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ABSTRACT. The Laoguanhe River is a major tributary of the Danjiang River, which is the source water for the Danjiangkou Reser- 
voir (i.e., the source reservoir for the middle route of the South-to-North Water Diversion Project in China). This study was intended to 
provide scientific decision support to help manage the water environment in the Laoguanhe River and maintain high water quality 
levels for the water diversion project. Risk assessment based on water quality simulation was undertaken in this research. The 
QUAL2Kw model was used to improve the simulations of the water quality in the Laoguanhe River under sparse data conditions. 
Latin hypercube sampling (LHS) was used to improve flow inputs for QUAL2Kw. The model was used to calculate water quality risks 
under several scenarios based on a Markov stochastic process to reflect uncertainties. The simulation results indicated that water 
quality of the downstream sections of the Laoguanhe River could meet the basic requirements for exporting water to the Danjiangkou 
Reservoir. 
 
Keywords: QUAL2Kw, Latin hypercube sampling, Markov analysis, the Laoguanhe River, stochastic simulations, South-to-North 
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1. Introduction  

Along with intensive agricultural activities and rapid ur-
banization and industrialization, issues of poor water quality 
caused by uncontrolled anthropogenic activities have gradually 
become an obstacle preventing sustainable development for 
human beings. As stated by many researchers, one of the core 
water quality problems is that, especially in developing areas, 
large amounts of agricultural, municipal and industrial waste- 
water are being discharged into natural water bodies, resulting 
in the degeneration of water quality and the inability to meet 
the water demands of end users,such as local residents, indus- 
try, and the environment (Cohen et al., 2004; Cai et al., 2009, 
2011a,b; Tan et al., 2011a,b; Huang and Cao, 2011; Liu et al., 
2017). Currently, water quality is a serious issue, especially 
for drinking water source areas. Rivers suffering from the ef- 
fects of anthropogenic activities because of contained pollut- 
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ants would easily decrease their self-purification capacities (Nak- 
haei and Etemad-Shahidi, 2012). Because a river has a unique 
self-purification capacity, it is necessary to simulate the pollut- 
ant loads from different sources that rivers could withstand. A 
number of computer-aided models are thus developed and ap- 
plied to predict the water quality of rivers and to simulate the 
fate and transport of pollutants ( Li et al., 2009, 2011; Fan et al., 
2011, 2015). Over the past decades, many models have been 
considered suitable for water quality simulation and evalua- 
tion of the associated risks. They could thus be used to sup- 
port the formulation of future water management options and 
the generation of national and local water pollutant discharge 
standards. 

Previously, many models have been proposed to address 
the fate and transport of water pollutants in rivers, such as 
WASP (Water Quality Analysis Simulation Program), EFDC 
(Environmental Fluid Dynamics Code), and HEC-RAS (Hy- 
drologic Engineering Center's River Analysis System). These 
tools have been widely used by many researchers to develop 
efficient management strategies to guarantee an adequate sup- 
ply of high-quality water (Cox, 2003). However, these com- 
plex models may not be useful models as several limitations 
are associated with these models (Lindenschmidt, 2006). In 
particular, estimation, calibration, and validation of relevant 
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parameters may require abundant monitoring data. Also, a 
number of parameters in certain complex simulation have sel- 
dom been report in the literature, meaning that there is little 
research to compare their accuracies (Melching and Yoon, 
1996; Fan et al., 2009). The QUAL series models are useful 
simulation tools that have been applied extensively in water qual- 
ity assessment, even in cases where there are not sufficient 
data for the establishment complex 2D or 3D models (Nakhaei 
and Etemad-Shahidi, 2012). For example, QUAL2E is a typi- 
cal computer-aided model among the QUAL series models, the 
QUAL2Kw model is an the expanded version by Pelletier et 
al. (2006) based on QUAL2K, and it is the latest version of 
QUAL2E. The QUAL2Kw model can be used for automatic 
calibration and can be operated on a Windows interface. Com- 
paratively, QUAL2K can be modified by introducing multiple 
VBA programs (Cho and Ha, 2010; Wang et al., 2018). As 
stated by many researchers, QUAL2Kw can provide a plat- 
form for simulating the water quality of rivers and streams. It 
can employ a genetic algorithm to facilitate the calibration of 
many QUAL2Kw-based models in applications for certain 
water bodies. A genetic algorithm is used in the model to iden- 
tify the combination of parameters that results in the best fit 
for the application (Pelletier et al., 2006). In many research 
studies, QUAL2Kw have been applied to measure water envi- 
ronmental management strategies. Thus, it is generally conluded 
that the model can form the basis of water quality manage- 
ment (Kannel et al., 2007b; Oliveira et al., 2012). In many 
studies, DO, BOD, nitrogen, phosphorus and COD have been 
used as typical indicators to model water quality variations of 
streams and rivers (Kannel et al., 2007a; Camargo et al., 2010; 
Nakhaei and Etemad-Shahidi, 2012). The latest QUAL2Kw (i.e., 
QUAL2Kw version 6) was integrated with non-steady, non- 
uniform flow using a kinematic wave flow routing approach and 
has the option to use repeating diel conditions, which is simi- 
lar to the early version but with either steady or non-steady flows 
(Department of Ecology of the State of Washington, 2017). There- 
fore, it is feasible to assess the water quality of a natural stream 
or river using QUAL2Kw. 

Uncertainties in input and output data are an important 
aspect that should be investigated to obtain water quality sim-
ulation results with enhanced precision. Uncertainty analysis 
is a useful method to depict the uncertain relationships between 
modeling results and parameters. Normally, uncertainties in 
the input data of a model occur because of changes in natural 
conditions, measurement limitations, and data availability (de 
Kort and Booij, 2007; Shen et al., 2008; Dong et al., 2014). 
One way to address this issue is to use random variables as 
the input data rather than the conventional form of fixed val-
ues (Shen et al., 2008). Stratified random procedure latin hy-
percube sampling (LHS) is an effective method of sampling 
variables from their multivariate distributions (Minasny and 
McBratney, 2006; Manache and Melching, 2008). It can guar- 
antee uniform samples for the marginal distribution of each 
single input and efficiently select input variables for computer 
models. Uncertainty also occurs in parameters. Many methods 
are available for the analysis of parameter uncertainty, including 

sensitivity analysis, first-order error analysis (FOEA), Bayesian, 
and Monte Carlo simulations (Shen et al., 2008). Markov simu- 
lation is also an efficient technique for simulating water quality 
uncertainty (Gallagher and Doherty, 2007). For the Willamette 
River of Oregon, US, this method provided similar results to 
other models with simulation data (Takyi and Lence, 1995). 
Markov simulations in the WASP model were demonstrated to 
be appropriate for parameter identification and uncertainty 
analysis of complex models of the Miyun Reservoir (Wang et 
al., 2006). 

