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ABSTRACT.  A novel hierarchical graph model for conflict resolution in which preferences are determined by weighting component 
graphs is proposed. This weighted hierarchical model contains three decision makers (DMs), one common decision maker (CDM) ap- 
pearing in two local graphs, each with one local decision maker. Reachable lists and unilateral improvements for DMs are represented 
by matrices, which can be used to calculate stability results. Theorems reveal the relationship between the stability results in the hierar- 
chical graph and in each local graph. Algorithms are designed to capitalize on these relationships in the calculation of stability. A case 
study of water diversion conflicts in China is provided to show how the new methodology can be applied in practice. The weighted hi- 
erarchical graph model improves the modeling of hierarchical conflicts by providing more flexibility in describing the preference of 
the CDM, who is the key decision-maker.  
 
Keywords: hierarchical graph model, graph model for conflict resolution (GMCR), matrix representation, stability definitions, water 
diversion conflicts

 
 

 

1. Introduction　 

Decision makers are involved in a conflict when they ma- 
ke choices in pursuit of different objectives. Various metho- 
dologies have been used for analyzing strategic conflicts, in-
cluding Game Theory (Von Neumann and Morgenstern, 1944), 
Metagame Analysis (Howard, 1971), Conflict Analysis (Fraser 
and Hipel, 1984), Drama Theory (Howard, 1999), and the Gra- 
ph Model for Conflict Resolution (GMCR) (Fang et al., 1993). 
These methodologies can provide strategies for mediators to 

balance conflicting demands from the stakeholders (Wang et al., 
2003; Hipel et al., 2008;). The study on environmetal manage- 
ment are implemented by multidisciplinary approaches (Fan 
and Huang, 2012; Gunalay et al., 2012; Barbalios et al., 2013; 
Xu and Qin, 2013). The environmental conflicts often take place 
when stakeholders compete over limited natural resources.  

The study on environmental management are implemen- 
ted by multidisciplinary approaches (Fan and Huang, 2012; 
Gunalay et al., 2012; Barbalios et al., 2013; Xu and Qin, 2013). 
The environmental conflicts often take place when stakehold-
ers compete over limited natural resources. GMCR is a metho- 
dology that can flexibly analyze strategic conflicts and provide 
meaningful analytical results (Kilgour and Hipel, 2005; Hipel 
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et al., 2008; Hipel and Walker, 2011). GMCR is a major expan- 
sion and improvement of game theory and conflict analysis (Ki- 
lgour and Hipel, 2010). Game theory has been widely applied 
to real world conflicts. However, DMs in game theory make 

decisions based on simple solution concepts, completely igno- 
ring counteractions by other DMs (Madani and Hipel, 2011). 
Thus, less restrictive stability definitions, such as General Me- 
tarationality, and Symmetric Metarationality have been pro-
posed in metagame analysis (Howard, 1971). These solution 
concepts reflect the behaviors of DMs and are more reliable in 
indicating equilibria in many real world conflicts (Madani, 
2013). Conflict analysis methodology is an expansion of meta- 
game analysis by introducing sequential stability. GMCR is an 

improvement of conflict analysis approach by using graphs to 
represent moves (Kilgour and Hipel, 2010). It uses all stability 
definitions in conflict analysis, extends to graph model context, 
and includes limited moves and non-myopic stability to reflect 
a greater foresight for DMs. A decision support system, called 
GMCR II, has been designed to carry out calculation for stabil-
ities (Fang et al., 2003a, b). 

A graph model contains decision makers (DMs), states, 
transitions of states controlled by each DM, and preference re- 
lations for each DM. A DM can be an individual or a group 
with common interests in a conflict. A DM can have one or 
more choices in a strategic conflict, called options. A state is a 
selection of options by all DMs. A state is stable for a DM if 
he or she does not have any advantageous move to other states. 
An equilibrium, a state stable for all of the DMs, indicates po- 
ssible resolutions of a conflict. The stability of a state can be 
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described in different solution concepts, such as Nash stability 
(R) (Nash, 1950, 1951), sequential stability (SEQ) (Fraser and 
Hipel, 1984), general metarationality (GMR) (Howard, 1971), 
symmetric metarationality (SMR) (Howard, 1971), and limi- 
ted move stability (Brams and Wittman, 1981; Zagare, 1984; 
Fang et al., 1993). These solution concepts differ in the foresi- 
ghts of conflicts by DMs and their perception of risks. Studies 
within the graph model paradigm include coalition analysis 
(Kilgour et al., 2001; Inohara and Hipel, 2008a, b), preference 
uncertainty (Li et al., 2005), fuzzy preferences (Bashar et al., 
2014), strength of preference (Hamouda et al., 2004), and the 
matrix representation of a conflict (Xu et al., 2010a, b, 2018). 

In particular, the matrix representation is a more efficient 
and convenient approach for calculating stabilities in the gra- 
ph model. The unilateral moves (UMs) and unilateral impro- 
vements (UIs) for DMs can be expressed using matrices. An 
UM refers to a move controlled by a DM from one state to 
another, by changing its one or more options. An UI is an UM 
for the focal DM resulting in a more preferred state. The solu-
tion concepts in a graph model can be represented in matrices 
which are the function of UMs, UIs, and preferences for a focal 
DM and other DMs. The matrix representation methodology 
can be used for predicting equilibria of real world conflicts with 
easy calculation procedure. Preference uncertainty and strength 
have also been expressed in matrices (Xu et al., 2013; 2018). 

Hierarchical structures in game theory have been studied 
in cooperative game theory (Gilles, 2010). Players in a game 
have been defined with different seniorities by weights (Gvoz- 
deva et al., 2012). However, this approach requires data to de-
termine permission values. Stackelberg games are hierarchical 
conflicts with one leader and several followers (Von Stackel-
berg, 1934; Simaan and Cruz, 1973), in which information 
about the game is asymmetric. GMCR has been used for 
modelling strategic conflicts with hierarchical structure (He et 
al., 2013, 2014a). Compared with other methodologies, a graph 

model requires only relative preferences (Hipel, 2002). It can 
also handle irreversible moves.  

In a hierarchical conflict, one or more DMs, defined as 
common DMs (CDMs), participate in all the smaller conflicts, 
while other DMs only appear in just one subconflict. A basic 
hierarchical graph model has been proposed containing only 
one CDM and two local graphs. This model is applied to wa- 
ter diversion conflicts in China (He et al., 2012, 2013, 2014a). 
The stability results of the water diversion conflicts were cal- 
culated using matrices (He et al., 2014b). Preference relations 
for CDM are constructed using the lexicographical order (He 
et al., 2013). CDM only cares about the more important sub-
conflict when making a move. However, in the real world, 
CDM often weights up situations in all subconflicts before ma- 
king a decision. To describe the preferences for CDM with more 
accuracy, a hierarchical graph model with weighted preference 
for CDM is proposed. The importance of each subconflict in 
this model is indicated by a weight. Relations between stability 
results in the hierarchical graph and the local graphs are also 
discussed. Algorithms for calculating stability results in the hie- 
rarchical model are designed based on these relations. 

This novel methodology has been applied to water diver- 

sion conflicts in China. Stability results calculated by the algo- 
rithms indicate possible resolutions for DMs in these conflicts. 

The upcoming sections in this paper are arranged as foll- 
ows. The hierarchical graph model methodologies are introdu- 
ced in Sections 2 to 5. The case study is presented in Section 
6. In Section 7, the comparison with other hierarchical graph 

model methodologies is discussed. The conclusion and further 
studies are provided in Section 8. Representative proofs for 
some of the theorems are placed in Supplementary Material.  

