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ABSTRACT. This study focuses on the long-term (2011 ~ 2100) changes in precipitation indices under different climate change 

scenarios in Subansiri river basin, a tributary of Brahmaputra River in Northeast India. The fifth phase coupled model intercomparison 

project (CMIP5) data for different representative concentration pathways (RCPs) scenarios as suggested by Intergovernmental Panel 

on Climate Change (IPCC) is used for the study. Statistical downscaling model (SDSM) is used to downscale the precipitation. Three 

global climate model (GCM) datasets from earth system model and geophysical fluid dynamics laboratory (namely ESM2G, ESM2M, 

and GFDL-CM3) with four RCP scenarios (namely RCP2.6, RCP4.5, RCP6.0, and RCP8.5) were used for generating daily 

precipitation time series for a time period of 2011 to 2100. Precipitation based indices were computed on a multi-decadal time scale to 

detect the changes in precipitation pattern and its distribution. Total five precipitation stations were selected for downscaling and 

precipitation indices analysis. The non-parametric Mann-Kendall test method was used for the trend analysis of the precipitation 

indices. Indices based analysis of the precipitation shows an increase in the intensity of precipitation whereas a decrease in number of 

precipitation days on the lower part of the basin. The increase in number of rainy days followed by a decrease in intensity in the upper 

station was observed. Long-term (2011 ~ 2100) future projection of precipitation for annual precipitation shows statistically significant 

increase of minimum 1.8% at station 1 (for RCP2.6) to maximum 11% in station 3 (for RCP8.5) as compared to observed period 

annual precipitation. 
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1. Introduction  

Management of water resources under the threat of chan- 

ging climate is a big challenge for policymakers and resear- 

chers (Vano et al., 2010; Valipour 2012; Sarma et al., 2013). 

Several climate change studies reported that global warming 

will increase the water holding capacity of the atmosphere 

which may cause an increase in the precipitation intensity 

(Allen and Ingram 2002; Berg et al., 2009). IPCC in its fifth 

assessment report (AR5) reported that the occurrence of 

extreme precipitation events will be more frequent in many 

regions and rise in temperature in the 21st century for all the 

greenhouse gas emission scenario (IPCC, 2014). Alteration in 

climatic variables will affect various sectors e.g. agriculture, 

ecosystem, water quality and water resources etc. Swain and 

Thomas (2010) carried out a study to evaluate the climate 

change impact on agricultural production using multiple 

GCMs for Eastern India and reported the reduction in future 

agricultural production, apart from agricultural losses climate 
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change will also affect the water quality of different water- 

bodies (Xia et al., 2014). Change in temperature and precipi- 

tation will have direct impact on calculation of hydro-climato- 

logical parameters such as evapotranspiration (Valipour and 

Eslamian 2014; Valipour 2014; Goyal and Khan 2016; Goyal 

and Sharma 2016;) which in turn will affect the basin res- 

ponse such as streamflow (Valipour et al., 2013; Valipour 20 

15), sediment discharge etc. 

GCMs are the useful tool for the climate change studies 

to predict the future probable change in the atmospheric com- 

ponents under the different greenhouse gas emission scenarios 

(Ghosh and Mujumdar 2008; Moss et al., 2010). GCMs in- 

clude physical factors of the area while generating the future 

scenarios for different carbon concentration levels (Grotch 

and MacCracken 1991; Prudhomme et al., 2003) though the 

problem associated with these models is the coarse resolution, 

which makes it unfit for use at local scale impact studies 

(Goyal and Ojha, 2012). Emission scenarios considered for 

this study are relevant to the IPCC AR5 based CMIP5 datasets 

which are the advanced phase of coupled model inter-com- 

parison projects (CMIP). CMIP5 datasets are simulated on the 

basis of representative concentration pathway (RCP) scena- 

rios which implicate the radiative forcing; RCPs unlike 

special report on emission scenario (SRES) datasets include 

policy intervention along with technological, population and 
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societal development while explaining the emission scenarios 

(Taylor et al., 2012). RCPs are the scenarios which assume 

that policy intervention and precautionary measures will be 

taken into consideration to keep the emission to a certain level. 

In climate change studies local scale factors such as topo- 

graphy, water bodies, land use land cover etc. play important 

role in occurrence and distribution of the various atmospheric 

variables (Ghosh and Mujumdar 2008; Mondal and Mujumdar 

2012). Downscaling of large scale GCM variables to bring 

down to the local scale helps in understanding the impact of 

local factors affecting the atmospheric processes (Anandhi et 

al., 2008). There are several methods for downscaling e.g. dy- 

namic downscaling, statistical downscaling and weather gene- 

rators but statistical downscaling is popular technique because 

of its computational efficiency, flexibility and capability to get 

station scale information from coarse GCM (Wilby et al., 

2002). Rahmani and Zarghami (2015) applied downscaling 

approach to assess the change in temperature and precipitation 

over Northwestern Iran and found a decrease in precipitation 

and increase in warming for the various climate change sce- 

narios. 