The Laoguanhe River is of significant importance for Chi- 
na’s largest water diversion project (i.e., the South-to-North 
Water Diversion Project) since the river flowing into the Dan- 
jiangkou Reservoir is close to Taocha, which is the intake of 
the middle route of the water diversion project. The Danjing- 
kou Reservoir is the source water area of the project, and the 
objective of the middle route is to provide drinking water to 
many cities and areas in north China. Therefore, the Danjiang- 
kou Reservoir must maintain high water quality. The water 
quality of tributaries, especially the upstream tributaries, directly 
affects the water quality of the reservoir. Pollution from upstream 
tributaries is one of the most significant pollution sources of 
the Danjiangkou Reservoir. Analysis of the changes of water 
quality in these upstream tributaries is particularly important. 
Thus it is necessary to investigate water quality conditions in 
the Laoguanhe River and analyze their impacts on the Dan- 
jiangkou Reservoir. 

In this study, comprehensive assessment of water quality 
risks will be undertaken to provide a basis for optimized deci-
sion-making to support water environmental protection of the 
Laoguanhe River. The QUAL2Kw model will be employed to 
simulate the water quality of the Laoguanhe River. A stochas- 
tic Markov process will be used to calibrate the model and 
calculate the water quality risks. Additionally, LHS will be used 
to improve the input flow to QUAL2Kw. Water quality risks 
will be analyzed based on the simulation results. The proposed 
method will offer fundamental knowledge with which to assess 
water quality, even when monitoring data are not sufficient. 
This will be extremely useful for providing basic knowledge for 
water quality assessments even when monitoring data are in- 

 
 
  Figure 1. The Laoguanhe River and its drainage area. 
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sufficient. 

2. Study Area 

2.1. Overview of the Study Area 

The Laoguanhe River (33˚05ʹ N to 33˚48ʹ N, 111˚01ʹ E to 
111˚46ʹ E), which is located in the southwest part of Henan 
Province, is one of the most important upstream tributaries 
flowing into the Danjiangkou Reservoir. The Han River and 
Dan River are the two main streams of the reservoir. The Lao- 
guanhe River originates in Luanchuan County. It flows through 
Lushi, Xixia and Xichuan counties. The river is approximately 
254 km long and has a drainage area of approximately 4219 
km2 (Figure 1). Mountains dominate the upstream basin of the 
Laoguanhe River with a mainstream length of 116 km, which 
has steep banks and an approximate forest coverage index of 
90%. Below this point, the Laoguanhe River flows toward Xi- 
chuan County and runs through the Danjiangkou Reservoir. The 
Danjiangkou Reservoir is vital for China because it is the 
source water for the middle route of the South-to-North Water 
Diversion Project, which provides drinking water for northern 
China. The Water quality of the Laoguanhe River has evident 
impacts on the water quality of the Taocha intake of the Dan- 
jiangkou Reservoir. Therefore, it is necessary to assess the wa- 
ter quality risk of the Laoguanhe River. 

 

2.2. Water Quality of the Laoguanhe River 

Of the first-level branches of the Dan River and Han Riv- 
er, the Laoguanhe River is the smallest, and the distance be- 
tween the Laoguanhe River and the Taocha diversion channel 
is the shortest. Thus, the water quality of the Laoguanhe River 
has a significant impact on that of the Taocha diversion chan- 
nel (Chen et al., 2012; Sun et al., 2017). The Laoguanhe River 
has multiple tributaries, and many pollutants are directly or 
indirectly discharged into the river. Thus, the water quality of 
the Laoguanhe River is relatively poor. It is usually in level IV 
or V as evaluated by the surface water environmental quality 
standard of China (i.e., GB3838-2002). According to field in- 
vestigations, the major source of industrial pollution into the 
Laoguanhe River is wastewater discharge from papermaking 
facilities and pharmaceutical companies. The major source of 
domestic pollution is household garbage, and the major agricul- 
tural pollution sources are the extensive application of pesti- 
cides and fertilizers as well as livestock and poultry farming. 
From this point onwards, the DO concentrations decrease and 
the COD and NH3-N concentrations rapidly increase, which 
shows that the water quality begins to deteriorate. The intense 
pollution and vital influence of the Laoguanhe River on the 
Danjiangkou Reservoir indicate that water quality simulations 
are required to prevent future deterioration of the water quality. 

3. Modeling Formulation  

3.1. Description of QUAL2Kw  

According to the latest reports, QUAL2Kw is a modern- 
ized version of the one-dimensional water quality model QU- 

AL2E and incorporates updated scientific techniques. It was 
developed by Tufts University and the Washington State De- 
partment of Ecology in 2006 based on the QUAL2K model 
(for details, please refer to www.ecy.wa.gov/programs/eap/mod- 
els.html). Compared to the original QUAL2K model, QUAL- 
2Kw can simulate steady flows with repeating diel boundary 
conditions and with non-steady and non-uniform flows through 
kinematic wave flow routing. It also has an improved genetic 
algorithm GA-based auto-calibration module to maximize the 
adjustment of the simulated results based on limited field- 
measured data. QUAL2Kw is a multipurpose model for simu- 
lating water quality in rivers and streams and is widely used in 
North America, Asia and Europe. It can effectively simulate 
the transport, migration and transformation processes of many 
constituents (i.e., BOD, DO, NH3-N, and pH) (Pelletier et al., 
2006). When using QUAL2Kw, the river must be divided into 
several complete reaches. Each reach is considered a research 
unit, and the hydrological and water quality conditions in a 
unit are assumed to be homogeneous. 

For all variables except the bottom algae, the general mass 
balance for a constituent (C) in an element (i) (Figure 2) can 
be presented as (Pelletier et al., 2006): 
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where Qi and Qout,i are the flow and abstraction flow in reach, 
respectively, i (L/d), Wi is the external load of the constituent 
on reach i (mg/d), Vi is the volume of reach i (L), Si represents 
the sources and sinks of the constituent because of their reactions 
and mass transfer mechanisms (mg/L/d), Ei is the bulk disper- 
sion coefficient between the reaches (L/d), Ei-1 and Ei are the 
bulk dispersion coefficients between reaches i-1 and i and i+1 
(L/d), ci is the concentration of the water quality constituent in 
reach i (mg/L), and t is the time (day).  

