
82 

 

 

  

ISEIS 
Journal of 

Environmental 

Informatics 

 

 

 

Journal of Environmental Informatics 33(2) 82-95 (2019) 

www.iseis.org/jei          

 

Fine Resolution Carbon Dioxide Emission Gridded Data and Their 

Application for China 
 

B. F. Cai1, X. Q. Mao2 *, J. N. Wang1, 3 *, and M. D. Wang2 
 

1The Center for Climate Change and Environmental Policy, Chinese Academy for Environmental Planning, 8 Dayangfang, Beiyuan Road, 

Chaoyang District, Beijing 100012, China 
2, School of Environment, Beijing Normal University, Beijing 100875, China 

3 State Key Lab for Environmental Planning and Policy Stimulation, Beijing 100012, China 

 

Received 26 October 2016; revised 21 June 2017; accepted 02 September 2017; published online 30 May 2018 

 

ABSTRACT. Based on the China National Pollution Source Census database that has been updated to 2012, and the China High 

Resolution Emission Gridded Data Version 1.0, a 1 km × 1km finer resolution emission gridded database of CO2, CHRED 2.0, is deve- 

loped. In the paper, the method, the data sources, a conceptual foundation for the data analysis, and an application in a spatial pattern 

analysis of CO2 emission for China are described. For the development of CHRED 2.0, the strict control of data quality and computing 

processes plays an important role in providing accurate data, highlightting the characteristics of high accuracy, direct verification, and 

indirect validation of essential data, mature and reliable mapping methods, and the precise spatial location of longitudinal and 

latitudinal data. The trial application of the China High Resolution Emission Gridded Data Version 2.0 proves its superiority in terms 

of reliability and suitability at the macro scale as well as at provincial-, city-, prefecture- and county-level CO2 emission estimations, 

spatial distribution analysis, and emission reduction plan making. The system is superior because the high-definition accuracy can split 

emissions between neighbor provinces, cities or counties, and the emission responsibility can be correctly allocated. Thus, the emission 

reduction plan and countermeasure can be established and taken in an environmentally rational and viable way.  
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1. Introduction 

High-resolution spatial data used to explore spatial pat-

terns of carbon dioxide (CO2) emissions has long been an 

important issue in international climate change mitigation 

circle. Europe and the United States have done leading re-

search in CO2/GHGs emission grids and patterns (Gurney et 

al., 2009; Oda and Maksyutov, 2010; Gurney et al., 2012; 

European Commission, 2015). 

High-resolution spatial carbon emission data is useful for 

identification of the carbon emission hotspots and the emi- 

ssion responsibility. Especially for countries like China, who 

are characterized with large territory and varied social-econo- 

mic and natural conditions, and the varied data sources and 

data treatment methodologies across different provinces and 

regions, and very poor data comparability, such high resolu- 

tion data sets are of more importance. Using spatialized and 

high-resolution visual data produced with the uniform stand- 

ard, it is easier to directly perceive the emission spatial chara- 
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cteristics, and convenient for the decision makers and carbon 

emission reduction planners to allocate emission reduction 

resources and efforts, either at national, provincial, city or 

county level. On the other hand, with the accumulation of re- 

mote sensing satellites data from GOSAT (and the to be laun- 

ched GOSAT-2) and OCO-2 program launched by Japan, and 

the TanSat launched by China in 2016, high-resolution spatial 

emission data will be used as the earth surface emission back- 

ground to verify and calibrate the column carbon concentra- 

tion (monitored by the satellites) through inverse algorithm.  

To meet an increasing demand for high-resolution CO2 

emission maps, researchers and practitioners have recently 

opted for high quality emission data based on bottom-up ap-

proaches that rely on district CO2 emission monitoring, re-

porting, and checking (Oda and Maksyutov, 2010; Zhao et al., 

2012; Wang et al., 2014).  