In more detail, the process of developing the new metho- 
dologies in this paper is depicted in Figure 1. Each step of the 
procedure is denoted by a rounded rectangle. Hollow arrows 
between two steps show the direction of the process. A paralle- 
logram represents definitions or theorems used in each step. 
Slim arrows mean the information in the starting object (roun- 
ded rectangle or parallelogram) may be used in the object to 
which the arrow points.  
 

 
Figure 1. Development of Hierarchical Graph Model  

Methodologies. 
 

The basic hierarchical graph model with weighted prefe- 
rence is designed in Definition 1 in Section 2. To represent the 
basic hierarchical graph model using matrices, the reachable 
matrices for DMs are constructed in Theorems 1 and 2. The 
stabilities in the basic hierarchical model are discussed in Sec- 
tion 3. Formal definitions of stabilities are shown in Section 

3.1. These stabilities are represented in matrices using Theo-
rems 3 to 6 in Section 3.2, which are also used to prove theo-
rems in Section 4. Interrelationships between the stabilities in 
the hierarchical model and the local models are investigated in 
Section 4 using Theorems from 8.1 to 10.3. Algorithms to de- 
termine stabilities in the hierarchical graph model in Section 5 
are designed using these theorems. 

2. The Basic Hierarchical Graph Model with Weighted 
Preferences 

2.1. Structure of a Graph Model 

A graph model for a strategic conflict contains a finite set 
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of DMs, N, a finite set of states, S, and a preference relation 
on S for each DM .i N A directed arc connecting the two sta- 
tes denotes a move for each DM i, given as .iA S S  In a gra- 
ph model, a node is used to represent a state.  

The moves for a DM in one step from a specified starting 
state s form its reachable list from .s S These moves are ca- 
lled unilateral moves (UMs). From state s, the reachable list for 
DM i is denoted as ( ) iR s { 's  , ( , ') }.iS s s A In a graph mo- 
del, any two feasible states can be compared according to the 
preference information for each DM. A DM's preference over S 
is a complete binary relation on S. Between two states ' ,s S  

'is sf ，indicates that DM i prefers s to s’. Likewise, 'is sp  
and 'is s: mean state 's is more preferred and the two states 
are equally preferred. The relation 'is s  denotes that s is 
more or equally preferred to 's for DM i. The relation 'is s  
can be defined analogously. Four properties should be satisfied 
in the preference structure (Kilgour and Hipel, 2005; 2010): 

1) if is asymmetric, which means that 'is sf and 
' is sf cannot hold true at the same time. 

2) is s: is reflexive, which indicates that is s: for any .s S   
3) i: is symmetric, which means if 'is s: then ' .is s:   
4) { , }i if : is strongly complete, which indicates exactly one 

of ',is sf 'is sp and 'is s: is true. 
The structure of a graph model can be written. 

Suppose {1, 2, . .., }N n denote the set of DMs, S = {s1, 
s2, …, sm} represent the set of feasible states. iD is DM i’s direc- 
ted graph and iA S S  is the set of directed arcs in ,iD a graph 

model is defined as: , , { : },  i iD N S A i N { , } , i i N wh- 
ere i denotes the preference relations for DM i.  

The unilateral improvement (UI) list is the set of all reach- 
able states from a specified state for a given DM. The UI list 
from a state s S for DM i N  is marked as ( ) { ( ) :i iR s s R s    

}.is s f   
 
2.2. Formal Definition 

A hierarchical graph model for a strategic conflict contains 
smaller graph models, called local graph models. These local 
models feature one or more common DMs (CDMs) who appear 
in each of the local graphs. Local DMs (LDMs) appear only in 
one local graph. A basic hierarchical graph model has been de- 
fined based on Section 2.1 by He et al. (2013). A basic hierar- 
chical graph model contains two smaller graph models with only 
one CDM. 

Definition 1 (Basic Hierarchical Graph Model) (He et al., 
2013): Suppose there are three DMs, consisting of CDM, LDM1 
and LDM2 and two local graph models: 
 

11 { }, ,G CDM LDM  S1, {AC1, AL1},
1 1

{ , } ,C L   
 
where 1 1 1, AC S S AL1 1 1, S S and

1 1
andC L  are prefer-

ence relations on 1S for CDM and LDM1, respectively;  

 

2 2{ }, ,G CDM LDM  S2, {AC2, AL2},
2 2

{ , } ,C L   
 
where 2 2 2,AC S S  AL2  S2   S2 and

2C and
2L are prefe-  

rence relations on S2. 

Then the graph model: 
 
G = 1 2{ , }, ,CDM LDM LDM  S = S1 S2, 1 2{ },, ,u uAC AL AL  

1 2
{ }u u

C L L, ,    

 
is a basic hierarchical graph model based on 1G and 2.G  

The structure of the basic hierarchical graph model can be 
better understood by Example 1 illustrated below. 

Example 1 (States and Moves in a Basic Hierarchical Gra- 
ph Model): Suppose that in a basic hierarchical graph model G 
containing CDM, LDM1 and LDM2, there are three states in G1: 
S1 = {a, b, c} and two states in G2: S2 = {A, B}. Then the set of 
states in G can be written as S = S1   S2 = {aA, aB, bA, bB, cA, 
cB}. 

The moves for CDM and LDM1 in 1G and 2G are assumed 
in Figure 2, where each node represents a state and a directed 
arrow denotes a move from one state to another. According to 
Figure 2, CDM can move from state a to b in 1G and state A to B 
in 2G . LDM1 can move from state b to c in 1.G  

Then, in the basic hierarchical graph model, G, the moves 
for CDM from state aA S and the move for LDM1 from state 
bB S are different. According to Definition 1, from state aA , 
CDM can move to state , , or .aB bA bA From state ,bB LDM1 can 
only move to state .cB   

Note that in the hierarchical graph model G, the set of sta- 
tes S is the Cartesian Product of the sets of the component sta- 
tes 1S and 2.S The moves for LDM2 are not listed because they 
are analogous to LDM1's.  

To determine the preference structure for G, each local gra- 
ph is assigned with a weight. 

 

 
Figure 2. Demonstration of Moves in G. 

 
2.3. Weighted Preference Structure 

As demonstrated by He et al. (2013), if all the features of 
the two local graphs are known, the preference relations for 
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CDM in the basic hierarchical graph model can be partially de- 
termined. In this paper, the preference structure for CDM are 
constructed using the option prioritization method (Fang et al., 
2003a, b). 

Suppose two states ,a bs s S  in a basic hierarchical graph 
model G consisting of G1 and G2, where Sa = (S1a, S2a) and Sb = 
(S1b, S2b), the preferences for a DM are represented by a list of 
preference statements ordered from the most important at the 
top to the least important at the bottom. As each DM has at least 
one option in a strategic conflict, the options for all DMs in G 
are numbered. Each preference statement is expressed by option 
numbers connected by logical symbols, such as “& (AND)”, “| 
(OR)”, and “IF”. 

Let       1 2, , ,
k

k k k
h    be the set of statements in Gk, k = 1, 

2. In local graph Gk, a score    Ψ
k

k
j kas is assigned to state ska acc- 

ording to its true values when the statements are applied (Peng 
et al., 1997), 0 .k kj h  Then,  
 

   
   2  if Ω 

otherwise
Ψ

k k

k

k

kh j
k j ka
j ka

0

s T
s

  


             (1) 

 
and 
 

       
1

 
k

k

k

h
k k

ka j ka
j

s s


                      (2) 

 
The importance of each local graph for CDM is denoted by a 
weight  0( ),k kw w   where 1 2 1.w w  Thus, the score for sta- 
te as in G is defined as: 

 

         1 2
1 1 2 2Ψ Ψ Ψa a as s w s w               (3) 

 
The score on bs for CDM can be similarly obtained as  Ψ ,bs  
then, and bas s can be compared: 

 
   Ψif Ψ ;a b a bs s s sf  

 
   Ψif Ψ ;a b a bs s s sp   

 
   ~ Ψ Ψ .a b a bs s si sf    

 
2.4. Reachable Matrix 

The weighted basic hierarchical graph model can be repre- 
sented by matrices. The reachable matrix denoting the reacha-
ble list for a given DM in the hierarchical model can be constru- 
cted by the corresponding reachable matrices in the local graphs. 
The reachable matrix for CDM in the hierarchical model is a 
Tensor product of the reachable matrices in the two local graphs. 