The QUAL2Kw model consists of multiple complex dif- 
ferential equations; it is thus difficult to locate an analytical 
solution. The model uses a finite difference method to identify 
numerical solutions. Users can solve it based on the Euler meth- 
od, the Runge-Kutta method or the adaptive step algorithm ac- 
cording to the required calculation accuracy. Additionally, the 
QUAL2Kw model is complex because it includes numerous pa- 
rameters and the correlation relations. Therefore, GA, an auto- 
matic global calibration method, is used. The model uses GA to 
maximize the goodness-of-fit of the simulated results to the 
observed data. A detailed description of the automatic calibra- 
tion method can be found in Pelletier et al. (2006). 

 

3.2. Model Calibration and Validation 

3.2.1. Improvement of the goodness-of-fit objective function 
for calibration 
    The method of comparing two evaluation errors between 
observed and simulated data is important in calibrating the pa-  
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rameters of water quality models (Harmel and Smith, 2007). 
To determine whether the accuracy of the water quality model 
can satisfy the demands of the simulated data, model calibra-
tion often uses a pairwise comparison method to evaluate the 
error between the observed and simulated values (Harmel and 
Smith, 2007; Cho and Ha, 2010). Many goodness-of-fit ob-
jective functions use the absolute error or squared error to rep- 
resent the difference between the observed values and simu- 
lation values. Commonly used goodness-of-fit objective func- 
tions in water quality models include the Nash-Sutcliffe effi- 
ciency coefficient, the root mean square error (RMSE), the 
mean absolute error (MAE), and the index of consistency (IC). 
Because the RSME method is superior in the goodness-of-fit 
test (Legates and McCabe, 1999; Harmel and Smith, 2007), 
the objective function of the multi-objective genetic algorithm 
parameter calibration of QUAL2Kw is built based on the RM- 
SE method to make the calibration suitable for the local char- 

acteristics.  

The Laoguanhe River is located in an undeveloped area. 
Raw data are extremely limited. In this research, the Sandaohe 
site was used as the headwater. During each wet season, water 
quality exhibits small-scale fluctuation. After manual calibra-
tion, we use a goodness-of-fit objective function to improve 
the calibration performance. We calculate the average of the 
errors between the maximum observed data and the maximum 
simulated data as well as the average of the errors between the 
minimum observed data and the minimum simulated data. The 
general RMSE method optimizes only a single kinetic param- 
eter, and thus, multiple parameters must be weighted with some 
method, such as the principal component analysis (PCA) meth- 
od according to the main water quality targets. Because of the 
GA method maximizes the goodness-of-fit objective function 
during calibration, regular RSME cannot meet the requirements 
of GA when establishing the objective function.  

Based on the actual case of constructing the water quality 
model for the Laoguanhe River, the improved GA was used to 
maximize the goodness-of-fit objective function f (x) as: 
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where oij,max is the maximum measured (observed) data; pij,max 
is the maximum modeled (predicted) data; mmax is the number 
of maximum measured points; oij,min is the minimum measured 
(observed) data; pij,min is the minimum modeled (predicted) 
data; mmin is the number of minimum measured points; wi is 
the weight; and n is the number of water quality objects. 

 

3.2.2. Generalization of River Reaches 
Generalizing a river channel based on hydrodynamic and 

water quality characteristics is required to build a water qual- 
ity model. To generalize, the river channel should first be di- 
vided into different reaches. These processes will help the wa- 
ter quality model to calculate the results. 

Because of the lack of statistical data and water quality 
monitoring data in the upstream section of the Laoguanhe Riv- 
er, where there are limited human impacts and lower likeli- 
hood of water pollution, we use the Sandaohe water quality 
monitoring site, which is the most upstream water quality mon- 
itoring site, as the source of the Laoguanhe River to develop 
the water quality model. This research divides the river into 
24 reaches (Figure 3), models the tributaries as point sources 
that input into the river model, and considers sewage as di- 
ffuse sources of pollution. Xixia County transfers water from 
the Hanlou weir into the city river (R14), and mixed urban 
sewage wastewater is discharged into the Laoguanhe River 
from R18. Two agricultural irrigation facilities are located 
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Figure 3. System segmentation with locations of pollution 
sources along the Laoguanhe River 
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along the Laoguanhe River: the Biegong weir at R14 and the 
Dangziling irrigation diversion canal at R20. Four rubber 
dams are located along the river, including three dams in 
Xixia County (R15~R18) and one located downstream of the 
Jinhe Bridge in Xichuan County (R21). As reported, R11~R12 
include a channel-type reservoir called the Shimen Reservoir. 
Because the reservoir has no diversion effect and is mainly 
used for storing water, it is set as a weir in the computation. 

     
3.2.3. Model Calibration  

Due to the water temperature, sunshine, riverbed vegeta-
tion, and other differences among the three seasons (Table 1), 
the final calibration result is further optimized depending on 
the circumstances of the differences for every season after the 
manual calibration. We improved the calibration results using 
the improved genetic algorithm method. We assumed that the 
population of the model was 100, and 200 generations were 
used in the evolution. Small variability was realized after 100 
generations as shown in the goodness-of-fit curves (Figure 4), 
which demonstrated that the calibration is convergent. The 
normal season had the highest fitness, followed by the dry sea- 
son and wet season, successively. The last parameters in the 
model are preserved as the final parameter calibration results 
(Table 2). The wet season, dry season and normal season used 
August, February and April water quality monitoring data from 

2012, respectively, for calibration. Figure 5 shows the calibra- 
tion results of the NH3-N, COD and DO concentrations. The DO 
concentration had the largest deviation. 