Numerous studies have developed CO2 emissions grids 

on global, regional, and national scales (Gurney et al., 2009; 

Rayner et al., 2010; Andres et al., 2012; Asefi-Najafabady et 

al., 2014; Cai and Zhang, 2014). The methods used in these 

studies can be generally categorized into top-down and bot- 

tom-up approaches (IPCC, 2014).  

In a top-down approach, aggregated emissions data is 

downscaled in accordance with socio-economic data (van Vuuren 
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et al., 2010). This approach assumes that CO2 emissions relate 

quantitatively to socio-economic activity, and thus socio-eco- 

nomic characteristics may act as proxies for emissions. Popu- 

lation density (Andres et al., 1996; Olivier et al., 2005) and 

nighttime light imagery of the Defense Meteorological Satel- 

lite Program’s Operational Linescan System (DMSP/ OLS) 

(Andres et al., 1996; Doll et al., 2000; Meng et al., 2014) are 

the two most widely used approaches to estimate and spatially 

locate CO2 emissions. However, due to data quality issues 

with DMSP/OLS data (Elvidge et al., 2014), Doll et al. (2000) 

found that intra-country spatial correlation of estimated emis- 

sions was not as strong for developing countries as for devel- 

oped countries. Thus, top-down approaches to estimate emis- 

sions in developing countries such as China may prove to be 

less reliable. Moreover, empirical findings suggest that top- 

down approaches may result in an error rate of approximately 

50% per pixel, and these errors are spatially correlated (Rayner 

et al., 2010). Furthermore, emissions from industrial and 

transportation sectors are often underestimated by top-down 

approaches based on socio-economic data (Ghosh et al., 2010) 

because large emission sources (e.g., coal-fired power plants) 

might be located in less populated areas or fail to emit detec- 

table light. Thus, a top-down approach is preferred when finer 

scale data are not available. 

When detailed emission data are available, a bottom-up 

approach is preferred as it provides more accurate emission 

mapping, especially at smaller spatial scales (Kennedy et al., 

2010; Gurney et al., 2012; Wang et al., 2012). An earlier at-

tempt to estimate CO2 emissions through a bottom-up ap- 

proach in China considered data on power plants, though this 

attempt yielded a coarse spatial resolution at 0.25×0.25° 

(roughly 25 km × 25 km) (Zhao et al., 2008; Zhao et al., 2012). 

The Emission Database for Global Atmospheric Research 

(EDGAR) (Olivier et al., 2012) and the Fossil Fuel Data 

Assimilation System (FFDAS) (Rayner et al., 2010; Asefi- 

Najafabady et al., 2014), both based on bottom-up approaches 

using point source emissions, have provided finer resolution 

CO2 emissions data at 0.1×0.1° (roughly 10 km ×10 km) for China.  

More recently, the first National Pollution Source Census 

(NPSC) database, which contains information on 1.58 million 

officially registered enterprises, facilities’ emission and fuel 

consumption details, and accurate geographic coordinates in 

China, allowed for the development of the China High Reso-

lution Emission Gridded Data Version 1.0 (CHRED 1.0). 

CHRED 1.0 provides a 10 km ×10 km spatial resolution for 

China’s CO2 emissions (Wang et al., 2014). To date, it is the 

most accurate and thorough bottom-up quantitative and spatial 

CO2 emission dataset for China.  

Although CHRED 1.0 has largely met and satisfied the 

demand of spatial pattern analysis for CO2 emission reduction 

and management plans at national and regional levels, the 10 km 

spatial resolution is still too coarse at levels of county, prefec- 

ture, and province. Managing carbon sources requires emis- 

sion map at finer spatial resolutions. Here, we show the devel- 

opment of CHRED 2.0, a 1 km ×1 km finer resolution emission 

gridded database for CO2, and its trial applications for China. 

