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ABSTRACT. Harmful algal blooms (HABs) have become a global issue due to their serious threat to environmental ecology and rapid 

expansion around the world. Northeast China, characterized by a long ice period, has been ignored in the previous studies of HABs. 

However, Lake Hulun, a great lake located in Northeast China, has been found intense HABs since the 1980s. To evaluate HABs more 

precisely and efficiently through satellite images in Lake Hulun, an adjusted FAI (AFAI) method with an automatically identified 

threshold was developed. The method took full advantage of Landsat series sensors and MODIS products, and built a threshold 

selection range (0.01 ~ 0.02 for Landsat and 0.05 ~ 0.12 for MODIS) rather than a single threshold on all images. With the long-term 

satellite data from year 1983 to 2016, occurrences of HABs in Lake Hulun were investigated. There were total 169 occurrences of 

HABs during the periods and the first outbreak was detected in 1984. Though the initial outbreak date of HABs varied in each year, 

most HABs happened in July and August. The water quality of Lake Hulun have experienced a serious degradation especially in the 

past nine years as the outbreak frequency of HABs increased a lot since 2009. The reason of the degradation may be attributed to the 

continuous grazing around the lake, tourism, and anthropogenic activities on lake surface even in freezing period. Surrounding land 

use and land cover (LUCC), meteorological conditions, and water chemical and physical parameters were also related with the 

outbreak of HABs to some extent. 
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1. Introduction  

With the trend of global warming and the intensification 

of anthropogenic activities, outbreaks of harmful algal blooms 

(HABs) have become increasingly serious in both intensity 

and frequency (Shumway, 1990, 1995; Anderson et al., 1995. 

HABs were societally defined as an increase in the con- 

centration of phytoplankton species that had negative impacts 

on surrounding environment (Smayda, 1997). The universally 

recognized definition mainly contains two aspects, one is the 

toxic species that release toxin to aquatic creatures or humans, 

and the other is non-toxic species impact on the environment 

indirectly through high biomass accumulation (Stumpf and 

Tomlinson, 2005; Wells et al., 2015). Due to the transient and 

unpredictable nature of HABs, satellite data has been widely 

used in observing HABs for inland and near-coastal waters 

(Kahru et al., 1993; Subramaniam et al., 2002; Kahru et al., 

2005; Kutser et al., 2006; Kahru et al., 2007; Matthews et al., 

2010), such as MEdium Resolution Imaging Spectrometer 

(MERIS) (Gower et al., 2005; Gower et al., 2008; Matthews 

et al., 2010; Binding et al., 2013), Sea-viewing Wide Field- 
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of-view Sensor (SeaWiFS) (Shanmugam et al., 2008), Mod- 

erate Resolution Imaging Spectrora diometer (MODIS) (Hu, 

2009; Siswanto et al., 2013), Geostationary Ocean Color Im- 

ager (GOCI) (Hu et al., 2014), Landsat Data Continuity Mis- 

sion (LDCM) (Irons et al., 2012) (including MSS / TM / ETM+
 

/ OLI), HJ-CCD (Oyama et al., 2015; Xing and Hu, 2016), and 

so forth. The corresponding spatial and spectral resolution in- 

formation could be found in Appendix I. 

Nowadays, more and more researches are devoted to 

exploring the relationship between HABs and biological or 

environmental factors such as temperature, precipitation and 

lake morphometric features of lakes in South China (e.g., Hu 

et al., 2010; Yang et al., 2013; Jiang et al., 2014; Wu et al., 

2014; Shi et al., 2015; Luo et al., 2016; Shi et al., 2017). Most 

phytoplankton prefer moderate environmental factors (Wang 

et al., 2008) and the optimum temperature for many phyto- 

plankton is usually 20 ~ 26 °C (Cloern, 1977; Rhee and Gotham, 

1981). Li et al. (2016b) found that moderate high temper- 

atures could accelerate the formation of cyanobacteria blooms 

in Lake Taihu, which became an inhibiting factor once ex- 

ceeded above 33 °C. Some experts (Jacobs et al., 2015; Wells, 

2015) also proposed that the outbreaks of HABs may expand 

both in time (seasonality) and space (geographical distribution) 

along with global warming. However, there have been no 

attempts to use satellite data for monitoring the summer 

HABs in Northeast China, which has a long ice period. Lake 
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Hulun is the fifth largest lake in China, which lies in Mon- 

golian Plateau and has significantly ecological and economic 

importance. MODIS and LDCM were used to map spatio- 

temporal change of HABs in Lake Hulun, because MODIS 

has daily reflectance dataset and LDCM data has 30 m spatial 

resolution with long data acquisition history. 

The objective of this paper could be summarized as fol- 

lows. Firstly, an adjusted FAI method was proposed to en- 

hance the difference in value between HABs and other ob- 

jects information and an automatic method was test to select 

the threshold. Secondly, the spatial and temporal distributions 

of HABs of Lake Hulun in summer are investigated. Thirdly, 

we preliminary explored the mechanisms to elucidate the ob- 

served patterns, such as environmental factors, total phosphor- 

rus (TP), total nitrogen (TN) and TN / TP (nitrogen-phospho- 

rus ratio). The study is of great significance for protecting the 

lacustrine ecosystems, as well as building monitoring and fore- 

casting programs. 