 

3.2.4. Model Validation  

Observed data from June, July and September were used 
for the NH3-N, COD and DO validations during the wet sea-
son (Figure 6(a)). The data from January and March were used 
for model validation in the dry season (Figure 6(b)), and data 
from May, October and November were used for the normal 
season model validation (Figure 6(c)). The fits of the data in 
the dry and normal seasons are better than that of the wet sea- 
son because of the worse water quality during the wet season. 
The fits of DO and NH3-N are better than that of COD during 
the wet and normal seasons, and the fits of NH3-N and COD 
are better than that of DO during the dry season. The relative 
errors of the validation were between 0.01 and 0.5 for every 
month of the wet season, and the relative errors during the 
dry season were between 0.02 and 0.27, except for COD and 
DO at the Yanghe monitoring site (the simulated COD values 
were much higher, and the simulated DO values were much 
lower). The results indicate that the validation results of the 
dry season were much better than those of the wet season. 
The validation results of the normal season show that the sim- 
ulated results match the variations in water quality. In addi- 
tion, the validations at a distance from 10 to 80 km had larger 
errors. The simulated NH3-N and COD values are high. The 
simulated DO values are significantly low. The Laoguanhe Riv- 
er is located in an underdeveloped area of China, and the mon- 
itoring capacity is limited; the distance from 10 to 80 km has 
only one monitor site (i.e., Yanghe Monitoring Site). The sec- 
tion of the Laoguanhe River flows across Sangping village, 
Miping village, Junmahe Village and Xixia County. The most 
domestic sewage of these areas discharges into the city river 
or directly discharges to the Laoguanhe River. A number of 
factories and farms are located near the Laoguanhe River. With 
the process of urbanization and industrialization, and pollutant 
discharge fluctuates daily, the uncertainty of the simulation ac- 
curacy increases. Overall, excluding the impact of the simula- 
tion errors at some monitoring sites, QUAL2Kw can accu- 
rately simulate the variations of water quality in the Laoguan- 
he River. 

Table 1. Division of Water Seasons for the Laoguanhe River 

Water season Wet season Dry season Normal season 

Month Jun. Jul. Aug. Sep. Jan. Feb. Mar. Oct. Nov. Dec. Apr. May

Table 2. Calibration Results of the Water Quality of the Laoguanhe River Using the QUAL2Kw Model 

Parameter Unit  Symbol Wet season Dry season Normal season 
Sedimentation rate m/d  vi 0.637  0.666  0.634  
Hydrolysis rate of organic nitrogen /d  khn 3.316  4.247  3.619  
Sedimentation rate of organic nitrogen m/d  von 0.808  0.987  1.982  
Nitrification rate /d  kna 9.964  9.587  9.490  
Denitrification rate /d  kdn 0.410  0.754  0.838  
Denitrification rate of humus m/d  vdi 0.456  0.044  0.526  
Oxidation rate of COD /d  kgen 1.090  1.088  1.626  
Sedimentation rate of COD m/d  vgen 0.133  0.634  0.229  

 
Figure 4. Goodness-of-fit of the QUAL2Kw model 
calibration of the Laoguanhe River. 
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3.3. Sensitivity Analysis 

The parameter sensitivity analysis based on the calibra-
tion results of the GA is shown in Figures 7(a) through 7(f). 
During the wet season, there are negative correlations between 
the denitrification rate, the sedimentation rate of COD, and 
the denitrification rate of humus. The other parameters have 
positive correlations. In addition, the variance contribution rates 
of the goodness-of-fit with the denitrification rate, hydrolysis 
rate of organic nitrogen, nitrification rate and sedimentation rate 
of COD are larger than the others. During the dry season, 
there are positive correlations between the hydrolysis rate of 
organic nitrogen, the sedimentation rate of COD, and the sedi- 
mentation rate of organic nitrogen. The variance contribution 
rate of the goodness-of-fit with the COD oxidetion rate is the 
largest at 35%, followed by the sedimentation rate, which is 
greater than 20%. During the normal season, there are positive 
relationships between the sedimentation rate of organic nitro- 
gen, the sedimentation rate, and the nitrifycation rate. The other 
parameters have negative relationships. The variance contribu- 
tion rate of the goodness-of-fit with the sedimentation rate of 
organic nitrogen is 30%, and the oxidetion rate of COD and 
sedimentation rate of COD are both greater than 20%. 

4. Water Quality Risk Assessment under Uncertainty 

Flow is one of the most important boundary conditions 
for the water quality numerical model. The flow data of the 
Laoguanhe River are limited and discontinuous. Therefore, we 
use latin hypercube sampling to improve the flow input and 
analyze the water quality uncertainty of the basis hydrological 
year (Fan et al., 2017a, b; Helton and Davis, 2003). We then 
use Markov transfer analysis to calculate the flow probability 
distribution and use the LHS method to analyze the water 
quality uncertainty of different hydrological years. Furthermore, 
we use this method to analyze the water quality uncertainty 
among differrent scenarios. The major steps of the water qual- 
ity risk simulation are shown in a flowchart in Figure 8. LHS 
is a stratified random procedure that provides an efficient way 
to sample variables from their multivariate distributions (Mi- 

nasny and McBratney, 2006). It can guarantee uniform sam- 
ples for the marginal distribution of each input and efficiently 
select input variables for computer models. The Markov pro- 
cess was proposed by the Russian mathematician A. A. Mar- 
kov in 1907. It is a stochastic process that assumes that in a 
series of random events, the probability of the occurence of 
each event depends only on the immediately preceding out-
come (Maity, 2012). This indicates that the prediction based 
on the present information and that based on knowing all of the 
historic information are equivalent. 

A Markov process can be described as a sequence of un-
certainty decision-making processes. At every moment, the sys- 
tem state provides necessary the information necessary to se- 
lect actions for decision-making in the form of the transition 
probabilities. Random variables Q, which are denoted (Qn = 
Q(n), n = 0, 1, …,), are homogeneous with respect to time t 
with the state space I = (a1, a2, …, ai) of a first-order Markov 
process. The transfer matrix P = (pij) is defined below, where 
pij = Pij(1) = P {Xm + 1 = aj |Xm = ai}. 

11 12 1

21 22 2

1 21

j

j

i ij

p p p

p p p
P

p p p

 
 
 =  
 
  




   


 (3) 

where pij = nij/ni represents the probability that the state ai 
transfers to aj from time n to n+1; nij is the number of samples 
in which the state ai transfers to aj from time n to n+1; and ni 
is the number of samples at time n with the state ai. In this 
study, we first used the water balance equation to transfer the 
flow data from the Miping hydrological station to the Sandaohe 
monitoring point, which is the source in this model. We then 
constructed the first-order Markov process for the Laoguanhe 
River’s flow, where the results are only affected by the last out- 

 
 
Figure 5. Calibration results of the model. a) the results of DO; b) the results of COD; c) the results of NH3-N. The five arrows 
in lateral axis from left to right stand for Sandaohe, Yanghe, Xuying, Xixia, Zhangying monitoring sites respectively. 