Theorem 1 (Reachable Matrix for CDM): Suppose ( )1
CDMJ  

is the m m reachable matrix for CDM in 1G and  1
CDMJ is the n × 

n reachable matrix for CDM in 2,G nI is an identity matrix of n 
scale, then the mn mn hierarchical reachable matrix for CDM, 

CDMJ in G, is written as: 

 

           

           

1 2 1 2

2

1 2 1 2

1,1 1,

,1 ,

CDM r CDM CDM r CDM

CDM

CDM r CDM CDM r CDM

J J J m J

J

J m J J m m J

  
 

  
    

L

M O M

L

 

 (4) 
 
where    1

1 1,CDMJ s q is an entry in  1
1 1, 1( , , )CDMJ s q m  and 

 

     
 

      
2

1 11 2
1 1 1 2

1 1 1 1

,
,

CDM

CDM r CDM

CDM n CDM

J s q
J s q J

J s q I J s q

   
 

  

 (5) 
 

The reachable matrix for a LDM in the hierarchical graph 
is the Kronecker Product of the reachable matrix in the local 
graph and an identity matrix. 

Theorem 2 (Reachable Matrix for LDM): Suppose that 
states ,s q S are two states in G, where  1 2,s s s and q = (q1, 
q2) (s1, q1 = 1, 2, …, m; s2, q2 = 1, 2, …, n). Let

1LJ denotes the 
m m  reachable matrix for LDM1 in G1 and 

2

u
LJ denotes the 

n n  reachable matrix for LDM2 in G2, Im and In represent 
identity matrices of m and n scales respectively, and means 
the Kronecker Product of two matrices, then the mn nm  hie- 
rarchical reachable matrices

1

u
LJ and

2

u
LJ for LDM1 and LDM2 

are expressed as: 

 

   

   

1 1

1 1

1 1

1,1 1,

,1 ,

L n L n

u
L L n

L n L n

J I J m I

J J I

J m I J m m I

 
 

    
 
 

L

M O M

L

  (6) 

 

2

2 2

2

L

u
L m L

L

J

J I J

J

 
 

    
 
 

O    (7)  

 
The proof of Theorem 2 is analogous to Theorem 1. 

 

2.5. UI Matrix 

The UIs for DMs in the weighted hierarchical graph model 
can be expressed in matrix. In particular, suppose ,s q S for s 
= (s1, s2) and  1 2, ,q q q the entries for CDM in the UI ma-
trix CDMJ  can be written as: 

 

  1 11
,

0
C

CDM

s q
J s q

other
 

 


p
   (8) 

 
The entries for LDMs in their UI matrices

1

u
LJ  and

2

u
LJ  can 

be expressed as: 

 

  1

1

1 1 2 21 and
,

0 other

Lu
L

s q s q
J s q

 


p
   (9a) 
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and 
 

  2

2

2 2 1 1an1
,

0 oth

d

er

Lu
L

s q s q
J s q

 


p
   (9b) 

 
2.6. Joint Movement and Improvement Matrices 

In a graph model containing more than two DMs, the se-
quence of moves taken by the opponents of a given DM is deno- 
ted as joint movement. The legal sequence of UIs by the oppo- 
nents is called joint improvements. 

The joint movement and improvement matrices have been 
constructed by Xu et al. (2009). In a graph model, the joint mo- 
vement and improvement for DMs H N can be noted as HM  
and ,HM  for .H  The expression of HM and HM  can be seen 
in Supplementary Material. 

3. Stability Definitions 

Stability definitions describe DMs' decision to stay or 
move away from a given state (Kilgour and Hipel, 2010). Four 
types of stabilities, Nash, SEQ, GMR, and SMR are investiga- 
ted. These stabilities indicate different foresights for a DM (He 
et al., 2013). In Nash rationality, the focal DM perceives only 
moves of one step. SEQ and GMR describe the foresights of 
the focal DM of two steps. In SEQ, the focal DM only consi- 
ders UIs by other DMs as possible sanctions to its initial move. 
In GMR, these possible sanctions by other DMs can even be 
their disimprovements. In SMR, the focal DM has the foresight 

one step further by considering not only sanctions from other 
DMs, but also its own counteractions.  

An equilibrium refers to a state stable for all DMs. For 
example, a Nash equilibrium is a state that is Nash rational for 
all DMs. Equilibria in a graph model reveals possible outco- 
mes of the conflict or courses of action for DMs to follow. 

The interrelationship of these stability definitions has been 
studied by Kilgour and Hipel (2010). A Nash rational state for 
a DM is also SEQ, GMR, and SMR. A state with Nash, SEQ, 
and SMR is also GMR. 

In this section, the logical definitions of stabilities for ba- 
sic hierarchical graph model (He et al., 2013) are listed first. 
These definitions are then represented in matrices analogously 
to the theorems given by Xu et al. (2009). 

 

3.1. Logical Definition of Stabilities 

The stability definitions for a basic hierarchical graph mo- 
del have been introduced by He et al. (2013) listed from Defi-
nition 2 to 5. Each stability is defined using the set of moves 
or the set of UIs. 

Definition 2 (Nash): Let a DM (either CDM or LDM) in 
a basic hierarchical graph model, ,i NÎ and 1 2( )s s , s S.= Î  
State s is Nash for DM i if and only if ( )iR s .f+ =  

Definition 3 (SEQ): Suppose that ( )iR s+ is the set of UIs 
from state ( )1 2, .s s s S= Î for DM i NÎ and that ( )N iR q+

- is the 

set of UIs from state ( )1 2,q q q S= Î for DMs except i as a coa- 
lition.  

State s is SEQ for i if and only if, for every state q Î  
( ),iR s+ there exists at least one state ( )N ir R q+

-Î such that ir   
s. 

Definition 4 (GMR): Recall that ( )iR s+ is the set of UIs 
from state ( )1 2, .s s s S= Î for DM ,i NÎ and ( )N iR q- is the set 
of UMs from state ( )1 2,q q q S= Î for DMs except i as a coali-
tion. State s is GMR for DM i if and only if, for every state 

( ),iq R s+Î there exists at least one state ( )N ir R q-Î such that 

ir s.  

Definition 5 (SMR): Recall that ( )iR s+ is the set of UIs 
from state ( )1 2, .s s s S= Î for DM i NÎ and ( )N iR q- is the set 
of UMs from state ( )1 2,q q q S= Î for DMs except i as a coa- 
lition. State s is SMR for DM i if and only if, for every state 

( ),iq R s+Î there exist at least ( )N ir R q-Î such that ir s and 

ir s for all ( )it R r .Î  

 

3.2. Matrix Representation of Stabilities 

In a graph model, the stability definitions can also be ex-
pressed using matrices (Xu et al., 2009). As a hierarchical gra- 
ph model is a special case of graph model, the stability defini-
tions in a hierarchical graph model can be presented using ma- 
trices from Theorems 3 to 6. 

