatiotemporal distribution can vary con- 
siderably within an analyte across water bodies and counties 
over time, it seems inappropriate to consider all measurements 
of that analyte as coming from a single population density. 
When the data is irregular this becomes even less defensible.  

Due to the nature of the algorithms as mentioned for 
CEDEN, it would have been preferable to fit SWAMP analyte 
measurements by each water body in each county to Non- 
SWAMP institutions on those same water bodies in each 
county, in the same temporal context. However, on such 
subsetted data there were just not enough observations to fit a 
proper model. On the other hand, as more data is collected 
across the state there will come a time when such an 
application may be feasible. At which point the increasing 
volume of data will make the algorithms even more appealing 
to be used. Furthermore, if and when that time comes, the 
comparison of sampling distributions can then potentially be 
done among multiple agencies and will also provide a basis 
for understanding, if there has been any particular unobserved 
phenomenon (variable) in regression terms, that would not be 
easily picked up if we used an algorithm such as in Appli- 
cation 2 (Chen and Liu, 1993) in a timely manner. 

Therefore, overall these algorithms can provide results 
equivalent to some outlier detection procedures at a fraction 
of the time and provide critical insights in to the data that may 
not be readily apparent in certain contexts. This is especially 
relevant when our datasets are large, with significant advan- 
tages in time to get tractable results. As such, it presents 
another tool in the researcher’s arsenal for model fitting and 
outlier detection, though they may not be as robust as other 
algorithms. In addition, there are multiple potential extensions 
of these algorithms through an iterative outlier detection 
methodology along with specific identification of the type of 
outlier as in Algorithm 2. As such, other outlier handling 
techniques such as smoothing may also be used through ex- 

tensions of the methodologies, as one of the first steps in these 
methodologies is the identification of the potential outliers in 
the ensemble.  

Thus, as environmental regulations become more strin- 
gent and data becomes more ubiquitous, the importance of 
such algorithms and their variants can only increase. This is 
because environmental databases are unique in that they 
sample similar geospatial locations overtime making compa- 
risons across sampling sources more viable as the amount of 
data from each unique source increases over time, as they are 
likely to do.  

In light of the results one final point must be made. That 
is, as more and more states and countries start using databases 
such as CEDEN and use the measurements to guide policy, 
the potential outlier issues must be considered more vigo- 
rously. While a 1% - 8% outlier range on average may not 
seem significant, the amount of variability with each analyte 
can be significant given any particular method used, and was 
certainly witnessed within particular analytes varying by 
sampling agencies. Thus, a simple tertiary use of the data as 
presented in the database will undoubtedly lead to very wrong 
conclusions regarding the pollution level of our natural 
resources.  

In fact, given the large geographic regions over which 
various authorities may sample for the same analytes, it is 
essential that those with the proper collecting and measure- 
ment expertise record and submit to databases such as 
CEDEN. As otherwise, poorly collected samples may inun- 
date the measurements, far and above the proper samples 
collected by environmental agencies such as SWAMP. At such 
an event, the true underlying distribution for each analyte 
would be extremely difficult to evaluate with any outlier 
detection methodology.  

This point is especially relevant for those analytes that 
require more stringent collection methodologies. This in turn, 
can have large impacts on how much to charge potential 
dischargers of environmental waste into our habitats. There- 
fore, another possible extension of this methodology may be 
an attempt at quantifying any such monetary impact of consi- 
dering outliers in large environmental databases.  

6. Conclusion  

In conclusion, it is evident that regardless of the metho- 
dology applied, the CEDEN dataset contains some outlier 
problems. Such issues are hardly unexpected given the size, 
complexity and type of measurements being considered. As 
such, the concerned parties must be particularly careful in 
applying any ad hoc inference on the data without taking this 
into consideration. In addition, the methodologies that are 
proposed here with their various extensions, can be used in a 
variety of circumstances in modeling, as a guideline for 
outlier detection, both for this purpose and others regardless 
of the models chosen to fit the data. Consequently, these 
methodologies allow the analyst to arrive at reasonable 
conclusions about his/her data without relying solely on com- 
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puting power, as valid inferences can be made even with very 
few Monte Carlo iterations, in a reasonable amount of time. 
Thus, regulators and lawmakers relying on such data must be 
particularly vigilant to make the right assertions before com- 
mitting billions of dollars to a supposed over pollution or 
under pollution of our natural resources.  
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