Table 3. Surface Water Quality Evaluation Standard (mg/L) 
Indicator I II III IV V 

NH3-N 0.15 0.5 1 1.5 2 
DO 7.5 6 5 3 2 

COD 15 15 20 30 40 
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put. Specific steps of monthly flow data generation are shown in 
Figure 9. 

(1) Average daily flow data from 2007~2012 were used 
to establish the cumulative frequency distribution of the flow. 
The distribution was divided into 10 state spaces with a 10% 
guarantee rate interval, i.e., Q = {Q90, Q80, Q70, Q60, Q50, Q40, 
Q30, Q20, Q10, Q0}, where Q0 is the 0 to 10% guaranteed rate 
of flow, Q10 is the 10 to 20% guaranteed rate of flow, Q20 is 
the 20 to 30% rate of flow, and so on, with Q90 as the 90 to 
100% guaranteed rate of flow. (2) To ensure normal ope- 
ration of the modeling calculations, we divide the flow data 
from each month into 3 equal portions with equal intervals. 
Then, the arithmetic mean of each portion was calculated as 
the initial average daily flow for each month to establish the 
first-order Markov transition matrix of the flow. (3) The flow 
data were obtained to generate cumulative distributions of the 
flow for different hydrological years. Then, latin hypercube sam- 
pling was used to extract the flow data from the cumulative 
distribution into the first-order Markov transition matrix. The 

cumulative frequency distribution of the flow that was con- 
structed in step (1) was used to interpolate and generate the 
flow data of the next month. (4) The newly generated flow da- 
ta was used as the random variation boundary conditions for 
QUAL2Kw to calculate the water quality of each month. Fi- 
nally, the results of the water quality simulation were adopted 
to calculate the risk probability. 

5. Results and Discussion 

5.1. Water Quality Simulation 

The pollutant emission scenarios are generated from a 
survey of pollutant sources in the Laoguanhe River. The year 
2012 is assumed as the basis hydrological year and is used to 
simulate the water quality based on the uncertainty using the 
LHS sampling method. The average water qualities for differ- 
ent hydrological periods are set as the initial water quality for 
the simulations, and we obtain the probability distribution of 
water quality for each month.  

   
Figure 6. Validation results of the model. a) ~ c) are the results of wet seasons; d) ~ f) are the results of normal seasons; g) ~ i) 
are the results of dry seasons. The five arrows in lateral axis from left to right stand for Sandaohe, Yanghe, Xuying, Xixia, 

Zhangying monitoring sites respectively. 
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With the increasing frequency of extreme climates, drought 
and flood frequently occur in China. Under this consideration, 
we set three guaranteed flow rate scenarios for different hy- 
drological years. Based on the cumulative distribution of flow 
for every January from 2006 to 2012, the initial month’s flow in 
a flood year is based on the 0 to 25% guaranteed flow rate and 
that for a dry year is based on the 75 to 100% guaranteed flow 
rate, and that for a level year is based on the 25 to 50% guar- 
anteed flow rate. These data were applied to simulate water quality 
for the entire year. The water quality probability distributions 
of the wet season, dry season and normal season in each year 
can then be simulated. The water quality evaluation is based 
on the surface water quality environment standard of China 
(GB3838-2002) (Table 3); the water quality needs to meet the 
level-II standard. 

 

5.1.1. Risk of a Basis Hydrological Year  

For QUAL2Kw, the average daily flow data from Janu- 
ary to November 2012 are the most important inputs. The flow 
data are used for LHS sampling. The monitoring data for every 
month are used as the initial boundary conditions of water quality. 
The results of the water quality model are adopted to calculate 
the water quality risk probability and analyze the environ- 
mental risk (Figure 10, and the complete results can be referred 
to Table S1 in supplementary information).  

The results show that the simulated water qualities at the 
Xuying, Xixia, and Zhangying monitoring sites in the basis 
year meet the water quality targets and that the water that is 
exported from the Laoguanhe River to the Danjiangkou Res- 
ervoir meets the level-II standard. The water quality analysis 

of each season shows the following. (1) The dry season occurs 
in January, February, and March. The general trends of the 
water quality of each month during the dry season were simi- 
lar, and the concentration of pollution decreases gradually during 
this season. The NH3-N concentration was highest at the Zhang- 
ying site, with values between 0.30 and 0.43 mg/L, and gener- 
ally remained at the level-II surface water quality standard. The 
DO concentration decreases every month, especially at the Xi- 
xia hydrological station; the probability of DO non-compliance 
is 65%. (2) The normal season occurs in April and May and 
again in October and November. DO concentrations that exceed 
the standard are the main threat to water quality during the 
normal season. The probability of DO non-compliance at the 
Xixia hydrological station is 58% in April and nearly 100% in 
May. The concentration of COD at the Xixia hydrological 
station was also higher than at the other sites, and the proba- 
bility of non-compliance in November is nearly 100%. The con- 
centration of NH3-N at the Zhangying monitoring site is highest 
but still remained within the level-II standard. (3) The wet 
season occurs from June to September. During the wet season, 
the water quality was mainly threatened by COD. Agriculture 
is one of the most important industries in the Laoguanhe 
River basin, and these areas have limited domestic sewage 
treatment facilities; during the wet season, the domestic sew- 
age and chemical fertilizer have more opportunity to be rushed 
into the Laoguanhe River, which would increase the risk of non- 
compliance. The concentrations of COD at the Zhangying mon- 
itoring site were between 14.9 and 17.5 mg/L, and the risk of 
non-compliance was 96% in June and 89% in September. The 
concentrations of COD at the Xuying monitoring site and Xi- 
xia hydrological station were also relatively high; the average 
concentrations were 13.15 and 13.49 mg/L, respectively. The 

 
   Figure 8. Water quality risk assessment flowchart. 

 

 

  
Figure 7. Parameter sensitivity analysis. a) parameter 
sensitivity analysis result in wet season; b) variance 
contribution rates of the parameters in wet season; c) 
parameter sensitivity analysis result in dry season; d) variance 
contribution rates of the parameters in dry season; e) parameter 
sensitivity analysis result in normal season; f) variance 
contribution rates of the parameters in normal season. 
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overall trends in July and August were the same as in June, and 
there was some improvement. The probability of the COD con- 
centration exceeding the standard at the Zhangying monitoring 
site decreased to 19 and 37%. However, in September, the water 
quality decreased, and the probability of the COD concentra-
tion exceeding the standard increased to 89%. At the same 
time, the probability at the Xixia hydrological station was 14%. 