 

2. Materials and Methods 

2.1. Study Area 

Lake Hulun is the fifth largest freshwater lake in China, 

and the largest lake in Northeast China. This lake is located at 

the west of the Great Khingan Mountains and the east north- 

ern part of the Mongolian Plateau as shown in Figure 1. In 

recent decades, this lake has experienced severe declines in its 

surface area (from 2047 to 1748 km2) and water level (from 

543.8 to 540.9 m) from 1984 to 2012. Until 2016, the lake had 

a surface area of 2054 km2 and a mean depth of 5 ~ 6 m. With 

an approximate 150,000 km2 catchment area, Lake Hulun has 

been mainly fed by two major river systems, the Kerulen 

River and Wuerxun River (Zuansi et al., 2016), and drains off 

water into Xinkai River. However, the water level has de- 

clined in the past two decades, Xinkai River has become an 

inflow river (Chen et al., 2012). This gradually results in la- 

custrine eutrophic intensification and could provide excellent 

conditions for HABs. 

The three nearest meteorological stations surround Lake 

Hulun are the Manchuria, new Barag right banner and new 

Barag left banner, as shown in Figure 1. Therefore, the me- 

teorological data were obtained with the average of the three 

above-mentioned stations. This region is in the semiarid con- 

tinental temperate monsoon zone, where ample synchronous 

precipitation and high temperature occur in the summer. The 

annual average precipitation is around 273 mm, which is mo- 

stly distributed in June, July, August and September (Figure 2). 

Lake Hulun has a long icebound period and only five warm 

 

 Figure 1. Location and topography distribution of Lake Hulun and its surrounding meteorological stations, 

China. 

Note: Kerulen River and Wuerxun River had been the major inflow rivers of Lake Hulun. Xinkai River was 

the main outflow river. Since the water level has been declining in the past two decades, Xinkai River has 

become an inflow river of Lake Hulun in recent years. 
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months from May to September for each year, where the av- 

erage temperature is around 0.67 °C. 

 

2.2. Satellite Data and Pre-processing  

The satellite data of LDCM images, which had annual 

coverage from early May to late October each year from 1983 

to 2016 (until September 30th in 2016), were acquired from 

USGS Global visualization viewer web (http://glovis.usgs.gov/) 

and included MSS, TM, ETM+ and OLI data. The Digital 

Number (DN) of the LDCM images was calibrated to the 

top-of-atmosphere reflectance ρTOA with the following equation 

(1): 

 

( ) 2

cos
TOA

s

gain DN offset d

ESUN










 +
=   (1) 

 

where d is earth-sun distance in astronomical unit; θs is sun 

elevation in degree; ESUNλ is solar irradiance in unit of 

W/(m2 * µm); gain and offset are parameters to convert DN to 

radiance which were obtained from the metadata of the LD- 

CM data. 

MOD09GA and MYD09GA are daily surface reflectance 

products of Terra, and Aqua, respectively. Both of them were 

downloaded from NASA’s Land Processes Distributed Active 

Archive Center (LP-DAAC). We obtained the MOD09GA prod- 

ucts from June 15th to October 30th of every year from 2000 to 

2016 (images only covering June 15th to September 30th in 

2016). Moreover, hundreds of MYD09GA were also provided 

as complementary. The MODIS reprojection tool (MRT, Land 

Processes DAAC, 2008) was used to process MOD09GA and 

MYD09GA by selecting band 1 ~ 7 and band QC from orig- 

inal HDF file and reprojecting them to Albers projection from 

original sinusoidal projection. 

In addition, MODIS products require quality evaluation 

to guarantee precision of the results. Since severe water level 

declines in Lake Hulun were revealed during 2000 ~ 2010 

(Cai et al., 2016), lacustrine surface area also experienced 

great fluctuation; therefore, it was necessary to extract water 

boundary before identifying HABs. Some aquatic macro- 

phytes have similar spectral characteristics around the Near- 

Infrared (NIR) region (Dekker et al., 2001; Gower et al., 

2005), in order to avoid the interference of offshore aquatic 

macrophytes, we masked one pixel inward from the water 

boundary. On the one hand, clouds are a pervasive and un- 

avoidable issue in satellite-borne optical imagery (Foga et al., 

2017), especially thick cloud entirely hindered the ground 

reflectance (Lv et al., 2016). Given that restoring the blocked 

ground reflectance from the original image alone was im- 

possible (Roy et al., 2008), replacement approach (Poggio et 

al., 2012; Lin et al., 2013; Cheng et al., 2014; Li et al., 2014) 

and other cloud masking algorithms (Wang and Shi, 2006; Liu 

and Liu, 2013) were too complicated and ultimately unneces- 

sary for this study, so we regarded the pixel with reflectance 

greater than 0.2 in green band as cloud region and was 

counted as invalid pixel after observing abundant images of 

Lake Hulun, which was reasonable because the water reflec- 

tance in green band was far low than 0.2 (Li et al., 2012; Li et 

al., 2015). On the other hand, valid images were selected by 

turning to QC band. On user’s guide of MODIS surface re- 

flectance, each image has a QC band for recording quality of 

the corresponding pixels, where the QC value can be further 

converted to 32-bit binary value by Equation (2). The first two 

bit figures could describe the integral quality for all bands and 

the latter bit figures would delineate the detailed quality for 

per band. In this study, if pixels value in bit locations 15 ~ 18 

or 19 ~ 22 were not equal to 0000, green band or SWIR (short 

wave infrared) would be declared to be bad pixels. Once the 

total percentage of invalid or bad pixels exceeded 1%, the 

image would be filtrated to be obsolete and no further efforts 

would be carried out: 

 

00 0000 0000 0000 0000 0000

3 ~ 6 7 ~ 10 11 ~ 14 15 ~ 18 19 ~ 221~ 2

1 2 3 4 5

0000 0000 00 00

23 ~ 26 27 ~ 30 31 32

6 7

Band Band Band Band Band

Band Band

   (2) 

 

2.3. Water Quality Parameters  

Water quality parameters were obtained from three field 

experiments which carried out on September 7th
 in 2013, Sep- 

tember 14th in 2015 and August 11th in 2016. The numbers of 

sampling points were 7, 28 and 10 in 2013, 2015 and 2016, 

respectively (Figure 3). 