Theorem 3 (Nash): In a basic hierarchical graph model 
G consisting of 1G and 2,G a state s SÎ is Nash stable for CDM, 
iff ,T T

s CDMe J 0+⋅ = where T denotes the transpose of matrix. The 

state s is Nash stable for LDM1 iff 
1

T u T
s Le J 0 .+⋅ =   

For CDM,
1

T u T
s Le J 0+⋅ = means there is no UI from state s. 

This expression echoes ( )iR s f+ = in Definition 2. 

Theorem 4 (SEQ): A state s SÎ in G is SEQ for CDM, 
iff ( ), 0,SEQ

CDMM s s = where 

 

( ){ },
TSEQ ,

CDM CDM L CDMM J E sign M P+ + - =é ù= ⋅ - ⋅ê úë û
  

 
and LM + is the joint improvement matrix by LDMs. 

State s is SEQ for 1LDM  iff ( )
1

0,
uSEQ

LM s,s =  where 

 

( ){ }1 1 1

u TSEQ u ,
L L N L CDMM J E sign M P ，+ + - =

-
é ù= ⋅ - ⋅ê úë û

 

 
and

1N LM +
- is the joint improvement matrix by CDM and 

LDM2.  

Note that ( ), 0SEQ
CDMM s s = means that the Sth entry on the 

diagonal of the matrix SEQ
CDMM is zero. ( ), 0SEQ

CDMM s s = can be con- 
sidered as either ( ) 0CDMJ s, s+ = or ( )

1
{ [ ]}

T,
N L CDME sign M P+ -=
-- ⋅  

( ), 0s s .= The first expression suggests no UI is from state s 
for CDM, while the latter one means the UIs from other DMs 
as countermoves are less preferred than state s for CDM. 

In the following theorems, ( ), 0,GMR
CDMM s s = ( )

1
,

uGMR
LM s s  

= 0, ( )
1

, 0,
uGMR

LM s s = ( ), 0,SMR
CDMM s s = and ( )

1
, 0,

uSMR
LM s s =  

have the analogous notation. 
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Theorem 5 (GMR): A state s SÎ in G is GMR for CDM, 
iff ( ), 0GMR

CDMM s s = , where 

 

( ){ }TGMR ,
CDM CDM L CDMM J E sign M P+ - =é ù= ⋅ - ⋅ê úë û

, 

 
and ML is the joint movement matrix by LDMs. 

State s is GMR for 1LDM iff ( )
1

,
uGMR

LM s s , where 

 

( ){ }1 1 1

u TGMR u ,
L L N L CDMM J E sign M P ，+ - =

-
é ù= ⋅ - ⋅ê úë û

  

 
and

1N LM - is the joint movement matrix by CDM and LDM2.  

Theorem 6 (SMR): A state s SÎ in G is SMR for CDM, 
iff ( ), 0,SMR

CDMM s s = where 

 

[ ]{ }SMR
CDM CDM L CDMM J E sign M W+= ⋅ - ⋅  

 
and 
 

( ) ( )( )T T,
CDM CDM CDM CDMW P E sign J P ，- = +é ù= - ⋅ê ú

ë û
  

 
and  is the Hadamard Product of the two matrices.  

State s is SMR for LDM1 iff ( )
1

, 0,
uSMR

LM s s = where 

 

{ }
1 1 1 1

,
uSMR u

L L N L LM J E sign M W+
-

é ù= ⋅ - ⋅ê úë û  

 
and 
 

( ) ( )( )1 1 1 1

T T, u u
L L L LW P E sign J P- = +é ù
= - ⋅ê úê úë û


. 

 
The four stability definitions are also interrelated (Kilg- 

our and Hipel, 2010). The interrelationship among four stabil-
ities is shown in Figure 3. A Nash stable state is also SEQ, 
GMR, and SMR. A state which is SEQ or SMR is also GMR.  

 

 

Figure 3. Interrelationship of Four Stabilities. 

4. Interrelationship between Stabilities in the Hie- 
rarchical Graph and the Local Graphs 

The four types solution concepts for DMs in the hierar-
chical model are linked with those in each local model. The in- 
terrelationship between the stabilities is investigated in theo-
rems. Representative proofs of some theorems are listed in Ap- 
pendix. Figure 4 shows the relationship of the theorems in this 
paper which are used to investigate the stabilities in the hierar- 
chical graph model. As shown in Figure 4, the four types of 
stabilities in the basic hierarchical graph model, shown in the 
central part of the figure, are represented by the matrices listed 
in the left box. These matrices are constructed from Sections 
2.4 to 2.6. Thus, the expression of a particular stability using 
these matrices is denoted by a directed arrow labelled with the 

theorem used. The connections between the central and right 
parts of Figure 4 show the link between the stabilities in the 
basic hierarchical graph model and those in the local graph 
models. For example, the interrelationship of Nash stability is 
investigated in Theorems 7.1 and 7.2, which is denoted by a 
two-way arrow, indicating that the stability from one side can 
be concluded from the other.  

 

4.1. Nash Stability (R) 

Theorem 7.1: In a weighted basic hierarchical graph mo- 
del G consisting of 1G and 2G , a state ( )1 2,s s s S= Î is Nash sta- 
ble for CDM in G iff sk ( k = 1, 2) is Nash stable for CDM in 

kG . 

Theorem 7.1 suggests that a state in a hierarchical graph 
model is Nash stable for CDM if and only if both component 
states are Nash stable in the local graph models. 

Theorem 7.2 (Nash for LDM): In a weighted basic hie- 
rarchical graph model G consisting of 1G and G2, a state s = (s1, 
s2) SÎ is Nash rational for LDM1 in G iff s1 is Nash rational 
for LDM1 in G1.  

Theorem 7.2 indicates that a state in a hierarchical graph 
model is Nash stable for a LDM if and only if the component 
state is Nash stable for the LDM in the local graph in which it 
participates. 

 

4.2. Sequential Stability (SEQ) 

Theorem 8.1: In a weighted basic hierarchical graph 
model G consisting of G1 and G2, a state s = (s1, s2) SÎ is SEQ 
for CDM in G if sk (k = 1, 2) is SEQ for CDM in kG .  

Theorem 8.2: Suppose G is a weighted basic hierarchi- 
cal graph model consisting of G1 and G2, if a state s = (s1, s2) 

SÎ is SEQ for CDM in G, then  

1) sk is SEQ for CDM in kG for both k = 1 and 2, or 

2) when sk is not SEQ for CDM in kG (k = 1 or 2, but not bo- 
th), there exists ( )1 2,r r r S= Î , such that ( ) ( )r sY £Y and ri 
is element in ri (i = 1, 2): 

 
( )( )

1

1
T

LJ
11 qr e+= ⋅ +

1q
e  
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and 
 

( )( )
2

2
T

LJ
2 22 q qr e e+= ⋅ +  

 
for all( ) ( )1 2, CDMq q R s+Î and (r1, r2) ≠ (q1, q2);

kq
e is a 0-1 

vector with the kq th entry being 1 and others 0.  

Example 2: A small example makes Theorem 8.2 easier 
to understand. Let the sets of state in G1 and G2 written as 

1S = {1, 2, 3, 4} and 2S = {5, 6, 7, 8}, respectively. Suppose 
 

( )1

1 2 3 4

1 0 1 0 0

2 0 0 0 0

3 0 0 0 1

4 0 0 0 0

CDMJ +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

, ( )2

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0

5 6 7 8

5

6

7

08

CDMJ +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

,  

 
and  

 

( )
1

1

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0

1 2 3 4

1

2

3

04

LJ +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

, ( )
2

2

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0

5 6 7 8

5

6

7

08

LJ +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

.  