2. Methods and Data 

2.1. Data Sources  

Emissions from industrial enterprises comprise the 

majority of CO2 emissions in China (Wang et al., 2014). For 

this study, the detailed data on the various types of industrial 

facilities was drawn from the China National Pollution Source 

Census (NPSC) database (Wang et al., 2014). This database 

was constructed from 2007 data and subsequently updated 

using 2012 industrial enterprise-level data based on China’s 

environmental statistics (NBS and MEP, 2013). This detailed 

dataset provides facility-specific information of fossil fuel 

Table 1. Summary of Data Sources Used in this Study 

CO2 

emissions 

sources 

Sectorial data 
Spatial 

resolution 
Description Data sources 

Energy 

activities 

Industry 
Point 

sources 

The detailed data of industrial facilities of 

various types of industrial enterprises are 

provided. Data quality is checked by cross 

verification, including logical analysis, 

statistical analysis and macro-economic data. 

China industrial CO2 point emissions 

data set inferred from the National 

Pollution Source Census (NPSC) 

database and its dynamically 

updating system, environmental 

statistics database, field survey data, 

industrial statistic data. 

Agriculture 

production/rural 

household consumption 

Provinces 

Agriculture/rural energy use data is used to 

calculate provincial agriculture/rural CO2 

emission 

China Energy Statistical Yearbook 

(NSB, 2015) 

Transport Provinces 

Transport CO2 emissions from Chinese 

provinces, including road, railway, water and air 

transports. 

China Energy Statistical Yearbook 

(NSB, 2015) 

Social- 

economic 

processes 

Spatial population 

distribution 
1 km 

LandScan is developed by Oak Ridge National 

Laboratory (ORNL). It is the finest resolution 

global population distribution dataset available 

(30" × 30" globally, and about 1 km2 in China). 

LandScan data set 

Urban construction land 
30 m Land use data  Globeland30-2010 

Rural residents land 
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consumption, geographic coordinates (latitude and longitude), 

administrative properties, addresses, products, production 

technology, kiln and boiler, and other data. The data quality 

was checked through cross verification, including logical 

analysis between different indicators and statistical analysis 

between facility and macro-economic data. Abnormal data 

were identified and revised after data verification.  

The same methods as Cai et al. (2012) was used, with 

data updated to the year of 2012, to calculate transport energy 

use data. This study considers transporting CO2 emissions 

from road, railway, water, and air transports, from Chinese 

provinces, with data sourced from China Energy Statistical 

Yearbook (NSB, 2015). 

Fossil fuel consumptions from agriculture, rural and ur-

ban households were also inferred from China Energy Statisti- 

cal Yearbook (NBS, 2015). For this study, LandScan (Bhaduri 

et al., 2007), coupled with land cover data from GlobeLand30 

(National Geomatics Center of China, 2014), were used to spa- 

tially allocate emissions from Chinese urban and rural households.  

Data sources and their resolutions are shown in Table 1, 

which demonstrates how the Chinese industrial facility CO2 

point emission database, inferred from the NPSC database and 

its continually updated system, lays the foundation for the 

calculation and spatial mapping of CO2 emissions. A sketch 

map of all the spatial data sources is shown in Figure 1.  

 

2.2. CO2 Emissions Accounting  

Calculation of CO2 emissions complies with the Guide- 

lines on Building Provincial GHGs Emissions Inventory of 

China (National Development and Reform Commission, 

2011). Emission source classification is mainly based on the 

National Pollution Source Census (NPSC). The IPCC guide-

lines and the GHG Inventory in the Second Communication 

 

Figure 1. Sketch map of the spatial data sources to map CO2 emissions in the sample areas of China (Beijing and the sur- 

rounding areas). 
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on Climate Change of China were referred to for emission 

factors and the accounting system (National Development and 

Reform Commission, 2013, 2014). CO2 emissions from land- 

use change and forestry are not within the scope of the present 

study. CO2 emissions of industrial enterprises was calculated 

by summing up emissions from the combustion of fossil fuels 

and industrial processes (Equation (1)):  

 

E fuel fuel pM F E=  +      (1) 

 

where E is CO2 emissions of an enterprise, Mfuel is energy use 

of a specific fuel, Ffuel is the CO2 emission factor for a specific 

fuel, and Ep represents CO2 emissions from industrial processes. 