These sampling points covered nearly the whole lake. 

Water samples, which were about 0.5 ~ 1 m beneath the wa- 

ter surface, were collected using sampling bottles and their 

 

Figure 2. Monthly variation of climatological conditions 

(Temperature and precipitation) for Lake Hulun.  

Note: The closest meteorological stations from Lake Hulun 

are Manchuria, New Barag Right Banner and New Barag 

Left Banner (Figure 1). The temperature and precipitation 

were average of the three stations monthly statistics from 

1983 to 2015. 
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volumes were at least 4 L for each sampling point. At the 

same time, a portable multi-parameter water quality probe 

(YSI-6600, US) was used to collect several physical and chem- 

ical parameters on site, e.g., temperature, pH, and water depth. 

Water samples were preserved in a portable refrigerator before 

taking to a laboratory where other parameters were obtained. 

The Chlorophyll a (Chl-a) was extracted by using 90% buff- 

ered acetone and the concentration was measured using a TD- 

700 Fluorometer (Turner Designs, Inc., Sunnyvale, CA) fol- 

lowing EPA Method 445.0 (EPA, 1997). Concentrations of 

TN and TP were measured with unfiltered water samples, the 

details of the operations can be found at Song et al. (2012) 

and Wen et al. (2016). Also, the TP data of Lake Hulun in 

2004 ~ 2014 were obtained from previous paper (Tuan and 

Yue, 2015). 

 

2.4. Meteorological and Land Cover Data  

The data of three meteorological stations (Figure 1) were 

obtained from Chinese Meteorological Data Sharing Net- 

work. The meteorological data covered 34 years from Jan- 

uary 1st of 1983 to May 31th of 2016. Mean value of three 

stations were calculated for all the meteorological elements 

except for precipitation which only took the closest station 

new Barag right banner. Surrounding LUCC were obtained 

from the geographical landscape group in the Northeast Ins- 

titute of Geography and Agro-ecology, Chinese Academy of 

Sciences. 

Many researchers have found that the first outbreak date 

and area of HABs were two major parameters (Ma et al., 

2010). A simple synchronous variation trend analysis was car- 

ried out among the annual HABs areas, first outbreak date, 

water level, temperature and precipitation. 

 

2.5. Modification of FAI  

2.5.1. Introduction of FAI 

The FAI (Floating Algae Index), which was proposed by 

Hu (2009), has been applied mainly to MODIS Rayleigh 

scattering effects corrected reflectance (Rrc) images. The Rrc 

(Hu et al., 2004; Hu, 2009) can be expressed as: 

 

( )*

0 0cosrc t rR L F R = −   (3) 

  

where
*

tL is the calibrated sensor radiance with the effects of 

ozone and other gaseous absorption being removed; F0 is the 

extraterrestrial solar irradiance at data acquisition time; θ0 is 

the solar zenith angle; and Rt is Rayleigh reflectance estima- 

ted with 6S (Vermote et al., 1997; Hu, 2009). Since this pro- 

cess mainly relied on the SeaDAS platform, this method is 

denoted by SeaDAS way for convenience. The floating algae 

index was calculated with Equation (4) (Hu, 2009): 
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'
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'
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R R R R

   

= −

= + − 

− −

  (4) 

 

where R’rc,NIR is the simulative reflectance in the NIR band de- 

rived from a linear interpolation between the RED and SW- 

IR bands. Rrc.X and X represent corresponding reflectance and 

central wavelength of band X. The central wavelength of the 

sensors applied in this research were shown in Table 1. Ma et 

al. (2010) suggested the FAI could also be used to LDCM. 

 

2.5.2. Adjusted FAI 

Based on FAI, this paper proposed an adjusted FAI 

(AFAI) which had two major differences from FAI. The first 

one was the data source. The FAI used the reflectance data 

derived from MODIS L0 data, where a series of atmosphere 

correction was carried out to eliminate the noise in atmo- 

spheric molecules such as ozone. In particular, the crucial step 

for FAI was to calculate Rayleigh scattering value and remove 

it. However, in this paper, the image sources are MOD-09GA 

and MYD09GA. According their user’s guide, the MOD09 

GA/MYD09GA was an estimation of the surface spectral 

 

Figure 3. The surrounding land cover type of Lake Hulun 

and field samples distribution. 

Note: HL_2016 represents the points in August 11th of 

2016, HL_2015 describes the samples in September 14th in 

2015 and HL_2013 expresses the dots in September 7th of 

2013.  

                     Table 1. The Center Wavelength of Different Sensors 

Sensor Name MODIS/nm MSS/nm TM/nm ETM+/nm OLI/nm 

Green 555 550 569 560 516.3 

Red 645 650 660 662 654.6 

NIR 859 757 840 835 864.6 

SWIR 1240 916 1676 1648 1609 
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reflectance after removing not only atmosphere absorption 

and Rayleigh scattering but also aerosol scattering. In order to 

make a fair comparison between images processed by the 

SeaDAS way and directly acquired products, we selected the 

MODIS L0 and MYD09GA images on July 27th of 2012 and 

August 12th of 2003 for analysis as HABs were observed on 

both dates. Atmosphere absorption and Rayleigh scattering 

affects were removed from MODIS L0 images with SeaDAS. 