Expert team on climate change detection and monitoring 

(ETCCDI) has decided certain climate extreme indices; these 

climate indices are included in the fourth assessment report of 

IPCC (IPCC 2007). Precipitation indices are the indicator of 

the occurrence and distributions of the precipitation during a 

period of time and their trend analysis can be very helpful in 

identifying the changing pattern of precipitation (Katz and 

Brown, 1992; Valipour 2016). Pingale et al. (2014) carried out 

a study on precipitation trends over 33 stations of Rajasthan 

state of India for the period of 1971 ~ 2005 and reported a 

decrease in precipitation by 6 ~ 8 mm/year whereas an incr- 

ease in temperature was recorded. Duhan and Pandey (2013) 

in their study over 45 districts of Madhya Pradesh state of 

India for trend analysis of precipitation with a dataset from 

1901 ~ 1978 found that trend of precipitation in the region 

decreasing with maximum recorded magnitude of 12% to 

minimum with 8.52%. 

Recent studies on climate change and trend analysis over 

Northeast India also indicate vulnerability of the region to 

climate change impacts. Jhajharia et al. (2012) applied Mann- 

Kendall test to detect the trend in evapotranspiration in the 

northeast India region and claimed decrease in evapotran-

spiration over the region. Goyal (2014) studied the trend of 

precipitation in northeast India and found notably significant 

seasonal variation of the precipitation at various stations for 

agricultural and water management point of view. Deka et al. 

(2013) in their study for trend analysis of precipitation over 

Brahmaputra river and Barak river basin and reported a de-

creasing trend in annual and monsoon precipitation over both 

the basins. Jain et al. (2013) analyzed the trend in temperature 

and precipitation over the northeast India using the 1871 ~ 

2008 datasets and reported seasonal changes in precipitation 

and rise in temperature of the region. Since the northeast part 

of India is high precipitation receiving region, short duration 

high-intensity precipitation causes destruction in the region 

and also it intensifies the necessity of the water management 

for the region as rainy season causes massive flood situation 

whereas in lean period water scarcity arises in some parts 

(Das et al., 2009). Recent studies reveal an increase in the 

occurrence of the extreme events in the region, such as North- 

Lakhimpur district has faced several frequent flash floods 

while districts like Nagaon and Carbi Anglong are facing a 

water scarcity situation (Das et al., 2009). The main objective 

of the study is to quantify the impact of climate change 

associated with precipitation in Subansiri river basin using 

precipitation indices approach using recently introduced CM- 

IP5/RCP datasets.  

2. Study Area and Data 

Subansiri river basin, selected for the study is a tributary 

of Brahmaputra River in the Northeastern part of India. It 

originates from Tibet plateau and enters in India through the 

state of Arunachal Pradesh and after traveling a distance of 

334 km it meets Brahmaputra River near Gerukamukh in the 

Assam state. River drains about 35771 km2. The geographical 

extent of the river basin lies between latitude 26°54’14.72’’N 

to 28°55’24.79’’N and longitude 91°33’09.83’’E to 95°04’38. 

44’’E (Figure 1). This river covers part of Lower Subansiri 

district in the state of Arunachal Pradesh and some part of 

Dhemaji and North Lakhimpur district of Assam.  

India Meteorological Department (IMD) gridded precipi- 

tation data of 0.5° latitude   0.5° longitudes is used as ob- 

served data (for station 2, station 3 and station 4). IMD grid- 

ed data are the products of interpolation of high-quality gauge 

station data from more than 1800 stations (Rajeevan et al., 

2006). Apart from these gridded data one precipitation gauge 

station data (for station 5) is also available for study. Since 

there is no IMD gauge stations and IMD gridded datasets are 

available for the upper region, APHRODITE gridded (0.5°
0.5°) precipitation dataset was used as observed data. Asian 

Precipitation Highly Resolved Observational Data Integration 

Towards Evaluation of the Water Resources (APHRODITE) is 

Figure 1. Subansiri River Basin and station details. 
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the high resolution (0.25° 0.25° and 0.5° 0.5°) daily rain- 

fall data sets developed for the Asian region which is based on 

the data collected at more than 5,000 stations (Yatagai et al., 

2012). CMIP5 GCM dataset variable was downloaded from 

Geophysical fluid dynamics laboratory (GFDL). Three GCMs 

namely ESM2G, ESM2M and GFDL-CM3 (downloaded from 

website: https://esgf-data.dkrz.de/search/cmip5-dkrz/) with their 

respective RCP scenarios daily datasets i.e. RCP2.6, RCP4.5, 

RCP6.0 and RCP8.5 for the period of 2011 to 2100 were 

utilized in this study for downscaling of the future precipita-

tion. Since the gauge precipitation dataset is available from 

1980 to 2000, to keep the uniformity in data period for all the 

stations, we selected this period (1980 ~ 2000) data for cali-

bration and validation for all the selected stations. National 

Center for Environmental Prediction (NCEP) datasets were 

used for model preparation, calibration and validation pur- 

poses. Since GCM grid resolution (2° 2.5°) and NCEP data 

sets grid resolution (2.5° 2.5° lat lon) are not same, before 

downscaling GCM predictors were interpolated to NCEP grid 

scale using inverse distance weighted average method (IDWA) 

(Willmott et al., 1985). 