 
When state 1 is not SEQ for CDM in G1, SEQ at state (1, 5) for 
CDM is investigated. As can be seen from ( )1

CDMJ + and ( )2
CDMJ + , (q1, 

q2) denotes all UIs from state (1, 5) in Theorem 8.2, written 
as: 

 
(a) (q1, q2) = (2, 6); 
 
(b) (q1, q2) = (2, 5); 
 
(c) (q1, q2) = (1, 6),  
 
where (q1, q2), 1 1s SÎ , and 2 2s SÎ . 

From the above, q1 = 1 or 2; q2 = 5 or 6. For q1, the 0-1 
vector

1q
e has the q1th entry 1 and other entries 0. Thus, q1 = 1 

corresponds to
1q
e = (1 0 0 0)T.  

Therefore, all 0-1 vectors corresponding to q1 and q2 can 
be written as

1q
e = (1 0 0 0)T or (0 1 0 0)T;

2q
e = (1 0 0 0)T or (0 

1 0 0)T. 

For (a),
1q
e = (0 1 0 0)T and

2q
e = (0 1 0 0)T. Note that state 

6 is actually the second entry of .
2q
e  

One can calculate
( )

1

1 )( T
LJ + ⋅

1q
e = (0 0 1 0)T, which is the 

transpose of the second row of ( )
1

1
LJ + . Then, r1 = (0 1 1 0)T. Ana- 

logously, r2 = (0 1 0 1)T. After calculating r, one can conclude 
that the non-zero entries in r correspond to states (2, 8), (3, 6), 
(3, 8). Thus, state (1, 5) is SEQ for CDM if the score of (1, 5) 
is no less than the score of at least one of the three states, (2, 
8), (3, 6), and (3, 8). 

Analogously for (b) and (c), state (1, 5) is also possible to 
be SEQ for CDM in G. 

SEQ for CDM in G is also affected by the weights of lo- 
cal graphs. The relation between the weights and SEQ for CDM 
is indicated by the following corollary. 

Corollary: State (s1, s2) is SEQ for CDM in G iff kw Î (α, 
β) for either α = 0 or β = 1.  

According to the above corollary, a state is SEQ for CDM 
in G if and only if each weight wk (k = 1, 2) ranges from either 
side of the interval (0, 1), i.e., the range of wk should be either 
(0, β) or (α, 1). The proof of this corollary is demonstrated in 
Supplementary Material.  

The stabilities for LDMs are investigated in Theorem 8.3. 

Theorem 8.3: Suppose there exists a weighted basic hie- 
rarchical graph model G consisting of G1 and G2, and the num- 
ber of states in G1 is |S1| = m and |S2| = n in G2. If a state s = 
(s1, s2) SÎ is SEQ for LDM1 in G, then  
1) s1 is SEQ for LDM1 in G1 or 
2) s1 is GMR for LDM1 in G1,

( )2 0CDMJ
2

T
se

+⋅ ¹ and { }
( )

2

2 0C ,LM +⋅ ¹
2

T
se   

where { }
( )

2

2
C ,LM +  is the joint improvement matrix for CDM and 

LDM2 in G2 and
2

T
se is the transpose of vector with s2

th element 
1 and others 0, and r SÎ , such that ( )rY > ( )qY for CDM and 
the rth element in 0-1 vector r is 1, where r = (r1, r2):  

 
( )

{ }
( )

2

1 2andCDM C ,LJ M0 0，
1 2

T T
q se e +⋅ ⋅ ¹¹ ( ) ( )

1

1
1 1Lq R s ,+" Î  

 
Figure 4. Relationships of Theorems on Overall and Local Stabilities in G. 
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and ( )1 2,q q q .=   

Theorem 8.2 indicates the stabilities of component states 
in an SEQ state for a LDM in G. The component state in the 
focal LDM’s local graph can be SEQ. If not, some conditions 
should be satisfied. 

 
4.3. General Metarationality (GMR) 

Theorem 9.1: In a weighted basic hierarchical graph mo- 
del G consisting of G1 and G2, a state ( )1 2s s ,s S= Î is GMR 
for CDM in G if sk (k = 1, 2) is GMR for CDM in Gk.  

Theorem 9.2: In a weighted basic hierarchical graph mo- 
del G consisting of G1 and G2, if a state s = (s1, s2) SÎ  is GMR 
for CDM in G, then  
1) sk is GMR for CDM in Gk for both k  = 1 and 2, or 
2) if sk is not GMR for CDM in Gk ( k = 1 or 2, but not both), 

there exists ( )1 2r r , r S ,= Î  such that ( ) ( )r s ，Y £Y ri is 
element in ri (i = 1, 2): 

 
( )( )

1

1
1

T

Lr J
1 1q qe e= ⋅ +   

 
and 

 
( )( )

2

2
T

LJ
2 22 q qr e e= ⋅ +  

 
for all( ) ( )1 2 CDMq , q R s+Î and (r1, r2) ≠ (q1, q2); 

kq
e is a 0-1 

vector with the kq th entry being 1 and others 0.  

The proofs of Theorems 9.1 and 9.2 are analogous to the 
proof of Theorem 8.2. Thus, they are not included in the App- 
endix. 

Theorem 9.3: In a weighted basic hierarchical graph mo- 
del G consisting of G1 and G2, a state ( )1 2s s , s S= Î is GMR 
for LDM1 in G, iff 1 1s SÎ is GMR for LDM1 in G1.  

As suggested in Theorem 9.3, a state is GMR for an LDM 
in G if and only if the component state in its local graph is 

GMR. 

4.4. Symmetric Metarationality (SMR) 

Theorem 10.1 (SMR): In a weighted basic hierarchical 
graph model G consisting of G1 and G2, a state s = (s1, s2)ÎS 

is SMR for CDM in G if sk ( k  = 1, 2) is SMR for CDM in Gk.  
Theorem 10.2: Suppose G is a weighted basic hierar-

chical graph model consisting of G1 and G2, if a state s = (s1, 
s2) SÎ is SMR for CDM in G, then  
1) sk is SMR for CDM in Gk for both k = 1 and 2, or 
2) if sk is not SMR for CDM in Gk ( k = 1, 2, but not both), 

there exists ( )1 2r r , r S ,= Î  such that ( ) ( )r sY £Y and Ψ(t) 
≤ Ψ(s) for all ( )1 2t t , t S= Î ,  

where r and t corresponds to vectors r and t , respectively, ti 
is element in ti (i = 1, 2): 

 
( )( )1

T

CDMJ
1 11 r rt e e= ⋅ +   

 
and 
 

( )( )2 T

CDMJ
2 22 r rt e e= ⋅ +   

 
for

kr
e ( k  = 1, 2) represents a 0-1 vector with kr

th entry being 
1 and others 0, ( ) ( )r s ，Y £Y and ri is element in ri (i = 1, 2): 
 

( )( )
1 1 1

1
1

T

LJ q qr e e= ⋅ +  

 
and 
 

( )( )
2

2
T

LJ
2 22 q qr e e= ⋅ +  

 
for all ( ) ( )1 2 CDMq , q R s+Î , (r1, r2) ≠ (q1, q2), and (t1, t2) ≠ (r1, 

r2).  

 
Figure 5. Algorithm to Determine SEQ States for CDM in G. 
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Note that
kr
e is different from .kr The entries in

1r
e corres- 

pond to state r1, which is the component in ( )1 2r , r . Vector r1 is 
related to not only state 1r , but also state q1. Thus, r1 can be 
written as: 
 

1 1 1r qr e e= + , for 
1r
e = ( )( )

1

1
T

LJ
1q
e⋅ . 

 
Theorem 10.3: In a weighted basic hierarchical graph mo- 

del G consisting of G1 and G2, a state s = (s1, s2) SÎ is SMR 
for LDM1 in G, iff 1 1s SÎ is SMR for LDM1 in 1G .  