Then the spectra of HABs regions were obtained from the 

images and shown in figures 4a, 4b, 4d and 4e. Mean spectra 

of this regions were also calculated. From the ((a) ~ (b)) and 

((d) ~ (e)) of Figure 4, the range of the entire image spectra is 

very similar, and the shapes of waves are almost identical. 

The (c) and (f) of Figure 4 clearly showed that the peak at 859 

nm of MYD09GA which is more evident than the result 

obtained by SeaDAS way. Based on these results, it is uitable 

to use the MOD09GA / MYD09GA to extract HABs with FAI 

and AFAI. 

The second difference is the computational formula. The 

center wavelength ratio played an important role in FAI; 

however, it was found that although different satellite images 

had different central wavelengths in green, red, NIR or short- 

wave infrared band as listed in Table 1, all of the spectra in 

algal blooms regions shared similar waveforms. According to 

previous studies, specific features necessary for algal blooms 

detection included 680 ~ 715 nm (Gitelson, 1992), 708 nm 

(Gower et al., 2005), and 709 nm (Matthews et al., 2012), yet 

the LDCM and MODIS bands are relatively wide and cannot 

capture them. Furthermore, algae floating on the water surface 

have higher reflectance in the NIR than in other bands, and 

can be easily distinguished from surrounding waters (Hu et al., 

2009). Therefore, it does not matter much where the exact 

central wavelengths of these bands are as long as the bands 

are wide. The center wavelength can be ignored and the AFAI 

can be defined as: 

 

( ), , , , 0.5rc NIR rc RED rc SWIR rc REDAFAI R R R R= − − −    (5) 

 

Followed the same definition in FAI algorithm, , ,rc NIRR  

,rc REDR and ,rc SWIRR denote the reflectance of the NIR band, 

RED band and SWIR band, respectively. The constant coeffi- 

cient 0.5 was derived according to (OrderNIR – OrderRED) / 

(OrderSWIR – OrderRED), where Order represents the order of 

ea- ch band in multi-band images (e.g., in MOD09GA/MYD- 

09GA, the expression was ( ) ( )4 3 5 3− − which is equal to 

0.5). 

 

2.5.3. AFAI Threshold Determination  

Finding a proper threshold is a crucial step to identify 

algal blooms in clear water bodies. In general, visual inter- 

pretation is feasible in many scenarios (Miller et al., 2006; Hu, 

2010; Kurekin et al., 2014; Anderson et al., 2016; Song et al., 

2016); however, it consumes too much time and energy in- 

vestment, and causes extraction results to be varied from one 

researcher to another (Hu, 2010). Although the following FAI 

algorithm is much more objective and robust (Hu, 2010), it is 

arbitrary to initialize a constant value and apply it to all im- 

ages. If an optimal threshold is determined for each image, the 

accuracy of extractions could be improved significantly. For 

this purpose, an automatic threshold selection method was 

applied to find the most optimal threshold. 

After extracting lake (or reservoir) boundary by MND- 

WI (Xu, 2006) and buffering towards inside one pixel, the 

HABs threshold selection is carried on AFAI image with the 

following steps. First, Pixels with AFAI greater than the initial 

threshold 0 was identified as HABs region. Second, the initial 

HABs region was dilated until it was about 2 times of the 

original size to include some initial water region; then his- 

togram curve of AFAI in the expanded region could show two 

peaks that one mainly contained clear water pixels and the 

other one for HABs pixels. Third, from the minimal AFAI 

value on, compute the sum of the left and right standard 

deviations of the value, the optimal threshold was the value 

that could get the minimize data of the sum. Then, the thresh- 

old could be applied to extract the algal blooms region in 

corresponding image. In case of systematic error, a data range 

would be set in advance. After several tests, a valid threshold 

boundary (0.01 ~ 0.02 for LDCM and 0.05 ~ 0.12 for 

MOD09GA/MYD09GA) was set. As it is well known (e.g., 

Jiménez-Muñoz et al., 2010; Mannschatz et al., 2014; Jaelani 

et al., 2015; Pan et al., 2017), atmospheric correction is 

necessary for the processing of satellite image and it is still a 

major challenge to carry out atmospheric correction for inland 

waters. Therefore we were not able to get absolutely accurate 

water reflectance until now. Compared to the traditional meth- 

od with a certain threshold, this method took the differences 

into consideration the differences among satellite images from 

different phases, which could find more appropriate thresh- 

olds to extract HABs, both keep the precision of extraction in 

most extent and conformity of various phases. 

3. Results and Discussions  

3.1. The Reliability Analysis of AFAI 

3.1.1. The Advantages and Precautions of AFAI 

Compared with FAI algorithm, AFAI algorithm has the 

following advantages. Firstly, AFAI algorithm makes the ref- 

lected peak in NIR more prominent; it compacts the distance 

among same objects and makes it easier to distinguish HABs 

and clear water. 

Secondly, the overlook of central wavelength could im- 

prove the normalization of different sensors and make the com- 

puted results unaffected by the central wavelength, which 

would motivate researchers to extract HABs more efficiently 

and combine various satellite images. 