 

3. Methodology  

3.1. Downscaling 

There are mainly two downscaling methods which are 

used in climate change studies i.e. statistical downscaling and 

dynamic downscaling. The statistical downscaling method 

establishes a relation between GCM variables and historical 

time series of observed variable (predictands), this method is 

more popular because of its ease of calculation and fewer 

resources requirement whereas dynamic downscaling is com-

plicated and requires high computational facility (Wilby and 

Wigley 2000). SDSM is widely accepted model for the statis-

tical downscaling, several previous studies have used this 

model (Khan et al., 2006; Chu et al., 2008; Hashmi et al., 

2011; Mahmood and Babel 2013; Meenu et al., 2013; Duhan 

and Pandey 2014; Shivam et al., 2016). In this study statistical 

downscaling model (SDSM) is used for the downscaling, 

SDSM is a statistical tool which utilizes linear regression 

transfer function between observed datasets (predictands) and 

the NCEP variables (predictors) and works as a stochastic 

weather generator for future projection of the predictand var-

iable. SDSM establishes linear regression relation between 

predictand and large-scale variables. There are three methods 

available for making the regression model i.e. monthly, annual 

and seasonal basis. In monthly model different regression 

equations are drawn for each month whereas in annual model 

single regression equation is established for all the months. 

The model uses conditional sub-model for generating the pre-

cipitation events on the basis of dry and wet spells (Wilby et. 

al., 2002). Optimization of the parameter is performed using 

ordinary least square method or simplex method. In this study 

monthly model was prepared for downscaling, regression 

relation was established for each month separately and 

ordinary least square method was used for parameter optimi-

zation. There are four main sections in SDSM model i.e. sc- 

reen variables, calibrate the model, weather generator and sce- 

nario generator. Screen variables section performs several 

statistical checks for selection of suitable variables for model 

preparation, calibrate model section establishes regression 

equation between predictand and GCM/NCEP variables by 

optimizing the parameters of regression equations, and wea- 

ther generator generates the future time series for different 

climate change scenarios. 

 

3.2. Potential Predictor Selection 

Predictor selection is the most important step in the 

downscaling process. For selecting the potential predictors, 

initially correlation check between observed precipitation of 

selected stations and NCEP variables was performed. In the 

selection of predictors, it is to be noted that the correlation 

between observed variables (predictands) and NCEP variables 

(predictors) should be maximum and correlation amongst the 

predictors should be minimum (Wilby and Wigley, 2000). 

After checking the correlation, 17 most relevant predictors 

were selected for choosing the final predictors for model 

preparation. Further, partial correlations amongst the predic-

tors were checked, this methodology of selecting the predic-

tors, was adopted from Mahmood and Babel (2013). Finally, 

the predictors such as surface specific humidity (huss), pre-

cipitation flux (pr), convective precipitation flux (prc), surface 

relative humidity (rhs), surface daily minimum humidity 

(rhsmin), surface daily maximum humidity (rhsmax) and sur-

face down-welling longwave radiation (rlds), temperature at 

surface (tas) were selected for preparing the model. 

For preparing the downscaling model, dataset from 1980 

~ 1995 is used for calibration whereas 1995 ~ 2000 dataset is 

used for validation. Nearest four grid points of the selected 

three GCMs were first interpolated to NCEP grids and then 

standardized to reduce systemic biases in mean and variance 

of the GCM. NCEP variables were normalized using the mean 

and standard deviation of the NCEP data series from 1980 ~ 

2000 using the following formula: 
 

normalized

x x
x



−
=  (1) 

 

where ‘x’ is the data point in series, x is mean of the time 

series and   is standard deviation. 

For evaluating the model performance, several perfor-

mance metrics were calculated for the prepared downscaling 

model over calibration and validation period. 

1) Coefficient of determination (R2): 
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2) Nash-Sutcliffe Efficiency (NSE): 
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3) Root Mean Square Error (RMSE): 
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where Oi and Pi are the observed and model generated preci- 

pitation dataset respectively, and O and P are the mean of 

observed and model generated precipitation data series res- 

pectively. Further bias correction of the future generated pre- 

cipitation data series was performed using Equation 5, bias 

correction of the downscaled data is necessary for the accurate 

impact assessment from the downscaled variables (Dettinger 

et al., 2004). For bias correction of the downscaled data fo- 

llowing method was applied (Mahmood and Babel, 2013): 

 

obs
d downscaled

cont

P
P P X

P

 
=   

 
 (5) 

 

where Pd is bias corrected precipitation series, obsP  is mean 

of the observed precipitation and contP  is mean of downs- 

caleed precipitation data for the calibration period.  

 

3.3. Precipitation Indices 

Precipitation indices as decided by ETCCDI are charac- 

terized by the duration and intensity of the precipitation 

(Alexander et al., 2006). Precipitation indices were calculated 

following the ETCCDI norms and nine indices of precipita-

tion namely consecutive dry days (CDD), consecutive wet 

days (CWD), annual precipitation (PRCPTOT), number of 

rainy days (R1mm), heavy precipitation days (R10mm), very 

heavy precipitation days (R20mm) very wet days (R95p), 

extremely wet days (R99p) and simple daily intensity index 

(SDII) was computed. Indices like CDD, CWD, R1mm give 

an idea of the distribution of the precipitation throughout the 

year whereas indices R95p, R99p and SDII indicate about the 

intensity of the precipitation (Donat et al., 2013; Huang et al., 

2014). Number of days having precipitation amount more 

than 1 mm is considered rainy days, previous studies selected 

this value as a threshold for calculating the rainy days (Sill- 

mann et al., 2013). 