Theorems 10.1, 10.2, and 10.3 are analogous to the Theo- 
rems in Sections 4.2 and 4.3. The proofs of Theorem 10.1 can 
be found in Supplementary Material. 

5. Algorithms for Calculating Stability 

The algorithms for calculating stability results in the hie- 
rarchical model are designed according to theorems demon- 
strated in Section 4. Each algorithm is also described in steps. 

 

5.1. Nash Stability (R) 

According to Theorem 7.1, a state ( )1 2,s s SÎ is Nash sta-
ble for CDM in G if and only if k ks SÎ is Nash stable for 
CDM in Gk (k = 1, 2). As demonstrated in Theorem 7.2, state s 
is Nash stable for LDMk in Gk if and only if sk is Nash stable 
for LDMk in Gk. 

 

5.2. Sequential Stability (SEQ) 

The SEQ states in the hierarchical graph model can be 
calculated according to Theorems 8.1 and 8.2. The algorithm 
for this calculation for CDM is shown in Figure 5. The detailed 
steps for the calculation are shown as follows: 

Step 1: For( )1 2, ,s s SÎ if sk is SEQ for CDM for both k = 
1 and 2, then ( )1 2,s s is SEQ for CDM in G according to Theo- 
rem 8.1, otherwise go to step 2. 

Step 2: Calculate r, if the non-zero element r in r satisfies 
( ) ( )r sY £Y , then ( )1 2,s s is SEQ for CDM in G according to 

Theorem 8.2. 

 

( 2)
(2) 0T
CDMs

J e and

( 2)
2

(2)
{ , } 0T
C Ls

M  e

 
Figure 6. Algorithm to determine SEQ states for LDM1 in G. 

The algorithm to determine SEQ for LDM1 in the hierar-
chical model can be depicted in Figure 6. The procedure for 
this calculation is demonstrated as: 

Step 1: For ( )1 2, ,s s SÎ if s1 is GMR for LDM1 for G1, 
then ( )1 2,s s is SEQ for LDM1 in G according to Theorem 8.3, 
otherwise go to step 2. 

Step 2: If s1 is GMR for LDM1 in G1 and s2 satisfies ⋅
2

T

se  
( )2 0CDMJ + ¹  and { }

( )

2

2 0
C ,L

M
2

T

se
+⋅ ¹  according to Theorem 8.3, then 

go to Step 3. 

Step 3: Calculate r, if there exists non-zero element r in r 
such that ( ) ( )r qY >Y , then ( )1 2,s s is SEQ for LDM1 in G. 

 

5.3. General Metarationality (GMR) 

The GMR states for CDM in the hierarchical model can 
be determined analogously to calculating SEQ for CDM. The 
algorithm is shown in Figure 7. 

 

 
Figure 7. Algorithm to Determine GMR States for CDM in G. 

 

Calculate r

Calculate t

 
Figure 8. Algorithm to determine SMR states for CDM in G. 
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According to Theorem 9.3, ( )1 2,s s is GMR for LDMk in G 
if and only if sk is GMR for LDMk in Gk. 

 
5.4. Symmetric Metarationality (SMR) 

SMR states for CDM in the hierarchical model can be 
determined according to Theorems 10.1 and 10.2. As depic- 
ted in Figure 8, the calculation is described in the following 
steps: 

Step 1: For( )1 2, ,s s SÎ if sk is SMR for CDM for both 
k = 1 and 2, then ( )1 2,s s is SMR for CDM in G according to 
Theorem 10.1, otherwise go to step 2. 

Step 2: Calculate r, if there exists non-zero element r in r 
such that ( ) ( )r s ，Y £Y then go to step 3. 

Step 3: Calculate t, if all elements in t are 1 and each el-
ement t satisfies ( ) ( )r s ，Y £Y then ( )1 2,s s is SMR for CDM in 
G according to Theorem 10.2. 

According to Theorem 10.3, the SMR states for LDMs can 
be calculated analogously to obtaining GMR states for LDMs. 
 

Beijing

Tianjin
Yellow River

Yangtze River

CENTRAL 
ROUTE

EASTERN 
ROUTE

WESTERN ROUTE
Danjiangkou

Reservoir

HangzhouWuhan

CHINA

 
Figure 9. The Location of Three Routes of South-North Water 
Diversion Project (Source: http://francistopoa.edublogs.org/20 
11/06/03/south-north-water-diversion-project, 2011). 

6. Case Study: Water Diversion Conflicts in China 

The South-North Water Diversion Project (SNWDP) has 
been proposed by the Chinese Government (CG) to ease severe 
water shortage in the North China Plain. This large project is 

constructed at three locations. The eastern part of the project 
is designed to transfer water using the Grand Canal from the 
Yangtze Delta to Tianjin, a harbour city close to Beijing. The 
central route of the project starts from Hubei Province north-
bound to Beijing. The western part of the project connects the 
Yangtze River with Yellow River in Tibet Plateau. The three 
routes of SNWDP are shown in Figure 9. As the eastern part 
of the project is complete, only the central and western projects 
are investigated.  

The conflicts in SNWDP are modelled by the weighted 
hierarchical graph model. Conflicts at the central and western 
locations are modelled by two local graphs. Local residents at 
the central location are forced to be relocated to make way for 
the construction. Although CG has initiated action plans to help 
these residents settle down, they still voiced dissatisfaction 
due to the difficulty of adjusting to the new neighbourhood. 
The diversion of water at the western location has caused con- 
cerns from neighbouring countries such as India and Bangla-
desh. These downstream countries fear that their water usages 
would be affected by the construction of dams and reservoirs 
in the Tibet Plateau. Thus, the weighted hierarchical graph mo- 
del is used to formally investigate these conflicts. The results 
of the model suggest how DMs can act strategically in the pro- 
cess of reaching resolution. DMs will be provided with a com- 
prehensive understanding of these conflicts and guidance for 
taking beneficial actions. 

In the weighted hierarchical model, Chinese Central Go- 
vernment (CG) is the CDM in the hierarchal graph. The central 
and western subconflicts are labelled as G1 and G2. Local Re- 
sidents (LRs) and Neighboring Countries (NCs) are two LDMs 
in G1 and G2, respectively. The DMs and their options in the 
hierarchical model are listed in Table 1. In the overall conflict 
(G), CG has two options, each of which is marked with a num- 
ber followed by a half parenthesis. The selection of an option 
is denoted by “Y” and its negation by “N”. Option 1) means 
CG initiates the original central project. It can also modify the 
projects to ease the opposition from LRs, which is represented 
as the negation of option 1). Similarly, option 2) denotes that 
CG resume the western project, the negation of which indicates 
the suspension of the project. The agreement of LRs is repre-
sented by option 3) while the negation means their opposition. 
Analogously, option 4) implies the consent from NCs and the 
negation their protest. The DMs and their options in the two 
local graph models are demonstrated in Table 2. Because the 
two local graph models are the components of the hierarchical 
graph model, the options for each DM in G1 and G2 are identi- 
cal to those in G. 

Table 1. DMs, Their Options, and States in the Overall Conflict 

CG 1) Full Central N Y N Y N Y N Y N Y N Y N Y N Y 
 2) Resume 

Western 
N N Y Y N N Y Y N N Y Y N N Y Y 

LRs 3) Agree N N N N Y Y Y Y N N N N Y Y Y Y 

NCs 4) Consent N N N N N N N N Y Y Y Y Y Y Y Y 
State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 (4, 8) (2, 8) (4, 6) (2, 6) (3, 8) (1, 8) (3, 6) (1, 6) (4, 7) (2, 7) (4, 5) (2, 5) (3, 7) (1, 7) (3, 5) (1, 5) 
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A state, represented by a selection of options for all DMs, 
indicates a possible outcome. The 24 feasible states in G are 
marked with decimal numbers in Table 1. The feasible states 
are numbered from state 1 to 4 in G1, and from state 5 to 8 in 
G2, respectively, as shown in Table 2. Thus, a state in G can 
also be denoted by a two-digit number contained in a parenthe- 
sis. The first and second components of the number indicate 
states in G1 and G2, respectively. For example, state 16 in Table 
1 is identical to state (1, 5) which is composed by state 1 in G1 
and state 5 in G2. 