Thirdly, an unfixed threshold contributes to more precise 

results. Two different high-quality images of HABs at roughly 

the same time were chosen. The sensor time of Landsat and 

Terra were 2000 - 07 - 18 02 : 34 : 21 and 2000 - 07 - 18 02 : 35 : 00 

(UTC time), respectively, and there was only a difference of 39 
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seconds. Since the average wind speed was 1.83 m  / s on that 

day, the maximal drifting distance could not exceed 71.37 m, 

far less than 500 m (MOD09GA spatial resolution). There- 

fore, it was presumed that the two images had the same HABs. 

Based on the presumption, algae region and water region were 

extracted from LDCM. Then the AFAI image and FAI of 

MODIS images were generated respectively. Finally using 

algae and water region to export the FAI and AFAI compu- 

tational value by MODIS (Figure 5c). It could be observed 

and concluded that all objects could be distinguished more 

easily via a threshold using the compact AFAI data rather than 

the FAI data. 

However, this algorithm still could not tackle the inter- 

ference of clouds and vegetation. Therefore, a maximum re- 

flectance of 0.2 in the green band was set to avoid cloud re- 

gions, and different phase images were compared to distin- 

guish vegetation. Optical properties of the surface scum pro- 

duced by some species are similar to those of terrestrial ve- 

getation (Kutser, 2004) and are prone to be masked in the 

water extraction step, thus later visual interpretation and 

examination was necessary. 

 

3.1.2. The Regression Analysis between Two Sensors  

Monitoring the dynamic variation of HABs at a regular 

frequency required high spatial and temporal resolution, but a 

single sensor could hardly meet these two requirements simul- 

taneously. However, the combination of multi-sensors could 

collect various data from different parts of the electromagnetic 

spectrum, at different spatial scales, and with different tem- 

poral resolutions (Hollands and Dierking, 2016). Therefore, 

LDCM and MODIS images were used in this paper. In order 

to inspect and ascertain the error caused by differing resolu- 

tion and generate the monitoring result in a scientific and rea- 

sonable manner, a regression analysis was conducted between 

the HABs area extracted from MODIS and LDCM images on 

the same day (Figure 6). 

Based on the regression result, there was an obvious 

linear trend in Figure 6. The R2 was 0.881 which indicated a 

strong correlation between the HABs area extracted by MO- 

DIS and LDCM. Moreover, the slope was close to 1 which 

further implied that the consistence of HABs area extracted by 

LDCM and MODIS images. However, there were two par- 

ticular points (Point 1 and Point 2) located far away from the 

regression line. Point 1 represented the results of 12th August, 

 

Figure 4. A comparison between the image visual 

interpretation effects processed by SeaDAS way and 

directly acquired MODIS products. 

           

         Figure 5. The comparison of AFAI and FAI in algal bloom region and clear water body region. 
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2009: the data source of LDCMs and MODIS was respect- 

tively TM (in antemeridiem) and MYD09GA (in the after- 

noon). On that day, the average wind speed was 3.1 m / s and 

the maximum wind speed was recorded as 9.5 m / s; the strong 

wind affected the distribution and modalities of HABs signif- 

icantly in an unavoidable manner. Thus, there was a notable 

variation of the two detection results. Similarly, Point 2 could 

also be explained by the same argument. In conclusion, the com- 

parison and analysis above demonstrated the MODIS images 

could be an alternative data source for HABs detection of 

Lake Hulun with high temporal resolutions. 

 

3.2. The Frequency Variation of HABs 

In order to identify the spatiotemporal change of HABs 

in Lake Hulun, a total of 380 scenes of available LDCM 

images from May to October, 1983  - 2016 were downloaded 

from USGS website (Appendix II). A total of 64 images were 

detected with HABs. Figure 7 showed the percentage ratio 

and the specific surface area of the lake change trend and the 

temporal pattern of HABs. Generally, HABs outbroke from 

June to September; June, July, August, and September ac- 

counted for approximately 3.2, 48.4, 32.8 and 15.6%, respect- 

tively. In addition, serious HABs mostly occurred in July and 

August. Since the count of images available from 1983  ~ 

1999 and 2000   ~ 2016 were not in an order of magnitude, the 

analysis of the inter-annual bloom frequency variation had to 

be divided into two parts. In the first 17 years (1983   ~ 1999, 

Figure 7a), no obvious trend could be found and there were 

total 10 years found HABs. The change of percentage was 

mostly consistent with the dynamic of area, which implied 

that during this period, the water level were keeping relatively 

stable. In the second 17 years (2000  ~ 2016, Figure 7b), a grad- 

ually higher frequency and the severity of HABs could be de- 

tected especially after 2009 and total 16 years were observed 

HABs. Moreover, the coherence of area and percentage change 

became much weaker. Which indicated that in this phase, the 

deterioration of the lake quality was intensified and lake sur- 

face area also fluctuated frequently and significantly. 

Additionally, 3208 scenes of MODIS products, contain- 

ed 2256 scenes of MOD09GA images and 952 scenes of MY- 

D09GA, were acquired from Terra and Aqua in June ~ Octo- 

ber each year of 2000 ~ 2016. Additionally, 1088 scenes were 

of high quality (Table 2). From Table 2, the total number of 

images where HABs were found was 129. Although it could 

only account for 11.86 % of the total 1088 images, there were 

still approximately 7.5 outbreaks on average each year from 

2000 to 2016. The frequency of HABs was considered ex- 

tremely high for the famous tourist scenic spot. In terms of 

monthly difference, the two highest frequencies of blooms 

were in July and August, which were around 52.71 and 31.01 % 

of the total number, respecttively. Moreover, the third and 

fourth highest frequency of blooms were in September and 

Table 2. The Monitoring Statistics of HABs via All Useful Images of MOD09GA and MYD09GA During 