Thus, during the dry season, the Xixia hydrological sta- 
tion had a relatively high probability of exceeding the stan- 
dards. During the normal season, the main threat was from 
DO exceeding the water quality standards at the Xixia hydrol- 
ogical station, and during the wet season, the water at the Zhang- 
ying monitoring site threatened to not meet the standards. 

Although the simulation results at the Zhangying monitoring 
site did not show substandard water, it is the nearest moni- 
toring site to the Danjiangkou Reservoir, so it still poses some 
level of threat. 

 

5.1.2. Risk of Multiple Hydrological Years 

In this study, we use the P-ІІІ frequency analysis and the 
average distance percentage as the division runoff of wet year, 
normal year and dry year. The annual runoffs were calculated 
from 2007 to 2012 and showed that 2010 and 2011 were wet 
years, 2007 and 2009 were normal years, and 2008 and 2012 
were dry years. We used the average daily flow data from Jan- 
uary 2010 and 2011 to construct the cumulative probability dis- 
tribution to be used as the sampling distribution for the wet years, 
the average daily flow data from January 2007 and 2009 to 
construct the cumulative probability distribution for the nor- 
mal years, and the average daily flow data from January 2008 
and 2012 to construct the cumulative probability distribution for 
the dry years. We then calculated the water quality risk for wet 
years, normal years and dry years. The average monitoring data 
for every season in 2012 were used as the initial water quality 
boundary conditions. The cumulative distributions of flow for 
the wet year, dry year and normal year can be calculated by 
Markov transfer analysis, and the water quality probability dis- 
tributions of the different hydrological years can be simulated 
using the LHS sampling method. The results are shown in Fig- 
ure 11 (the complete results can be referred to Table S2 in sup- 
plementary information). The water quality analysis of each sea- 
son shows the following: 

(1) The simulation results for the wet year showed that the 
NH3-N can meet the class-II standard consisting of concen- 
tration that is lower than 0.5 mg/L. In addition, the NH3-N 
concentration at the Zhangying monitoring site was higher than 
the concentration at the Xixia hydrological station and the Xu- 
ying monitoring site. The DO at the Xuying and Zhangying mon- 
itoring sites can meet the class-II standard consisting of the 
concentration that is higher than 6 mg/L, especially during the 

 

Average daily flow data 
from 2007-2012.

Generate cumulative distributions of 
the flow for different hydrological 
years.

Calculate the arithmetic mean of 
each portion as the initial average 
daily flow for each month to 
calculate the first-order Markov 
transition matrix of the flow.

Establish the cumulative frequency 

distribution of the flow.

Generate the flow data to each 
month.

Use Latin Hypercube sampling to 
extract the flow data.

Interpolate

 
 
   Figure 9. Monthly flow data generation flowchart. 
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Figure 11. Simulation results in different hydrological years 
(set NH3-N in wet season as examples). a) the results of 
level year; b) the results of dry year; c) the results of flood 
year. The red, blue and green represent Xuying, Xixia, 
Zhangying monitoring sites respectively. 
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Figure 10. Simulation results for the basis hydrological 
year (set NH3-N Jan. as examples). a) the results of COD; 
b) the results of DO; c) the results of NH3N. The red, blue 
and green represent Xuying, Xixia, Zhangying monitoring 
sites respectively. 
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Figure 12. Results for a 20% decrease of pollutants in different 
hydrological years (set NH3-N in wet season as examples). a) 
the results of level year; b) the results of dry year; c) the results 
of flood year. The red, blue and green represent Xuying, Xixia, 
Zhangying monitoring sites respectively. 

dry season and normal season, when it can meet the class-I stan- 
dard; however, the probability of DO non-compliance at the Xi- 
xia hydrological station was 0.8% during the dry season and 
8.2% during the normal season. The COD at the Xuying mon- 
itoring site and the Xixia hydrological station can meet the 
class-II standard; however, the Zhangying monitoring site, which 
is the closest monitoring site to the Danjiangkou Reservoir, 
had a probability of COD non-compliance of approximately 
26.5% during the wet season. 

(2) During the dry year, the water quality was poor at the 
Zhangying monitoring site and Xixia hydrological station. The 
probability of COD non-compliance was 25.1% at the Zhang- 
ying monitoring site during the wet season. At the Xixia hydrol- 
ogical station, the probability of DO exceeding the standard during 
the dry season and the normal season are 0.6 and 10.6%, re- 
spectively. The Zhangying monitoring site has a 0.1% proba- 
bility of NH3-N exceeding the standard of 500 µg/L. 

(3) During the normal year, the DO concentrations were 
higher than 6 mg/L at the Xixia hydrological station, except 

for during the wet season. The probabilities of DO non-compli- 
ance during the dry season and the normal season are 1.8 and 
9.2%, respectively. The NH3-N can meet the class-II standard 
because the concentrations are less than 500 µg/L for the en- 
tire year. The COD concentration was high during the wet sea- 
son, and the probability of the concentration exceeding 15 mg/L 
at the Zhangying monitoring site is approximately 27.1%.  

 
5.2. Prediction of Pollutants under Multiple Pollution Loading 
Conditions 

With the development of urbanization and industrializa-
tion, pollutant discharge fluctuates significantly. Different coun- 
termeasures will cause different results. In this study, water 
quality simulations were performed for four scenarios. We make 
the small decreasing, mild decreasing, small increasing and 
heavy increasing of pollutant emissions to present the differ- 
rent water pollution control levels. Accordingly, the scenarios 
considered pollutant emissions that decreased by 20 and 50% 
and increased by 20 and 50%, respectively. 

(1) Scenario 1: 20% decrease in pollutant emissions 

During a flood year, COD always meets the water quality 
requirement at the entry of the Laoguanhe River into the Dan- 
jiangkou Reservoir. DO is significant at the Xixia hydrological 
station. The probability of DO non-compliance is 0.3% during 
the dry season and 5.2% during the normal season at the Xixia 
hydrological station, and the Zhangying monitoring site has a 
0.1% probability of NH3-N exceeding 500 µg/L (Figure 12, 
Table S3). During a dry year, NH3-N and COD meet the basic 
requirements of water quality at the entry of the Laoguanhe 
River into the Danjiangkou Reservoir. The DO is significant 
during the dry and normal seasons. The probability of DO non- 
compliance is 0.2% during the dry season and 6.7% during 
the normal season at the Xixia hydrological station (Table S3). 
During a level year, the COD emissions can meet the require- 
ments of the class-II water quality standard at the entry of the 
river into the Danjiangkou Reservoir. The water quality is poor 
during the normal season; the probability of DO non-compli- 
ance is 7% at the Xixia hydrological station, and the proba- 
bility of NH3-N non-compliance is 1% at the Zhangying mon- 
itoring station (Table S3).  