 
Table 2. DMs, Their Options, and States in Two Subconflicts 

Central Subconflict (G1) 
DM Option  
CG 1) Full Central Y Y N N 
LRs 3) Agree Y N Y N 
States  1 2 3 4 
Western Subconflict (G2) 
DM Option     
CG 2) Resume Western Y Y N N 
NCs 4) Consent Y N Y N 
States  5 6 7 8 

 
The UI matrices for DMs in local graphs are shown below 

as ( )1
CGJ ,+ ( )2

CGJ ,+ and ( )

2

2

LJ .+ Note that all moves are assumed rever- 
sible for each DM: 

 

( )1

1 0 0 0 0

2 0 0 0 0

3 1 0 0 0

4 0 1 0

1 2 3 4

0

CGJ +

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

, ( )2

5 0 0 0 0

6 0 0 0 0

7 1 0 0 0

8 0 1 0

5 6 7 8

0
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The preferences for CG in the two subconflicts can be re- 

presented using option prioritization method to calculate the 
score of corresponding states in algorithms, listed in Table 3. 
In G1, preference statements for CG are written in the left co- 
lumn. Option 1) is the first statement for CG, which means that 
the original construction plan at the central location is the most 
important issue for CG. The next preference statement, option 
3), is written below option 1), which denotes that the agree-
ment from LRs has the second importance for CG. According 
to Equation (1), the scores for the two statements are 22-1 and 
22-2, respectively. As a state in G can be written as a selection 
of options, each state is investigated for whether the option se- 
lection matches a given preference statement. In the third co- 
lumn, a truth value is assigned at each state for each prefer-

ence statement. For example, state 2 in G can be expressed as 
“YN”. Because option 1) is selected and option 3) is not, the 
truth value of state 2 is “T” on option 1) and “F” on option 3). 
According to Equation (1), the score for each state is aggrega- 
ted. For state 2, the score is 1 × 21 + 0 × 20 = 2. Thus, the scores 
for states 1, 2, 3, and 4 are 3, 2, 1, 0. The four states can also 
be ranked according to the scores from state 1 the most prefe- 
rred to state 4 the least preferred. This ranking is also consis- 
tent with the preferences for CG expressed by the UI matrix. 
Note that all state numbers are in bold. The preferences for 
CG in G2 can be analyzed analogously. 

Stability results in the local conflicts are shown in Tables 
4 and 5. The stability results in the hierarchical conflict are cal- 
culated using algorithms introduced in Section 5. Taking SEQ 
for CDM as an example, as shown in Tables 4 and 5, states 1 
and 2 are SEQ for CG in G1 and states 5, 6, and 7 are SEQ for 
CG in G2.  

According to Theorem 8.1, states (1, 5), (1, 6), (2, 5), (2, 
6), (1, 7), and (2, 7) are SEQ for CG in the hierarchical con- 
flict.  

 
Table 3. Preferences for CG in Two Subconflicts Obtained by 
Option Prioritization Method 

G1 

Preference 
Statements 

Score of Each 
Statement 

States 

1 2 3 4 
1) 21 T T F F 
3) 20 T F T F 
 Score of Each 

States 
3 2 1 0 

 Ranking of 
States 

1 2 3 4 

G2 

Preference 
Statements 

Score of Each 
Statement 

5 6 7 8 

4) 21 T F T F 
2) 20 T T F F 
 Score of Each 

States 
3 1 2 0 

 Ranking of 
States 

5 7 6 8 

 
Table 4. Stability Results in the Central Conflict (G1) 

 Nash SEQ GMR SMR 
CG 1, 2 1, 2 1, 2 1, 2 
LRs 2, 3 2, 3, 4 2, 3, 4 2, 3, 4 
 
Table 5. Stability Results in the Western Conflict (G2) 

 Nash SEQ GMR SMR 
CG 5, 6 5, 6, 7 5, 6, 7 5, 6, 7 
NCs 6, 7 6, 7, 8 6, 7, 8 6, 7, 8 

 

To determine the rest of SEQ states for CDM in G, states 
3 and 4 in G1 and state 8 in G2 are investigated according to Fi- 
gure 4. For example, let s1 = 1 and s2 = 8, then q1 = 1 and q2 = 
6, which can be written as

1q
e = (1 0 0 0)T and

2q
e = (0 1 0 0)T. 
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Then, r1 = (1 1 0 0)T, and r2 = (0 1 0 1)T. In r, the non-zero ele- 
ments correspond to states (1, 8), (2, 6), and (2, 8). Since CG 
considers the central subconflict more important, the weights 
for the two subconflicts are assumed as w1 = 0.9 and w2 = 0.1. 
According to Equation (3) and Table 3, ( )sY = 3 × 0.9 + 0 × 
0.1 = 2.7. When r = (2, 6), ( )rY  = 2 × 0.9 + 1 × 0.1 = 1.9. Thus, 

( )rY < ( )sY for s = (1, 8) and r = (2, 6). Then state (1, 8) is 
an SEQ state for CG in G. Other stable states in G can be de-
termined analogously. The stability results for DMs in the hie- 
rarchical conflict are listed in Table 5. Note that “-” in Table 6 
represents any state in kS (k = 1 or 2). 

States (2, 6) and (2, 7) are equilibria in the overall conflict 
as they are stable for all DMs. State (2, 7) is the possible out-
come of this hierarchical conflict since it can be evolved from 
the status quo, which refers to the starting state. Equilibrium 
(2, 7) echoes the actual outcome (The Economic Times, 2012). 
Chinese Government insisted on the original plan at the central 
location, but suspended the western projects. NCs are satisfied 
with the current status. 

The weighted preference structure for CDM is more fle- 
xible to express CG’s assessment on the importance of each lo- 
cal graph. The stability results for CG can change according 
to different value of weights assigned to the local graphs. To 
carry out further analysis, these stability results with a complete 
range of w1 in the water diversion conflicts are investigated. 

As CG considers the central subconflict more important, 
the weight for the central subconflict is greater than 0.5, i.e., 
w1 > 0.5. Because the weight is a number between 0 and 1, 
w1 > 0.5 is equivalent to 1w Î [0.5, 1). Note that 1w ¹0, 1, as 
both w1 and w2 must be greater than 0. According to Theorem 
7.1, Nash states for CG are not affected by the weights for the 
local graphs. The SEQ and GMR states for CG with different 
weights are shown in Figures 10 and 11. The relationship be-
tween the SMR and w1 for CG are the same as that between 
GMR and w1, shown in Figure 10. 

In Figure 10, the horizontal axis denotes the value of w1 
ranging from 1 to 0. The 16 states in the overall conflict are lis- 
ted in the vertical axis. Each bar represents the range of w1 
within which the corresponding state is SEQ for CDM. For 
example, state (4, 5) is SEQ for CDM when 1w Î (0, 1/3]. Note 
that the left end of the bar is round and the right end is flat, 
since w1 can be equal to 1/3 but never reach 0. 