For CO2 emissions from the industrial processes, only 

production of clinker, lime, and iron and steel are considered. 

Industrial emission factors are inferred from the National De-

velopment and Reform Commission (2014) and the main out-

come from the Second National Communication on Climate 

Change of China, which contains detailed and officially rec-

ognized emission factors for different industries in terms of 

energy type and combustion equipment in different regions. 

 

2.3. Methods of Downscaling and Combining Various of 

Streams of Data for a Finer Resolution of Carbon Emission 

Spatial mapping is achieved through a bottom-up ap-

proach. This approach allows for a fine spatial resolution of 1 

km × 1km by combining information from point sources and 

gridded area sources. Figure 2 illustrates the protocol of com-

piling the 1 km × 1 km resolution gridded CO2 emissions data.  

This study refines the previous studies of the research 

team of Wang et al. (2014) through the following manipu- 
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Figure 2. A schematic of the spatial mapping of 1 km × 1 km gridded CO2 emissions. 
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lations. First, a base map of fishnet grids of China at 1 km × 1 

km resolution using the Krasovsky 1940 Albers Projected 

Coordinate System was created. 

For the point emission sources in the industrial sector, 

dots based on their coordinates with values of CO2 emissions 

(from both energy consumption and industrial process) were 

created and the CO2 emissions of dots that were within each 

cell of the 1 km × 1 km fishnet grids were summed. The 

accuracy of the spatial location of industrial enterprises was 

verified through employing dual-control of spatial accuracy of 

point emission sources based on both the geographic coordi- 

nates and reversed geocoding from facilities’ registered addresses. 

High-resolution Google Earth images were used when necessary 

to visually reconfirm the positions of some facilities with large 

emissions by locating the emissions stack or cooling tower. 

In the previous study (Wang et al., 2014), CO2 emissions 

from agriculture/rural household energy consumption were 

calculated at the provincial level based on the data from China 

Energy Statistical Yearbook and were then allocated evenly to 

grid cells in the corresponding provinces. For the present 

study, the spatialization of emissions from agriculture and 

rural households’ energy consumption was enhanced by 

integrating information on human settlements drawn from 

remote sensing image and population density data. 

The urban residential energy consumption consisting of 

energy use from hotels, restaurants, hospitals, schools, and 

household energy use (heating and/or cooling and cooking) 

were also drawn from the updated China Pollution Source 

Census (CPSC). The residential energy consumption was 

surveyed at the county/district level. The urban household 

energy use was determined by sampling conducted in every 

town, and then the average level was multiplied by the popu-

lation of the districts/counties. The CO2 emissions in urban 

residential sector were made spatially explicit by allocating 

the CO2 emissions in each county/district proportionally based 

on the 1 km × 1 km population grids.  

In the previous work (Wang et al., 2014), the transport 

CO2 emissions including emissions from road, railway, water, 

and aviation, were allocated to each province proportionally 

to the 10 km × 10 km population grid cells. In the present 

study, emission data associated with transportation were 

refined through accounting traffic flow and length density for 

road, rail, navigation, and aviation (airports). CO2 emissions 

from road transportation were allocated into each 1 km × 1 

km grid in proportion to grade-weighted road length density. 

Different grades of road refer to different degrees of designed 

traffic volume. In addition, street traffic volume was fully 

taken into consideration. Similarly, CO2 emissions of rail and 

water transportation were allocated into each grid in 

proportion to railway and water way densities, respectively, 

while CO2 emissions of aviation were allocated equally to 

airports in each province. 

Similar to the previous study (Wang et al., 2014), the CO2 

emissions from the industrial sector, agriculture/rural house- 

hold sector, urban residential sector, and transport sector in 

every grid were summed to complete the gridded CO2 emissions:  

, , , , , , , ,

INDE INDP AG SV Trans Ub Ru

i j i j i j i j i j i j i j i jE E E E E E E E=  + + + + + +    (2) 

 

where ,i jE is the total emission from grid i, j, ,

INDE

i jE , ,

INDP

i jE , 

,

AG

i jE , ,

SV

i jE , ,

Trans

i jE , ,

Ub

i jE , ,

Ru

i jE  represents emissions from 

industrial energy, industrial process, agricultural, service, 

transport, rural and urban emissions, respectively.  