 

3.4. Trend Analysis 

Mann-Kendall test (Mann, 1975; Kendall, 1975) was ap- 

plied to detect the changes in precipitation indices and Sen’ 

slope method (Sen, 1968) was used for the calculation of the 

magnitude of change in trend. Mann-Kendall z-statistics cal-

culated for test of significance of trend at 95% confidence 

level, the value of z-statistics greater than +1.96 indicates a 

significant positive trend and a value less than -1.96 tends to 

significant decreasing trend. Auto-correlation amongst the 

datasets reduces the efficiency of Mann-Kendall test in de-

tecting the trend, in such cases pre-whitening of datasets is 

required to get the accurate results (Burn and Elnur, 2002). In 

this study, before testing the trend of precipitation indices, 

autocorrelations were checked for each indices datasets and it 

was found that there is no statistically significant auto-corre- 

lation existing in datasets at 95% confidence level. 

4. Results and Discussion 

4.1. Downscaling Results  

After selecting the predictors, downscaling model was 

prepared using linear regression with conditional sub-model; 

conditional sub-model implicates separate parameterization 

for dry days and wet days from the series of precipitation 

(Wilby et al., 2002). RMSE, R2, and NSE value for the cali-

bration and validation period are shown in Table 1 and graph 

plot of observed and model generated precipitation is shown 

in Figure 2. As shown in Table 1, R2 varies from 0.76 to 0.81 

in calibration period whereas in the validation period, it 

ranges from 0.78 to 0.88 for different stations. NSE found to 

be ranging from 0.78 to 0.88 during calibration and 0.74 to 

0.83 in validation.  

Calibrated downscaling model was further used to gener-

ate the precipitation for baseline scenario (1980 ~ 2000) using 

historical run of the three GCM models. These historical 

GCM runs simulate the atmospheric variables on the basis of 

observed carbon concentration (Moss et al., 2010; Taylor et al., 

2012). Figure 3 shows a boxplot of the monthly observed 

precipitation, the monthly model generated precipitation data 

series and monthly precipitation series generated from histo- 

rical run of GCM data. Station-wise results of the precipi- 

tation downscaling model on monthly basis show good ag- 

reement with the observed precipitation but a comparison of 

the annual precipitation of observed data and model gene- 

rated data shows that model overestimates the annual precipi- 

tation whereas the historical run GCM precipitation data sh- 

ows an almost similar pattern to that of the model generated 

data. 

Figure 4 represents the comparison of observed annual 

precipitation and precipitation series of RCP scenarios for 

2011 ~ 2100. Figure 4(a) shows changes in precipitation over 

station 1, results show increase in annual precipitation for all 

the RCP scenarios with variation in magnitude with GCM. 

Average of all three GCM shows an increase of 4.39% for 

RCP2.6, 5.17, 5.88 and 8.86% respectively for RCP4.5, 

RCP6.0, and RCP8.5. Figure 4(b) shows the precipitation for 

station 2 and average of three GCM indicates an increase of 

3.21, 7.65, 9.07 and 11.83% respectively for RCP2.6, RCP4.5, 

RCP6.0, and RCP8.5. Similarly, Figure 4(c), 4(d) and 4(e) re- 
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present annual precipitation for RCP scenario with their res- 

pective GCM. The increase in precipitation over station 3 is 

calculated to be 2.19, 5.72, 6.74 and 8.64% respectively for 

the increasing order of RCP scenarios. In station 4 increments 

for RCP2.6 to RCP8.5 is calculated to be 4.35, 3.45, 4.09 and 

8.11% respectively. Changes in annual precipitation over sta- 

tion 5 are found to be positive with 2.13, 5.80, 6.07 and 10.37% 

for RCPs. It can be concluded from Figure 4 that the changes 

in precipitation across the basin are positive with magnitude 

increasing from low RCP scenario to high RCP scenario. 

 

4.2. Changes in Extreme Precipitation Indices 

4.2.1. Trends in Precipitation Indices for Historical Period 

(1980 ~ 2000) 

Trend analysis of historical data period gives an insight 

of existing pattern of the changing climate and also proves 

helpful for comparing the future changes. Figure 5 shows the 

z-statistics of indices for different stations and their respective 

Sen’s slope magnitude are shown in Table 2. From the Figure 

5, it is clear that station 4 shows significant increasing trend 

for CWD, PRCPTOT, R10mm, R20mm, R95p and SDII, the 

magnitude of increase of these indices are shown in Table 2. 

No significant trend was observed at any station except station 

4. Indices showing increasing or decreasing trend are not sta-

tistically significant at 95% confidence level. Average of the 

increase in annual precipitation of all stations show an in-

crease of 3.63 mm/year which is not very much significant for 

the basin, whereas the contribution of very wet days (R95p) is 

likely to increase. The increasing trend of R95p shows that 

this increase can create a situation of frequent flood events. 