(2) Scenario 2: 50% decrease in pollutant emissions 

When NH3-N, DO and COD decrease by 50% during a 
flood year, they always meet the level-II standard at the entry 
to the Danjiangkou Reservoir (Figure 13, Table S4). During a 
dry year, NH3-N and COD meet the level-II standard at the 
entry to the Danjiangkou Reservoir. The DO also meets the re- 
quirement during the dry season and wet season. However, 
during the normal season, the probability of DO non-compli- 
ance is approximately 2.6% at the Xixia hydrological station 
(Table S4). The same trends occur during a level year; NH3-N 
and COD meet the level-II standard at the entry to the Dan- 
jiangkou Reservoir. The DO also meets the requirement during 
the dry season and wet season, but the Xixia hydrological sta- 
tion has a probability of DO non-compliance of approximately 
2.4% during the normal season (Table S4).  
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Figure 13. Results for a 50% decrease of pollutants in different 
hydrological years (set NH3-N in wet season as examples). a) 
the results of level year; b) the results of dry year; c) the re-sults 
of flood year. The red, blue and green represent Xuying, Xixia, 
Zhangying monitoring sites respectively. 
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(3) Scenario 3: 20% increase in pollutant emissions 

When the pollution increases by 20% during a flood year, 
the class-II standard at the entry to the Danjiangkou Reservoir 
is only achieved by NH3-N and COD during the dry season 
and by DO and NH3-N during the wet season. During the 
normal season, all three pollutants have risks of non-compli- 
ance; the probability of DO non-compliance is approximately 
62.9% at the Xixia hydrological station, while the probability 
of NH3-N non-compliance at the Zhangying monitoring site is 
approximately 0.1%, and the probability of COD non-compli- 
ance at the Xixia hydrological station is approximately 91.9%. 
During the wet season, the COD pollution is especially seri- 
ously; it exceeds the level-II standard at the three monitoring 
sites. The probability of NH3-N non-compliance is approximately 
5% at the Xuying monitoring site, 68% at the Xixia hydro- 
logical station, and approximately 73.4% at the Zhangying mon- 
itoring site (Figure 14, Table S5). During a dry year, the NH3-N 
at the three monitoring sites meets the level-II standard at the 
entry to the Danjiangkou Reservoir. The DO meets the stan- 
dard only during the wet season of a dry year. During the level 
and dry seasons, the probabilities of DO non-compliance at the 
Xixia hydrological station are approximately 8.9%, and the prob- 
abilities of COD non-compliance at the Xixia hydrological station 
are both approximately 99.7%. During the wet season of a dry 
year, the probability of DO non-compliance is approximately 
11.4% at the Xuying monitoring site, approximately 69.8% at 
the Xixia hydrological station and approximately 75.5% at the 
Zhangying monitoring site (Table S5). 

When NH3-N increases by 20% during a level year, the 
probability of non-compliance increases significantly. The NH3-N 
can only reach the level-II standard at the entry to the Dan- 
jiangkou Reservoir during the wet season at all three sites. During 
the normal season, the probability of NH3-N non-compliance is 
approximately 84.4% at the Xixia hydrological station, approx- 
imately 6.5% at the Xuying monitoring site, and approximately 
6.5% at the Zhangying monitoring site. The DO pollution meets 
the requirement at the three monitoring sites during the wet 
season. However, the probabilities of NH3-N non-compliance 

at the Xixia hydrological station during the normal season and 
the dry season are approximately 63.2 and 11.7%, respectively. 
The COD does not meet the requirement in the three seasons. 
The probability of COD non-compliance at the Xixia hydrol- 
ogical station is approximately 92.9% during the normal season 
and approximately 99.7% during the dry season. The other two 
stations meet the requirement during the normal season and the 
dry season. During the wet season, however, there is a prob- 
ability of COD non-compliance at the three stations; the prob- 
ability of COD non-compliance is approximately 11.4% at the 
Xuying monitoring site, approximately 69.8% at the Xixia hy- 
drological station and approximately 75.5% at the Zhangying 
monitoring site (Table S4).  

(4) Scenario 4: 50% increase in pollutant discharge 

The possibility of non-compliance is especially serious when 
the pollutants increase by 50% during a flood year. COD ex- 
ceeds the standard at most of the sites for the entire year. During 
the normal season, the probability of COD non-compliance is 
approximately 98.9% at the Xixia hydrological station and approx- 
imately 98.9% at the Zhangying monitoring site. During the 
dry season, the probability of COD non-compliance is approxi- 
mately 1% at the Xuying monitoring site, approximately 99.7% 
at the Xixia hydrological station, and approximately 58.2% at 
the Zhangying monitoring site. During the wet season, the prob- 
ability of COD non-compliance is approximately 44.1% at the 
Xuying monitoring site, approximately 81.9% at the Xixia hy- 
drological station, and approximately 89% at the Zhangying mon- 
itoring site (Figure 15, Table S6).  

When the pollution increases by 50% during a dry year, 
all three pollutants have the possibility of exceeding the level-II 
standard during the normal season. The probability of DO non- 
compliance at the Xixia hydrological station is approximately 
25.8%. The probability of NH3-N non-compliance is approxi- 
mately 1.7% at the Xixia hydrological station and approximate- 
ly 3.3% at the Zhangying monitoring site. The probability of 
COD non-compliance is approximately 98.5% at the Xixia hy- 
drological station and approximately 98.5% at the Zhangying mon- 
itoring site. During the dry season, DO at the Xixia hydrolo- 
gical station has a probability of non-compliance of 0.6%. During 
the wet season, the COD may exceed the standard at all three 
monitoring sites; the probability of non-compliance is approxi- 
mately 39.6% at the Xuying monitoring site, approximately 
77.7% at the Xixia hydrological station, and approximately 86.5% 
at the Zhangying monitoring site (Table S6). 