June-October 2000 to 2016  

Year 2000  2001  2002  2003  2004  2005  2006  2007  2008  

Time A T A T A T A T A T A T A T A T A T 

Jun. 0  0  0 0  0  6  0 7  0  4  0  0  0  0  0  5  0  4  

Jul. 4  7  1 10  1  5  2 6  3  13  0  12  0  6  1  13  2  11  

Aug. 3  8  0 15  0  10  3 11  4  16  0  22  3  12  1  16  6  15  

Sep. 2  17  0 14  2  16  0 15  1  11  0  18  0  27  0  26  0  19  

Oct. 0  12  0 24  0  12  0 23  0  21  0  15  0  21  0  22  0  13  

T 9  44  1 63  3  49  5 62  8  65  0  67  3  66  2  82  8  62  

Year 2009  2010  2011  2012  2013  2014  2015  2016  Total 

Time A T A T A T A T A T A T A T A T A T 

Jun. 0  2  1 13  0  6  0 6  0  7  2  7  0  8  0  5  3  80  

Jul. 4  15  8 15  8  12  6 8  6  9  10  17  8  16  4  16  68  191  

Aug. 5  12  0 10  3  20  1 13  7  13  0  13  2  12  2  14  40  232  

Sep. 1  11  0 20  0  17  0 18  0  16  5  23  3  12  4  11  18  291  

Oct. 0  15  0 18  0  24  0 20  0  15  0  20  0  19  0  0  0  294  

* The letter A represents the number of found algal blooms images, the letter T represents the total number of images. 

Figure 6. The regression analysis of HABs area at the 

same day of MODIS and LDCM images. 

 

 

Y = 0.936 X + 2.4973

R2 = 0.881
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June, which further proved that there would be more 

favorable conditions for HABs from June to September each 

year. In contrast, there were no HABs found in October. 

In addition, some anomalous MODIS images were fou- 

nd on some dates because nearly all the pixels of the lake had 

spectra similar to HABs. This strange phenomenon may be 

caused by the mixture of dead algae and some suspicious 

matters, which could not be distinguished by the limited 

spectral and spatial resolution of the MODIS sensor. Severe 

noise may also exist in these kind of images and they were 

abandoned in this research to avoid confusion.  

As for inter-annual variation, the year 2009 was a sig- 

nificant watershed. Before 2009, all the outbreak numbers of 

HABs were less than 9 and the average outbreak numbers were 

only 4.33. Nevertheless, outbreak frequency of HABs in the 

years after 2009 increased dramatically and the average num- 

ber was up to 10, with the exception of 7 times in 2012. The 

more and more frequent outbreak of HABs demonstrated that 

the degeneration of water quality in the latest 9 years. 

 

3.3. Spatiotemporal Change of HABs 

Recent research showed that wind speed could affect the 

detection area of HABs. In other words, different wind speeds 

may lead to different results for detecting the same HABs 

(Kononen et al., 1996; Sellner, 1997; Wynne et al., 2010), 

because the gas vacuoles of part algal species (especially 

cyanobacteria) could adjust the body buoyancy (Walsby et al., 

1997; Kutser, 2004). Thus, the biggest area of HABs were 

regarded as the indicator each year. From 1983 to 2016, a total 

of 26 years of HABs were detected and the biggest HABs area 

retrieved from LDCM and MODIS products were selected to 

map the spatiotemporal change of inter-annual HABs distri- 

bution in Lake Hulun (Figure 8). 

There are many ways to characterize the outbreak in- 

tensity of HABs, e.g., area, AFAI data. In terms of the vari- 

ation of the surface area, the extremely serious HABs events 

happened in 1985, 1999, 2000, 2009, 2011 and 2013, and 

most of them were concentrated after 1999. According to the 

AFAI data difference (the color from red to light green on the 

map), most significant outbreaks of HABs mainly happened 

in 1985, 1999, 2000, 2010, 2013, 2014 and 2015, which were 

also mostly distributed in the period after 1999.  

In terms of the inter-annual continuity of HABs, HABs 

could be detected subsequently in the years of 2008 to 2016 

and 1999 to 2004. However, the phenomenon of HABs distri- 

buted sporadically in the other study period. Also, it could be 

observed that both area and severity of HABs after 2008 were 

more serious than those before 2004. Above all spatial vari- 

ation analyses of HABs were only based on the area and 

inter-annual continuity, lacking the specific spatial distri- 

bution state of HABs in Lake Hulun in the last few decades. 

In order to visualize the spatial change statics, an algorithm 

was proposed in this paper as shown in Equation (6): 
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  (6) 

 
where ( )f x is the elementary statistic computed from each 

image, and ( )g x is the final data mapped in Figure 9. The total 

number of images participating in the operation is denoted by 

n.  

After above computation, two images could be acquired 

and showed in Figure 9. Both images were classified into 5 

      

 

Figure 7. All the detected area and percentage variation of HABs inferred from the LDCMs images during 

May ~ October in 1983 ~ 2016. 
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degrades. A total 53 scenes of LDCM images were analyzed 

in Figure 9a and the highest frequency of HABs was 13 times. 