Table 1. Calibration and Validation Results of Precipitation Downscaling Model for all Stations 

  SB1   SB2   SB3   SB4   SB5   

  Calibration Validation Calibration Validation Calibration Validation Calibration Validation Calibration Validation 

RMSE 35.50 36.54 31.10 37.21 29.54 34.43 31.23 35.84 27.13 31.97 

CC 0.81 0.79 0.83 0.79 0.85 0.81 0.83 0.80 0.76 0.74 

NSE 0.80 0.78 0.82 0.78 0.88 0.83 0.81 0.79 0.78 0.74 

 

 

Figure 2. Calibration (1980-1995) and validation (1996-2000) result of the precipitation downscaling model for Subansiri river basin. 

 

 

Figure 3. Comparison of observed precipitation, model generated and GCM precipitation for controlled scenario (1981-2000). 

Note: Red bar inside box represents the median, lower and upper horizontal bar of the box represents first and third quartile, 

respectively. Red markers represent the outliers. 

 

Table 2. Magnitude of Change in Precipitation Indices 

during Historical Period (1980-2000) 

  SB1 SB2 SB3 SB4 SB5 

CDD 0.65 1.00 0.00 0.05 0.03 

CWD 0.04 0.17 0.29 0.50 0.00 

PRCPTOT 3.20 0.42 -3.13 17.57 0.09 

R1mm 0.06 -0.92 -1.45 -0.25 -0.06 

R10mm 0.21 -0.44 0.00 1.42 0.05 

R20mm 0.05 -0.27 0.30 1.18 0.02 

R95p 1.33 0.20 -2.76 18.30 -0.03 

R99p 0.00 1.52 0.00 0.00 -0.04 

SDII 0.03 0.00 0.05 0.20 0.07 
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4.2.2. Trends in Annual Precipitation for Future Scenario 

Average of all stations annual precipitation gives an idea 

about the change in precipitation over the basin. Figure 6(a) 

represents the significant and non-significant trends in annual 

precipitation over the entire basin. Although on the 30-year 

time scale, some decreasing trend was found and it is statisti- 

cally non-significant at 95% confidence level. Significant in-  

creasing trend was observed for CM3-RCP2.6, CM3-RCP4.5,  

CM3-RCP6.0 and CM3-RCP8.5 for different time periods. 

The magnitude of change in different indices over all the 

stations for GCM/RCP scenarios were calculated for the 

long-term period of 2011 ~ 2100 and three inter-decadal time 

 

Figure 4. Boxplots of the precipitation anomalies for GCM/RCP scenarios over the period of 2011-2100 compared to observed 

precipitation for all stations. 
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scales (i.e. 2011 ~ 2040, 2041 ~ 2070, 2071 ~ 2100). For re- 

presentation, Sen’s slope magnitude of annual precipitation 

and number of rainy days (for ESM2G model) is shown in 

Table 3 for all the RCP scenarios. The maximum positive 

change was found at station 5 for the time period during 2041 

~ 2070 with the magnitude of 138 mm/decade whereas maxi- 

mum decrease is recorded at SB5 during the period of 2071 ~ 

2100 for RCP2.6. At station 1, an increase in annual precipi- 

tation is observed over all the timescale and maximum in- 

crease found for RCP8.5 which ranges from 29.14 mm/decade 

(2011 ~ 2040) to 30.55 mm/decade (2071 ~ 2100). Average 

annual precipitation for the entire basin shows increasing 

trend for all the RCP scenarios with magnitude of 2.31 mm to 

31.51 mm/decade. GCM models show uncertainty in the 

magnitude of changes in annual precipitation and GFDL-CM3 

model shows the higher magnitude of changes as compared to 

the other two models. 

 

4.2.3. Trends in the Distribution of Precipitation 

Figure 6b, 6c, and 6d represents the Mann-Kendall z-sta- 

tistics of consecutive dry days (CDD), consecutive wet days 

(CWD), and number of rainy days (R1mm) over the basin for 

different GCM RCP scenario during different time periods. 

Consecutive dry days index represents the longest spell of 

days without any precipitation (>1mm) events. For the 

long-term period (2011 ~ 2100) no significant trend is obser- 

ved over the basin. Trend analysis of 30-year time scales 

(2011 ~ 2040, 2041 ~ 2070 and 2071 ~ 2100) represent a sig-

nificant increasing trend for 2071 ~ 2100 in model CM3 

RCP2.6 as shown in Figure 6b. The magnitude of change 

(Sen’s slope) at sub-basin scale for CDD can be seen in Table 

3 for ESM2G model. Maximum change in CDD was found to 

be positive with 8.46 days/decade in station 1 for CM3 

RCP2.6 scenario during the period of 2071 ~ 2100, likewise, 

maximum decreasing trend of CDD observed in station 3 with 

magnitude 4.35 days/decade for the RCP2.6 scenario. Average 

of three GCMs for RCP scenarios show an increase of 3.46 

day/decade at station 1 and at stations 2, 3, 4 and 5 increase in 

Table 3. Magnitude of Change in Annual Precipitation (mm/decade), R1mm (days/decade), CDD (days/decade), Consecutive Wet 