After the improvement and downscaling manipulation, 

the spatialized CO2 emissions of the current product combin- 

ed and merged several streams of data and were refined to 

much higher resolution. 

3. Trial Application 

3.1. Spatial Pattern Analysis of CO2 Emission of Key 

Industrial Sectors 

Due to the dominant proportion of industrial emissions in 

the national total, spatial pattern of CO2 emission of key in-

dustrial sectors is decisive to the nation-wide CO2 emission 

situation. Kernel density is a non-parametric method to esti- 

mate the probability density function of a variable. In this 

study, we used the Kernel density model to explore the spatial 

characteristics of CO2 emissions from key industrial sectors. 

Through calculating the magnitude of CO2 emissions from 

industrial enterprises per unit area, the Kernel density model 

identifies hotspots, or “gravity center”, and gradient spatial 

distribution of CO2 emissions from key industrial sectors. 

Spatial patterns of CO2 emissions from coal-fired power 

plants are shown in Figure 3. Although coal-fired power 

plants are distributed across North and South China, the 

Kernel density spatial map of CO2 emissions (Figure 3 (b)) 

shows that East China and North China contain heavy 

emission centers, while Northwest, Southwest and Northeast 

China contain scattered emission spots. High emission centers 

include major coal production and coal-fired power genera-

tion and supply areas, such as North Shanxi-Erdos of Inner 

Mongolia, East Ningxia, North Henan, South Shandong-North 

Jiangsu, North Guizhou, etc., as well as the coal consumption 

and coal-fired power generation and consumption regions, 

such as Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta, 

and Central Liaoning regions. 

The Kernel density spatial map of emissions of power 

plants (Figure 3 (b)) also highlights cities identified as hot- 

spots or emission gravity centers, including Shuozhou, Da- 

tong, Yinchuan, Shizuishan, Jiaozuo, Zhengzhou, Luoyang, 

Zaozhuang, Jining, Xuzhou, Tianjin, Shanghai, Wuxi, Suzhou, 

Bijie, and Guangzhou. All these cities are either economically 

developed or rich in coal resources and major suppliers and 

producers of coal for China. Thus, the Kernel spatial pattern 

closely coincides with the spatial characteristics of the 

country’s resources and economic development.  

Figure 4 (a) illustrates the emissions of cement facilities. 

Unlike coal-fired power plants, cement production resources, 

namely limestone, can be found across China and transport- 

tation distance for cement facilities are much more evenly 

distributed spatially within the territory. However, from west 

to east, a distinct increase in Kernel density can be observed 
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facilities.Unlike coal-fired power plants, cement namely 

 

Figure 3. Spatial pattern of CO2 emissions from coal-fired power plants: (a) CO2 emissions of coal-fired power plants; (b) 

Kernel density spatial map of CO2 emissions of coal-fired power plants. 

 

Figure 4. Spatial pattern of CO2 emissions from cement facilities: (a) CO2 emissions of cement facilities; (b) Kernel density 

spatial map of CO2 emissions of cement facilities. 

 

Figure 5. Spatial pattern of CO2 emissions from iron and steel facilities: (a) CO2 emissions of iron and steel facilities; (b) 

Kernel density spatial map of CO2 emissions of iron and steel facilities. 
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(Figure 4 (b)). In the Yangtze River Delta, Pearl River Delta, 

and other coastal areas, the density is much higher than in 

other parts of China where high emission sources that dis- 

charge 2.0 to 5.0 Mt per year appear frequently and comprise 

main components of the eastern region. Emission gravity cen- 

ters appear in and around the cities such as Zaozhuang, Zh- 

engzhou, Xinxiang, Tongchuan, Wuhu/Tongling, Xuancheng, 

Huangshi, Nanning, Qingyuan, Longyan, and others. 