When the pollutants increased by 50 % during a level year, 
only NH3-N met the water quality requirement at the entry to 
the Danjiangkou Reservoir for the entire year. The probability 
of COD non-compliance during the wet season is approxi- 
mately 45.4% at the Xuying monitoring site, approximately 
79.6% at the Xixia hydrological station, and approximately 
87.9% at the Zhangying monitoring site. DO has the possi- 
bility of exceeding the standard during all three hydrological 
seasons. During the normal season, the probability of non- 
compliance at the Xixia hydrological station is approximately 
9.2%. During the dry season, the probability of non-compliance 
at the Xixia hydrological station is approximately 1.8%. During 
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Figure 14. Results for a 20% increase of pollutants in different 
hydrological years (set NH3-N in wet season as examples). a) the 
results of level year; b) the results of dry year; c) the results of 
flood year. The red, blue and green represent Xuying, Xixia, 
Zhangying monitoring sites respectively. 



 J. Hu et al. / Journal of Environmental Informatics 31(2) 123-136 (2018) 

 

134 

the wet season, the probability of non-compliance at the Xuying 
monitoring site is approximately 13.3% (Table S6).  

 
5.3. Actions and Suggestions for Improving the Water Qual- 
ity of the Laoguanhe River 

The water quality analysis of the Laoguanhe River indi-
cates that the total water quality needs to remain stable. The 
water quality simulation based on the 2012 data shows that 
the total water quality is relatively good. The main threats to 
the water quality originate from the Xuying monitoring site, the 
Xixia hydrology station and the Zhangying monitoring site, 
which are situated in the downstream part of the Laoguanhe 
River. To ensure the water supply of the South-to-North Water 
Diversion Project, the environment of the Laoguanhe River 
must be managed to ensure that the water quality requirements 
of the Danjiangkou Reservoir are met; the water must meet 
the level-II standard when it enters the reservoir. 

Economic measures are important means of environmen-
tal management. The water quality of the Laoguanhe River 
directly affects the water quality of the middle route of the 
South-to-North Water Diversion Project. Hence, the industrial 
emissions in the Laoguanhe drainage must be decreased. Pro- 
jects with large economic benefits that emit less pollution should 
be developed. In addition, policies should encourage and pro- 
mote emission reductions. Enterprises that have significantly 
reduced their pollution emissions could be allowed to sell their 
rights to release pollution. Because farming is the main eco- 
nomic segment in the Laoguanhe drainage, agricultural pollu- 
tion is a significant threat to water quality. Therefore, the envi- 
ronmental awareness of farmers should be increased by pro- 
viding them with economic benefits, and livestock and poultry 
farmers should be encouraged to build facilities to treat animal 
waste. Economic benefits should be given to farmers who de- 
crease their use of fertilizer and to regions that return agricul- 
tural fields to forests and reduce water loss and soil erosion. 
The eco-compensation fund should only be used for ecological 

environmental protection. 

There is presently no modern sewage collection system 
in the Laoguanhe drainage. Domestic sewage is discharged into 
ditches and open channels. Most of the villages and towns in 
the Laoguanhe drainage are located along the river, along roads 
and near industrial facilities, which are widely distributed, and 
therefore, the pipe system cannot satisfy the demands of de- 
velopment. The sewage recycling and disposal facility should be 
completed, and residents should be encouraged to use the waste 
transfer station and appropriately dispose of domestic sewage 
and rubbish. The development of livestock and poultry breeding 
should encourage intensive recycling and harmless and ecolo- 
gically responsible breeding. 

Most of the polluters in the Laoguanhe drainage are lo- 
cated in Xixia County and Xichuan County, and the corre- 
sponding reaches of the river extend from the Xuying reach to 
the Zhangying reach. Thus, these drainages have the highest 
water quality risks. The management of the pollution discharge 
outlets of rivers must be increased to ensure the smooth im- 
plementation of the middle route of the South-to-North Water 
Diversion Project. Even though there is little industry in the 
middle and upper reaches of the Laoguanhe River, most do- 
mestic sewage is discharged without any treatment, which ad- 
versely affects water quality. In addition, there are too few 
water quality monitoring sites to allow for effective water qual- 
ity management. The main method for managing water qual- 
ity in this drainage is thus to optimize the water quality mon- 
itoring network. Comprehensive planning is also an impor- 
tant method to guarantee the safety of the water environment. 
The Laoguanhe River is an important upstream tributary of the 
Danjiangkou Reservoir, and its water quality directly affects 
the water quality of the reservoir. The most effective way to 
enhance the comprehensive management of water quality is to 
develop strict drainage water plans and environmental targets. 

6. Conclusions 

In this study, the calibration of the traditional QUAL2Kw 
model was enhanced by improving the goodness-of-fit object- 
tive function using a Markov process and a latin hypercube sam- 
pling approach. The developed method improves upon previous 
studies by (1) allowing water quality simulations with sparse data, 
and (2) considering uncertain parameters in the simulation pro- 
cess. The method was then applied to the Laoguanhe River, 
which is the closest upstream tributary of the Danjiangkou Res- 
ervoir to the Taocha diversion canal. The results indicate that 
the improved simulation model can provide valid support for 
water quality management and decision-making. The water qual- 
ity analysis of the Laoguanhe River indicates that the water qual- 
ity of the river is gradually improving, and a simulation based 
on 2012 data from the Laoguanhe River shows that the water 
quality is quite good. The main pressures on the water quality 
are from the Xuying, Xixia and Zhangying monitoring sites, 
which are located along the lower reaches of the Laoguanhe 
River. To ensure the smooth operation of the middle route of 
the South-to-North Water Diversion Project, water management 
measures must be taken to ensure that the water of the Lao- 
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Figure 15. Results for a 50% increase of pollutants in different 
hydrological years (set NH3-N in wet season as examples). a) the 
results of level year; b) the results of dry year; c) the results of 
flood year. The red, blue and green represent Xuying, Xixia, 
Zhangying monitoring sites respectively. 
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guanhe River meets the class-II requirements at the entry to the 
Danjiangkou Reservoir. However, due to the lack of data from 
the Laoguanhe River basin, the data ranges that were used to 
calibrate the parameters were based on foreign and domestic 
experience. Because integral water quality data can only use 
maximum and minimum data for model calibration, the vali- 
dation errors at some of the monitoring sites are large. Future 
research will include the uncertainty of the initial water quality 
in the analysis of water quality risk. 
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