Days (days/decade), R95p (mm/decade) and R99p (mm/decade) for Four RCP Scenarios of ESM2G Model 

  SB1    SB2    SB3    

Indices RCP 2011- 

2100 

2011- 

2040 

2041- 

2070 

2071- 

2100 

2011- 

2100 

2011- 

2040 

2041- 

2070 

2071- 

2100 

2011- 

2100 

2011- 

2040 

2041- 

2070 

2071- 

2100 

Prcptot 2.6 0.67 5.00 -2.43 16.38 3.61 54.19 78.11 -113.8 0.68 0.86 6.80 -10 

4.5 -2.97 -3.1 -9.31 -14.8 18.28 40.00 -27.8 2.87 0.19 -2.43 -5.8 0.14 

6.0 2.75 1.10 13.39 2.30 18.24 80.64 -47.2 -64.45 0.73 -18.00 13.8 5.26 

8.5 -2.0 -8.8 -11.6 10.37 26.70 -65.0 27.28 27.50 1.14 1.78 12.4 -8.5 

R1mm 2.6 0.21 -1.0 0.48 3.33 -0.26 -1.00 2.50 -3.85 0.00 0.00 1.76 -2.5 

4.5 0.48 0.71 -2.00 -2.50 0.50 0.00 -0.48 0.87 0.00 -2.40 -2.7 -2.0 

6.0 0.83 0.53 1.00 0.00 0.31 1.25 -0.43 -1.43 0.24 -2.50 1.20 0.71 

8.5 0.00 -1.8 -1.82 1.11 1.58 -5.52 2.22 0.91 0.24 -0.42 0.00 -1.4 

CDD 2.6 0.00 0.00 -0.43 0.83 0.00 0.50 1.58 2.00 0.00 -4.35 1.67 -0.5 

4.5 0.00 0.00 1.50 1.43 0.00 0.00 -1.67 -2.61 0.00 -1.00 0.87 1.00 

6.0 0.15 0.83 1.60 2.50 -0.43 -0.95 1.00 0.00 0.67 1.25 6.67 1.74 

8.5 0.00 2.63 0.00 1.36 -0.38 0.42 -0.45 -0.59 -0.17 -0.91 0.00 -1.2 

CWD 2.6 0.00 0.42 -1.5 1.50 0.00 0.00 0.37 -1.25 0.00 0.45 1.05 -0.4 

4.5 0.00 0.00 0.00 -0.87 0.32 0.00 1.54 -0.71 -0.19 -0.91 -0.5 -1.0 

6.0 0.00 0.00 0.43 0.40 0.20 0.50 0.00 0.00 0.24 -0.56 0.67 0.00 

8.5 0.00 1.00 0.00 0.00 0.45 -1.33 0.00 2.31 0.00 1.20 0.00 -0.5 

R95p 2.6 0.83 1.33 -15.7 7.33 4.26 67.65 10.00 -41.36 1.11 8.30 2.92 -4.0 

4.5 -2.63 -0.4 1.88 -6.40 12.82 11.15 -4.28 -21.85 1.00 2.60 1.00 2.20 

6.0 0.51 -2.5 -6.53 0.92 16.47 60.92 61.48 -6.83 -0.71 -3.27 1.17 0.78 

8.5 -3.27 2.93 0.11 -9.45 7.82 42.36 9.85 1.42 0.62 1.67 8.50 -5.2 

R99p 2.6 0.00 0.00 0.00 -0.10 0.17 0.00 -2.22 7.38 0.00 0.00 0.00 0.00 

4.5 0.00 0.00 0.83 0.00 0.26 3.33 2.92 3.50 0.00 0.00 0.00 0.00 

6.0 0.00 0.00 0.13 0.00 0.96 -1.71 20.00 -8.79 0.00 -3.67 0.00 0.13 

8.5 0.00 0.47 0.00 0.00 1.07 2.68 0.00 23.07 0.00 0.00 1.75 0.00 

 

 

Figure 5. Mann-Kendall test Z-statistics of 

precipitation indices during historical period 

(1980-2000) over all the stations. 
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consecutive dry days are not significant in magnitude. 

Z-statistics of CWD trends show no significant increase 

over the period of 2011 ~ 2100 as shown in Figure 6(c). The 

maximum positive trend in CWD was observed in station 1 

with the magnitude of 3.81 days/decade for period of 2011 ~  

2040 under the CM3 RCP2.6 scenario. Average of GCM val-

ues for respective RCPs shows no large magnitude increase or  

decrease in CWD. Figure 6(d) shows z-statistics for number 

Table 3. Magnitude of Change in Annual Precipitation (mm/decade), R1mm (days/decade), CDD (days/decade), 

Consecutive Wet Days (days/decade), R95p (mm/decade) and R99p (mm/decade) for Four RCP Scenarios of ESM2G 

Model (Continued) 

  SB4    SB5    

Indices RCP 2011-2100 2011-2040 2041-2070 2071-2100 2011-2100 2011-2040 2041-2070 2071-2100 