Comparatively, the Kernel density of CO2 emissions for 

iron and steel facilities is unevenly distributed (Figure 5). The 

regional differentiation between west and east of China is 

distinct. High Kernel density areas center around such cities 

as Liaoyang, Benxi, Anshan, Tangshan, Handan, Laiwu, Wuxi, 

and Changzhou. These emission gravity centers, especially 

those located around the Jing-Jin-Ji area, have a remarkable 

influence on the emissions of traditional local air pollutants 

such as SO2, PM2.5, NOx, etc., and thus impact the air quality 

of the surrounding area. 

 

3.2. Spatial Pattern Analysis of CO2 Emissions at Different 

Levels of Administrative Divisions 

3.2.1. Spatial Pattern Analysis at The National Level 

Figure 6 shows the gridded CO2 emissions map with emis- 

sion data updated to 2012. The overall spatial pattern of CO2 

emissions in China observed from this map does not show 

much difference compared with that of the previous 10 km × 

10 km resolution gridded CO2 emission map with the 2007 

data sets (Wang et al., 2014). The emissions in the eastern part 

of China are obviously higher than those in Western China. 

Within the eastern region, the CO2 emissions in and around 

key cities (e.g., Beijing, Shanghai, Wuhan, Zhengzhou, and Guang- 

zhou) are much higher than other regions. Within the western 

region, large cities such as Chongqing, Chengdu and Xi’an 

and their surrounding areas are emission hotspots. The Jing- 

Jin-Ji region, the Yangtze River Delta region, and the Pearl 

River delta regions are peak areas of CO2 emission in China. 

However, on closer observation, the 1 km × 1 km reso- 

lution CO2 emission map, when compared with the 10 km × 

10 km resolution map, has a much smoother color transition, 

especially for the eastern part of China. This essentially 

indicates a much finer spatial resolution of CO2 emission in 

the map, which is expressed by much richer gradation of the 

emission quantity. A disclosure of more detailed spatial distri- 

bution facts of CO2 emission is of interest especially for a 

‘zoom in’ study to the highly and densely CO2 emitting areas. 

In looking at the western parts of China and especially North- 

western China, many line traces reflect the CO2 emissions 

from transportation routes. Also in the western parts of China, 

there are large white or blank areas that convey no human 

habitation in a vast, remote, uninhabited areas, and thus no 

human activity induced CO2 emissions.  

Figure 7 shows a comparison of the cumulative curves of 

the grid cells contribution to total emission of China, for the 1 

km × 1 km and 10 km × 10 km resolution maps. Though both 

curves illustrate a high degree of emission clustering, the curve 

of the 1 km × 1 km resolution map indicates that 1% of total 

land accounts for about 94% of the total CO2 emission. Regu- 

lating 0.1% of total land territory could enable the manage- 

ment of roughly 85% of emissions in China. In comparison, 

estimations from the previous 10 km × 10 km resolution maps 

(Wang et al., 2014) indicated that regulating 1% of total land 

could only enable the management of 70% of emissions in 

China. These findings could help central and local govern- 

ments to more accurately target emission reduction efforts and 

resources for these top 0.1% grid cells in order to optimize 

results from reduction efforts.  

 

3.2.2. Spatial Pattern Analysis at Regional and Provincial 

Levels: Yangtze River Delta and Zhejiang Province 

Intuitively, the fine resolution map is more accurate and 

suitable for smaller scale analyses of CO2 emission spatial 

patterns and can provide much stronger support for regional, 

provincial, city (or prefecture), and county level studies.  

Taking the Yangtze River Delta region as an example, a 

comparison of the 1 km × 1 km and 10 km × 10 km resolution 

CO2 emission distribution maps is shown in Figure 8. 