Meanwhile, 106 scenes of MODIS products were computed in 

Figure 9b and the highest frequency was 18 times. It could be 

observed that the spatial variaton were consistent between the 

LDCM and MODIS. HABs almost covered the entire lake 

surface and the outbreak frequencies were decreasing gradu- 

ally from the southwest and northwest to the middle region. In 

particular, the frequency was pretty high at the lake edge, 

which was possibly caused by the cover type of adjacent land 

and the water velocity in the neighboring area. Moreover, the 

frequency in the southwest region was extremly high because 

the region was close to the estuary of the Kerulun river (Fig- 

ure 1). The Kerulun River was a major inflowing river of 

Lake Hulun and thus the water quality of the lake was closely 

dependent on the river. A number of studies have shown that 

      

Figure 8. Spatial and temporal change of inter-annual HABs distribution in Lake Hulun.  

Note: LM, LT, LE and LC represent the image obtained from MSS, TM, ETM+ and OLI 

of LDCM respectively. In addition, MO and MY simplified the product of MOD09GA of 

Terra and MYD09GA of Aqua. Since there are a great difference between the AFAI image 

computed from LDCM and MODIS products, two sets of distinguished legends are 

needed and divided into 6 degrades according to AFAI data. It indicated the severity of 

HABs in some extent. The legend titled LDCM was degraded in LM, LT, LE and LC, and 

the titled MODIS was degraded into MO and MY. 
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the Kerulun River had been sufferring from various pollutions 

in recent decades, e.g., grazing in both river banks, cooked 

leather factories, nitrate factories and so forth (Li et al., 1993; 

Liang et al., 2016), which concentrated the TP and TN of the 

estuary drastically (Li et al., 2016a). As a result, the highest 

frequency of HABs was distributed in this region. The sub- 

high-frequency area of HABs was close to the estuary of the 

XinKai River. When the Hailar River had a higher water-level 

than the Xinkai River, it would then become a major industrial 

waste water discharged by different factories such as paper 

mills, leather factories, and woolen mills along the Hailar 

River (Figure 1). However, because the Hailar River was 

distant (resulting in a certain degree of purification) and the 

the Ergun River was in a state of stagnation for more than half 

a year (Li et al., 1993), the pollution resulted from these rivers 

in northwest water area was less than southwest. In conclu- 

sion, the analyses above demonstrated that the water quality 

of the surrounding river esuary could influence the spatial 

distribution of HABs. Therefore, it is critical to improve water 

conditions of inflowing rivers in order to control the HABs in 

Lake Hulun. 

 

3.4. Preliminary Analysis on the Driving Factors 

A number of researches have been focusing on HABs 

recently; however, there is still no tenable hypothesis of how 

climate pressures (Wells et al., 2015) or other factors mecha- 

nistically affect HABs until now. This could be explained by 

the following two reasons: the mechanism is pretty complex 

and the outbreaks of HABs are generally influenced by mul- 

tiple factors, e.g., temperature (Bissenger et al., 2008; Eppley, 

1972), stratification (Figueras et al., 2006; Smayda and Trainer, 

2010), light (Anderson et al., 1987; Bravo and Anderson, 

1994; Anderson et al., 2005;), precipitation-induced nutrient 

inputs, grazing (Wells et al., 2015) and exogenous inputs of 

rivers. Therefore, this paper emphatically analyzed the effects 

of temperature, precipitation and water level on the first out- 

break date and area, and made preliminary explanations about 

how those factors affected the HABs of Lake Hulun. 

 

3.4.1. Meteorological Factors 

 From Figure 10, the first outbreak date of each year 

fluctuated significantly but overall became earlier (Figure 

10b), which implied the outbreak date was earlier and earlier. 

In some years with relatively high temperatures (Figure 10d), 

e.g., 2000, 2007, 2009, 2011 and 2014, the outbreak of HABs 

happened fairly early. In several low-temperature years, e.g., 

1987, 1988, 1990 and 2005, there were no HABs phenom- 

enon found. However, not all of the periods followed the same 

principle: there were some years with relative high tempera- 

tures yet accompanied with posterior outbreak dates. This is 

still reasonable as the mechanisms affectting HABs included 

more factors besides the temperature. 

In recent decades, the water level of the Lake Hulun has 

been suffering a severe fluctuation (Figure 10c), and the over- 

all period could be classified to three stages. The first stage 

was before 1986 when the water level elevated dramatically. 

In this stage, the first outbreak date was firstly slight ahead of 

time and then largely delay in time. The slight ahead of time 

might be caused by a large amount of spores lurking under the 

water from the previous year until the winter. However, before 

1986, the water level kept increasing constantly, which could 

effectively reduce the various concentrations of water quality 

in order to avoid HABs and delay the first outbreak date. The 

second stage was relatively stable from 1986 to 1999. During 

    

Figure 9. The frequency of HABs spatial distribution in the lake Hulun. (a) the statistics results of 

all HABs images obtained from LDCMs images in 1983 ~ 2016; (b) the statistic results of all HABs 

scenes obtained from MODIS products in 2000 ~ 2016, which does not include the images has the 

same date with LDCMs images to avoid the repeated statistics. 
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this stage, the frequency of HABs was very low and the 

overall outbreak number was relatively small. The third stage 

was the significant decreesing period from 1999 to 2016, 

which consisted of continuous outbreaks with the exception of 

2005. Although the date fluctuated, the overall trend was rela- 

tively early, which was also consistent with the negative cor- 

relation between the water-level and HABs. Therefore, it is 

highly possible that low water level cause HABs. 

Along with global warming intensification, the temper- 

ature of Lake Hulun appeared to rise with some fluctuations, 

companied by the increase in the frequency and severity of 

HABs (Figure 10). To some extent, the temperature was 

positively correlated to the frequency and severity of HABs. 