Prcptot 2.6 5.00 36.64 -10.6 -71.1 -1.38 123.94 -0.04 -196.3 

4.5 10.79 97.86 76.72 -38.2 1.44 -9.87 16.00 -57.75 

6.0 23.47 57.54 67.64 11.60 23.96 80.90 29.00 67.60 

8.5 34.67 -151.5 -18.7 2.85 54.72 -68.03 -35.67 66.00 

R1mm 2.6 0.26 -0.50 -1.11 -3.13 0.15 1.82 0.71 -3.33 

4.5 0.77 0.00 2.50 -3.08 0.33 0.00 2.00 0.00 

6.0 1.14 0.59 2.73 0.00 0.00 -1.54 -3.85 3.04 

8.5 1.54 -6.82 -2.00 1.43 1.05 0.00 0.00 0.00 

CDD 2.6 0.00 -1.67 0.74 1.50 -0.26 -0.91 0.83 0.56 

4.5 0.00 1.36 0.00 -0.48 0.00 2.86 -0.77 -1.00 

6.0 0.37 0.77 0.00 0.67 0.53 0.77 0.53 -5.22 

8.5 0.00 -0.91 1.25 0.40 0.00 2.78 1.00 3.33 

CWD 2.6 0.00 0.71 0.00 0.00 0.00 0.00 -0.50 -0.71 

4.5 0.15 0.00 1.33 0.00 0.00 0.00 -0.59 -0.77 

6.0 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

8.5 0.00 -1.20 -0.38 -0.83 0.00 -0.77 -0.50 0.00 

R95p 2.6 7.72 18.56 15.94 -2.55 -6.92 43.09 -5.31 -133.3 

4.5 4.84 52.53 42.50 13.27 -10.6 -18.00 55.81 -0.23 

6.0 10.82 6.09 34.78 1.93 20.05 14.08 120.11 -0.47 

8.5 20.46 -7.38 33.21 -3.00 34.53 -77.53 -21.58 29.05 

R99p 2.6 2.05 1.07 -2.58 28.23 0.00 -10.13 0.00 -25.50 

4.5 1.97 0.00 -13.8 5.22 -0.53 -21.00 17.40 1.89 

6.0 2.40 0.47 27.07 -3.20 1.19 0.00 29.91 0.00 

8.5 0.75 0.00 0.00 -26.2 8.84 0.00 1.50 -17.18 

 

 

Figure. 6 Mann-Kendall test Z-statistics of indices indicating the distribution of precipitation for all the GCM/RCP ensembles. 



 G. Shivam et al. / Journal of Environmental Informatics 34(1) 1-14 (2019) 

 

9 

of rainy days and it is evident that the trend is significantly 

increasing for CM3 RCP4.5 and CM3 RCP8.5 of the GCM  

RCP scenario. 

 

4.2.4. Trends in the Intensity of Precipitation  

Number of heavy precipitation days (R10mm) is the 

number of days with precipitation more than 10 mm whereas 

number of very heavy precipitation days (R20mm) defined as 

number of days with precipitation more than 20mm. Z-statis- 

tics of R10mm shows increasing trend over the basin for CM3 

RCP4.5 and CM3 RCP 8.5 for different time scales as shown 

in Figure 7(a). Whereas Z-statistics test of index R20mm indi- 

cates significant increasing trends for CM3 RCP8.5 for the 

period of 2011 ~ 2100 and 2041 ~ 2070 (Figure 7b). Very wet 

days precipitation (R95p) are the sum of the precipitation of 

days when precipitation was more than 95th percentile of the 

wet day precipitation distribution derived over base period 

and extremely wet days precipitation (R99p) defined as 

amount of precipitation received from the days when pre- 

cipitation was more than 99th percentile of the wet day 

precipitation derived over the base period. These two indices 

provide an idea of the contribution of very wet days and 

extremely wet days precipitation to the annual precipitation. 

Figure 7c represents Z-statistics of R95p and it shows a signi- 

ficant increasing trend for CM3 RCP8.5 over the period of 

2011 ~ 2100, 2011 ~ 2040 and 2041 ~ 2070. In the case of 

R99p significant increasing trend is observed for a long-term 

period of 2011 ~ 2100 for CM3 RCP6.0 and over the period 

of 2011 ~ 2100, 2011 ~ 2040 and 2041 ~ 2070 as shown in 

Figure 7d. Z-statistics of SDII trend analysis is shown in 

Figure 7e which shows a significant increasing trend for CM3 

RCP6.0. The maximum increase of 97mm/decade at station 4 

for CM3 RCP6.0 whereas a maximum decrease is observed at 

 

 

Figure 7. Mann-Kendall test Z-statistics of indices indicating the intensity of precipitation for all the GCM/RCP ensembles. 