From the 10 km × 10 km resolution CO2 emission distribu- 

tion map (Figure 8 (b)), it is observed that the high emission 

area is surrounding and to the east of Taihu Lake. However, 

the high emission grids with emission of over 100,000 ton/a 

appear closely together; each of the grids is hard to identify 

and assign to a city or prefecture, such as Shanghai, Hang- 

zhou, Nanjing, Ningbo, Changzhou or Suzhou, etc. Even the 

grids of the Taihu Lake water surface are marked with colors 

representing quite high CO2 emission, which contradicts the 

fact. This is due to the fact that each grid is too large (100 

km2) and often extends across different administrative and 

natural geography boundaries. This essentially indicates that a 

10 km × 10 km resolution CO2 emission distribution map is 

not suitable for or supportive of local emission management. 

The 1 km × 1 km resolution CO2 emission map (Figure 8 

(a)) gives a much clearer picture of CO2 emission distribution 

locally. Emission hotspots (high emission grids) are mostly 

located in key cities such as Shanghai, Hangzhou, Nanjing, 

Ningbo, Changzhou, Suzhou, etc., where there the annual CO2 

emission per km2 can reach 100,000 tons or more. The spatial 

distribution of CO2 emissions in the Yangtze River Delta re-

gion shows three gradients: Shanghai, as the economic core of 

Yangtze River Delta, lies at the highest level; the second level 

comprises surrounding cities, such as Changzhou, Wuxi, Hu- 

zhou, Hangzhou, Shaoxing and Ningbo etc.; areas outside of 

the first and second level form the third level in the picture of 

CO2 spatial distribution. Cities like Nanjing, Yangzhou, Tai- 

zhou, Xuzhou, Lianyungang, Suqian, Quzhou, Jinhua and 

Wenzhou are featured with scattered larger emission grids, but 

relatively lower emission levels. There are many filiform lines 

connecting high emission spots that are roads, railways and 

waterways. The vast rural area, mainly comprised of farm 

land and water surface, forms the grey background in the 

image. This image accurately reflects the distribution of CO2 
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spots that are roads, railways and waterways. The vast 

(a) 10 km X10 km resolution gridded CO2 emission map (2007) 

 

(b) 1 km X 1 km resolution gridded CO2 emission map (2012) 

 

Figure 6. Comparison of 10 km × 10 km resolution gridded CO2 emission map (2007) and 1 km × 1km resolution gridded 

CO2 emission map (2012) of China. 
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Figure 7. Comparison of cumulative percentage of grid 

emissions accounting for total emissions of China. 
Note: The grid cells are ranked in terms of emission quantity by 

descending order before the cumulative percent calculation. 

 

Figure 8. Comparison of the 1 km × 1 km and 10 km × 10 km resolution CO2 emission maps of the Yangtze River Delta. 
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Figure 9. Comparison of cumulative percentage of grid 

emissions accounting for total emissions of Yangtze 

River Delta. 
Note: The grid cells are ranked in terms of emission quantity by 

descending order before the cumulative percent calculation. 
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emissions in the Yangtze Delta where industries and business 

are highly developed and the spatial distribution of high emis-

sion grids are highly correlated with regional geographical character- 

istics (e.g., land divided intensively by lakes and waterways). 

The fine resolution CO2 grids also facilitates accounting 

for total CO2 emissions. Total CO2 emissions, calculated from 

the gridded emission database, is compared with calculations 

from energy statistics on Shanghai, Jiangsu and Zhejiang (Cai, 

et al., 2015), which report differences in total emissions as 

3.46% lower for Shanghai, 3.16% higher for the Jiangsu 

Province, and 10.78% higher for the Zhejiang Province, re-

spectively. Energy use statistics for Shanghai and Jiangsu are 

relatively complete, which leads to much closer results for the 

two estimates and statistical data. The industry of Zhejiang is 

characterized by over 14,000 small-scale township enterprises 

whose energy may have been underestimated by national en-

ergy statistics that only capture enterprises with larger pro-

duction. However, the high-resolution gridded CO2 emission 

data reflects most of the small emitters’ emissions and ac- 

curate locations. 