Especially in 1985, 1999, 2000, 2009 and 2011, when all the 

corresponding temperatures were higher than 12 °C. In the 

relative cold years of 1987, 1990 and 2006, there were only 

small areas of HABs (Figure 10a) and no blooms could even 

be detected. This phenomenon further proved the positive 

correlation between the temperature and HABs. However, 

some obviously adverse trend between temperature and HABs 

area could also be observed in 1984, 1995 and 2013 (Figure 

10e). During those periods, a reasonable explanation com- 

bined with precipitation and temperature could be given as 

follows: although the temperatures of those years were rela- 

tively low, the rainfall was abundant. Note that there was a 

large area of grassland in the previous introduction about the 

surrounding land covers of Lake Hulun in Figure 3. The 

surface runoff caused by precipitation carried massive faeces 

of livestocks into Lake Hulun and therefore provided favor- 

able bloom conditions. It was very dramatic and hardly fea- 

sible to analyze the relationship between precipitation and 

HABs only, because the precipitation had two different 

impacts, which was resulted from the river named Xinkai 

River (Figure 1), that became the inflowing river when the 

   

Figure 10. The temporal variation of HABs indexes and multiple natural 

factors in 1983-2014. (a) Areal coverage of the HABs in Lake Hulun and the 

proportion of HABs in the total surface water, where the data were extracted 

from the time series Figure 8; (b) the first outbreak date change trend of HABs 

from 1983 to 2016; (c) water-level dynamics change of Lake Hulun in 

1983-2014; (d) and (e) the meteorological data (temperature and precipitation) 

change trend from 1984 to 2015 respectively. 
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water-level was fairly low and the outflowing river while 

water level was relatively high. The interactive roles of Xin- 

kai River caused different dominant effects of precipitation 

directly on Lake Hulun. In the same condition of abundant 

precipitation and the Xinkai River playing an inflowing role 

on Lake Hulun systems, more nutrients could be transported 

into the lake. Therefore, there would be a positive correla- 

tion relationships between HABs and precipitation. On the 

other hand, once the water level was high enough and the 

Xinkai River became an outflowing river to Lake Hulun 

system, lake water were able to exchange frequently and the 

concentration of water quality parameters got diluted along 

with the increase of precipitation. 

 

3.4.2. The Impact of Nutrients 

The deterioration of Lake Hulun was resulted from mul- 

tiple factors. Apart from upstream industrial pollution carr- 

ied by rivers and flushing of contaminated peripheral land via 

overland water, the anthropogenic activities in ice age also 

brought pretty much pollution to Lake Hulun. Located in high 

latitudes, Lake Hulun had a significantly long ice age, where a 

mass of contaminants like horse manure were preserved under 

the ice due to the use of horses as labor by fishing workers. 

These contaminants were resolved into the water body when 

the lake thawed (Li et al., 1993). As a scenic tourist attraction, 

the management mechanisms and infrastructures were imper- 

fect, which resulted in plenty of tourist trash being carried into 

the lake and deteriorating the water quality (Tuan and Yue, 

2014). Those contaminants contained a mass of nitrogen and 

phosphorus elements, which provided an appropriate chemical 

environment for HABs. 

 To explore the impact of the chemical parameters on 

spatial-temporal variation of HABs, all TP, TN and TN  / TP 

distribution sampled in 2013, 2015 and 2016 were mapped in 

this paper (Figure 11a). Then the change curve of TP in Lake 

Hulun was plotted from 2004 to 2016 (Figure 11b). However, 

since Lake Hulun had a stronger flowing ability from 2013, 

there was no particular spatial difference of TP, TN and 

TN/TP. Although a huge fluctuation could be found in the 

change curve, the TP value in those years was still relatively 

high. In addition, the average TN measured in 2013, 2015, 

2016 was 1.91, 8.5, 1.91 mg / L respectively. Those values 

were all far above the internationally recognized TP level of 

0.02 mg / L and TN of 0.2 mg  / L, which could cause eutro- 

phication (Guo et al., 2005). The results implied that the con- 

centration of TN and TP was sufficient enough to provide a 

favorable environment for HABs outbreak in Lake Hulun and 

it was no longer a decisive factor affecting the blooming 

scope and perniciousness. 

4. Conclusions  

In general, this paper has achieved the following goals. 

Firstly, the AFAI approach with automatic threshold deter- 

mination was proposed to extract the HABs shape and area. 

Secondly, the spatiotemporal distribution of HABs in Lake 

Hulun was systematically analyzed with LDCM and MODIS 

images. In particular, the precedent of HABs in northeast 

Chinese lakes was initiated. Furthermore, multiple factors 

including meteorological elements (temperature, precipitation 

and water-level) and chemical parameters (such as TP, TN and 

TN / TP) were considered for analyzing the comprehensive 

impacts on the frequency and severity of HABs. 

However, there is still a huge potential for further re- 

search. The observation of HABs by many satellites is limited 

because of spatial resolution, even at a smaller spatial scale 

    

Figure 11. The spatial-temporal variation of some chemical parameters in the surface lake of the Lake Hulun. 
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than 30 m (Kuster, 2004). Although the AFAI could be desir- 

ably used to monitor the HABs of Lake Hulun, it remains 

unclear whether the method could be similarly used on other 

lakes or not. Apart from Lake Hulun, there are many lakes in 

northeast China which have been observed with HABs in 

recent decades. The spatiotemporal changes in these lakes 

have not yet been systematically investigated. Since the de- 

tecting images are only multispectral but not hyperspectral, 

specific species of algae can’t be distinguished. Therefore, the 

distribution merely describes all kinds of HABs change. 
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