According to Figure 10, states (1, 5), (1, 6), (1, 7), (2, 5), 
(2, 6), (2, 7) are SEQ for CG regardless of the change of w1. 
State (1, 8) is SEQ for CG when w1 is no less than 0.5. States 
(3, 5) and (4, 5) are SEQ for CG if w1 is no larger than 0.5 and 
1/3 respectively. Taking state (1, 8) as an example, CG’s UI is 

sanctioned by a LRs’ UI if CG considers the central project 
more important, which means 1w Î [0.5, 1). Thus, the counter- 
action from LRs will be highly valued. As w1 is below 0.5, the 
central project will be less important. This countermove from 
LRs would fail to sanction CG when CG has a view of both 
central and western projects. 

 

 
Figure 10. SEQ States for CDM in the Hierarchical Graph 
Changed with Weights. 
 

 
Figure 11. GMR and SMR States for CDM in the Hierar-
chical Graph Changed with Weights.

Table 6. Stability Results in the Overall Conflict 

 Nash SEQ GMR SMR 

CG (1, 5), (1, 6),  
(2, 5), (2, 6) 

(1, 5), (1, 6),  
(2, 5), (2, 6), (1, 7), (2, 7), 
(1, 8) 

(1, 5), (1, 6),  
(2, 5), (2, 6), (1, 7), (2, 7), 
(1, 8) 

(1, 5), (1, 6),  
(2, 5), (2, 6), (1, 7), (2, 7), 
(1, 8) 

LRs (2, -),(3, -) (2, -), (3, -), (4, -) (2, -), (3, -), (4, -) (2, -), (3, -), (4, -) 
NCs (-, 6),(-, 7) (-, 6), (-, 7), (-, 8) (-, 6), (-, 7), (-, 8) (-, 6), (-, 7), (-, 8) 
Overall (2, 6) (2, 6), (2, 7) (2, 6), (2, 7) (2, 6), (2, 7) 
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The SEQ states for LDMs in the hierarchical conflict are 
the same when the weights for local graphs are changed. For 
LRs, states (2, -), (3, -), (4, -) are SEQ since the corresponding 
component states 2, 3, and 4 are SEQ. Although the states can 
be SEQ for REs when the corresponding component states are 
not SEQ, no SEQ state is found among states (1, -) in this exa- 
mple.    

The results calculated in the weighted hierarchical graph 
model indicate resolution for DMs in this conflict. Equilibrium 
(2, 7) suggests that the project at the central location can be su- 
ccessfully constructed despite opposition from LRs. CG will 
suspend the construction plan at the western project to appease 
NCs. For CG, the central projects should be constructed first. 
Although the dissatisfaction from LRs cannot affect the course 
of the construction, more action plans are advised to better ac- 
commodate LRs after relocation. As the western project is likely 
to cause transboundary disputes, CG should fully negotiate 
with NCs before resuming the project. As LRs do not have 
much impact in this conflict, they can still express their con-
cerns by communicating with local governments. According 
to the results in Figures 10 and 11, CG can also change the re- 
sults of the conflict by accordingly resetting the importance of 
each local graph. Therefore, CG can be provided with a wide 
range of resolution depending on which outcome it desires to 
achieve. 

7. Comparison of Weighted Hierarchical Graph 
Model and Former Methodologies 

The advantage of weighted hierarchical graph model is 
explained by comparing it with the former hierarchical model 
with lexicographical preferences (He et al., 2013). 

The weighted hierarchical graph model has more flexible 
preference structure compared with the basic hierarchical gra- 
ph model with lexicographic preferences. The lexicographic 
preference structure is a crisp approach of determining prefe- 
rence relations for CDM. A local graph can be either more im- 
portant, less important, or equally important than the other local 
graph. In the weighted preference structure, the relative impor- 
tance between the two local graphs is expressed by numbers be- 
tween 0 and 1. Thus, such importance can be described more 
flexibly. 

The calculation for stabilities in the weighted hierarchical 
graph model is also more effective than the former calculation 
method. The stabilities in the basic hierarchical model with le- 
xicographic preferences are determined by theorems descri- 
bing the interrelationship between stabilities in the hierarchi- 
cal model and local models. In comparison, the stabilities in the 
weighted hierarchical model are obtained by matrix computa-
tion based on the algorithms. As demonstrated in the case study, 
the new calculation approach is more simplified and easier to 
implement.  

The stabilities in the weighted hierarchical graph model 
are more sensitive to the relative importance of local graphs, 
compared with the stabilities in the hierarchical graph model 
with lexicographic preferences. As depicted in Figure 9, state 

(3, 5) is not GMR for CG if it values the weight of G1 greater 
than 2/3. However, in the hierarchical model with lexicographic 
preferences, this state is still GMR for CG when it considers G1 
more important, which is interpreted as 1w Î (0.5, 1) in the wei- 
ghted hierarchical model. 

Compared with original graph model methodology, the hie- 
rarchical graph model can provide DMs with more meaning- 
ful insights when modelling interrelated conflicts. According 
to Tables 4, 5, and 6, the two SEQ states for CG in G1 and three 
SEQ states for CG in G2 are components of the six SEQ states 
for CG in G. Another SEQ state for CG in G, state (1, 8), con- 
tains state 8, an unstable state in G2. This state is also GMR and 
SMR for CG. Thus, state (1, 8) indicates a stable outcome in the 
hierarchical graph model, which would be neglected by mode- 
lling the two subconflicts separately. At this state, CG initiates 
the original plan at both locations. LRs are pleased while NCs 
protest. At the western location, CG will change the status by 
improving from state 8 to 6, as indicated in ( )2

CGJ .+  However, 
CG will not initiate this UI if it considers the central and west-
ern subconflicts together, because at the central location, LRs’ 
UI from state 1 to 2 will be less preferred by CG. The possible 
outcome, state (2, 6), is less desired for CG, since the loss at the 
central location matters more than the benefit at the western lo- 
cation for CG. It is rational for CG to stay at state (1, 8). There- 
fore, CG can take more reasonable actions based on the stabili- 
ties calculated by the hierarchical graph model. 

8 Conclusions and Further Studies 

A basic hierarchical graph model has been proposed with 
weighted preference structure for CDM. The reachable lists and 
UIs in this model have been expressed in matrices. Algorithms 
have been constructed for calculating stability results in the 
hierarchical model based on the theorems which link stability 
definitions of the hierarchical graph with the local graphs. The 
new model with weighted preference has been applied to wa-
ter diversion conflicts in China. The calculation for stability re- 
sults in this conflict has been demonstrated. The equilibrium 
indicates the possible resolutions for DMs in this conflict. Fur- 
thermore, the stability results in the hierarchical conflict are 
also investigated by changing the weights on local graphs. 

Compared with the previous model (He et al., 2013), the weight 

preference can model CDM's assessment on the importance of 
local graphs with more efficiency.  

The hierarchical graph model can effectively solve strate- 
gic conflicts that contain several related subconflicts. Instead 
of focusing on one single conflict, DMs can have a compre-
hensive understanding of all related conflicts. CDM can achieve 
its goals by weighing up different subconflicts.  

The algorithms designed in Section 5 have been demon- 
strated to calculate stability results in the hierarchical conflict. 
This approach can be used for calculating stability results in 
some hierarchical graph models consisting of a large number 
of local graphs. While the direct calculation methods become 
less efficient due to the large dimension of the model, the new 
approach only requires stability results in local graphs and the 
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weights local graphs. Compared with the matrix approach (Xu 
et al., 2009) in which matrices are multiplied, the computation 

across local graphs in the weighted model is achieved by Carte- 
sian product of vectors. Therefore, the new approach can avoid 
heavy calculation and require less processing time.  

For further study, a decision support system based on the 
algorithms in the weighted model can be developed. 

The structure of the hierarchical graph model can also be 
extended. For example, a hierarchical graph model with more 
than two levels can be proposed. Uncertainty and strength of 
preferences in the hierarchical model can also be introduced. 
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