 



G. Shivam et al. / Journal of Environmental Informatics 34(1) 1-14 (2019) 

 

10 

station 5 for ESM2G R2.6 (Table 3) during the period of 2071 

~ 2100 with a magnitude of 133.35 mm/decade. Similarly, 

Sen’s slope analysis results of R99p shows that for long-term 

(2011 ~ 2100) duration no significant magnitude change is 

found in basin but maximum magnitude of decrease observed 

as 46 mm/decade at station 2 during 2011 ~ 2040 followed by 

maximum increase of 46.91 mm/decade for extreme scenario 

(RCP8.5) over station 5 at the end of the century (2071 ~ 

2100). Table 3 represents the Sens’s slope magnitude of the 

precipitation indices of ESM2G model for four RCP scenarios. 

 

4.2.5. Spatiotemporal Distribution of Precipitation Indices 

Spatiotemporal distribution of indices PRCPTOT, R1mm, 

SDII for the historical period (Figure 8) and average of the 

three GCMs for RCP scenarios at different time scale are 

shown in Figures 9, 10 and 11. Figure 8 shows the spatial 

distribution of annual precipitation, number of rainy days in a 

year and daily intensity of precipitation for the observed time 

period (1980 ~ 2000). It is observed from the historical data 

analysis of the precipitation that annual precipitation in the 

basin ranges from 673.25 mm to 3207.91 mm, whereas 

number of rainy days in a year varies from 99 days to 198 

days and daily intensity of the precipitation varies from 6.7 

mm/day to 21.47 mm/day, spatial distribution of these indices 

are shown in Figure 8. It is evident from Figure 9 that amount 

of annual precipitation is increasing at different 30-year time 

scale and also on the long-term duration of 2011 ~ 2100 over 

entire basin for the RCP scenarios. Figure 10 represents the 

spatial variation of number of rainy days over the basin for 

 

Figure 8. Spatiotemporal distribution of precipitation indices for observed period (1980-2000) annual precipitation (mm), rainy 

days (days) and intensity of precipitation (mm/day). 
 

 

Figure 9. Spatio-temporal variation of annual precipitation over the basin for RCP scenarios. 
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different timescale and RCP scenario. R1mm is likely to de-

crease when compared to historical period values, as during 

historical period R1mm ranges from minimum 99 days to 

maximum of 198 days but in future RCP scenarios R1mm 

reflects decreasing trend in lower part whereas increasing in 

the upper station i.e. station 1. Since the spatiotemporal ana- 

lysis of annual precipitation and number of rainy days indicate 

an increase in precipitation and decrease in rainy days, it 

represents that the intensity is likely to increase in the future 

scenarios. Figure 11 represents the SDII variation on the 

spatiotemporal domain for the basin. Historical period SDII 

variation shows the range from 6.7 to 21.47 mm/days (Figure 

8), whereas for future scenarios it shows an increase in inten-

sity up to 29.5 mm/day for RCP8.5 followed by the decrease 

in the upper portion. The decrease in the number of rainy days 

depicts the increase in daily precipitation intensity index for 

all the RCP scenarios over the stations except the station 1. 

Decrease in SDII over station 1 is followed by the increase of 

number of rainy days as shown in Figure 11 whereas station 2, 

station 3, station 4 and station 5 where number of rainy days 

is likely to decrease are prone to increase in daily rainfall in-

tensity. Variation of daily intensity for RCPs over interdecadal 

periods are shown in Figure 11. Temporal variation of SDII 

indicates a direct proportionality to the emission scenario as 

the value of daily intensity is increasing from low to high emi- 

ssion scenario. The magnitude of increase in SDII ranges from 

24 m/day up to 29.59 mm/day for RCP4.5 and RCP8.5, res- 

pectively. 

5. Conclusions 

Precipitation downscaling and precipitation indices ana- 

lysis for 2011 ~ 2100 was performed using three GCM data- 

sets for four RCP scenarios. Average of precipitation gen-

erated using three GCMs gives a clear picture of increasing 

trend of annual precipitation and intensity in Subansiri river 

basin. Subansiri river originates from Tibetan plateau which is 

rain shadow zone and receives less than thousand millimeter 

precipitation whereas precipitation in stations station 2, sta- 

tion 3, station 4 and station 5 which fall in Arunachal Pradesh 

and Assam states receive high annual precipitation in thou- 

sands of millimeters. The study reveals the possibility of 

increase in annual precipitation and intensity in station 1 

which is in agreement with a previous study (Song et al., 

2011). Changes in annual precipitation magnitude vary for 

RCP2.6, RCP4.5, RCP6.0 and RCP8.5 from 3.26, 5.58, 6.39 

and 9.57mm/year, respectively. IPCC (2013) report indicates 

an increase in annual precipitation for the mountainous region 

which justifies the findings of the study. Physical reasons 

behind the probable change were not the part of the study but 

 

Figure 10. Spatio-temporal distribution of number of rainy days (R1mm) over the basin for RCP scenarios. 
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the results show a good agreement with the previous studies 

done in the region and ongoing possible greenhouse gas emis- 

sion scenarios. Though the present study focuses mainly on 

Subansiri river catchment in the eastern Himalayan region. 

Many other river catchments in eastern Himalayan regions 

shares the same hydro-climatology, for example, all are fed by 

Southwest Monsoon during the same period of the year and 

have same wind circulation patterns. Hence, the outcomes of 

this study can be related to the climatic changes happening in 

other catchments in the region. 
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