Figure 9 shows a comparison of the cumulative curves of 

the grid emission of Yangtze River Delta for the 1 km × 1 km 

(a) 1 km X1 km emission maps                      (b) 10 km X 10 km emission maps 

 

(c) Cumulative curves 
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Figure 10. Comparison of the 1km×1km and 10km×10km resolution CO2 emission maps and their cumulative percentage 

curves of grid emissions accounting of Zhejiang Province. 



B.F. Cai et al. / Journal of Environmental Informatics 33(2) 82-95 (2019) 

92 

 

 

and 10 km × 10 km resolution maps. The curve of the 1 km × 

1 km resolution map indicates that 1% of total land grids accounts 

for about 87.5% of total CO2 emissions, whereas only 37.5% 

is indicated by that of the 10 km × 10 km resolution map. A 

finer resolution emission map may allow for reduced or saved super- 

vision efforts in order to manage large proportion of emissions. 

This finding might foster local government departments’ 

abilities to develop better plans for local emission reductions. 

Similar observations apply to the CO2 emission distri- 
bution maps and the accumulative percentage curves of grid 

emissions for the Zhejiang Province. The 10 km × 10 km resolution 

map (Figure 10 (b)) presents a general emission situation that 

only the east-north part of Zhejiang dominates the total carbon 

emissions, the emission intensity decreases from north to south 

and from east coastal area to the west mountainous and hilly 

area. Additionally, this map is too coarse if one hopes to ex- 
tract detailed emission information for cities such as Hang- 
zhou City. Only the 1 km × 1 km resolution map (Figure 10 (a)) 

can support a closer and zoom-in observation to a city or a prefecture.  

 

3.2.3. Spatial Pattern Analysis at City and County Levels：
Hangzhou and Fuyang 

In terms of spatial planning and management, scaling 

from national down to regional (e.g., Yangtze River Delta), 

(a) 1 km X1 km emission maps                      (b) 10 km X 10 km emission maps 

 
 

(c) Cumulative curves 
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Figure 11. Comparison of the 1 km × 1 km and 10 km × 10 km resolution CO2 emission maps and their cumulative 

percentage curves of grid emissions accounting of Hangzhou City. 
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provincial (e.g., Zhejiang Province) and further down to city 

or prefecture (e.g., Hangzhou) and to county/district (e.g., 

Fuyang district of Hangzhou City) level is necessary for the 

utility of high-resolution spatial information.  

Hangzhou, the capital of Zhejiang Province is a city-level 

administrative unit that has a land area of 16,596 km2. In the 

10 km × 10 km resolution CO2 emission map, there are over 

200 grids covering the entire Hangzhou city territory, which is 

much larger than the actual area. No clear administrative bound- 

aries can be applied to distinct emission liability either for neigh- 

boring cities/prefectures or districts/counties. Hangzhou has 9 

districts and 4 counties. When working on a local carbon re- 

duction plan, a 10 km × 10 km resolution CO2 emission map 

is not able to provide local spatial emission quantity accounting. 

However, a 1 km × 1 km resolution CO2 emission map can 

provide richer information to describe a detailed emission distri- 

bution status. The cumulative 1 km × 1 km resolution percent- 

age curve of grid emissions accounting indicates that the regula- 

tion of 1% of Hangzhou territory is enough to manage 80% of 

the total carbon emission. In comparison, the information 

drawn from the 10 km × 10 km resolution map indicates that 

the top 10% emission grids account for approximately 75% of 

total emission, which can be misleading and is far less useful 

for making decisions at the policy level. 

The higher resolution maps indicate even stronger in the 

case of county- or district-level observations. For example, 

the Fuyang district of Hangzhou city lies in the south-west 

corner of urban Hangzhou, with an area of 1,831 km2. It is 

represented by approximately 30 grids in the 10 km × 10 km 

resolution map, which essentially looks like a pile of colored 

pixels that contain little useful information. However, the 1 

km × 1 km resolution map shows clearly the emission 

boundary accurately, down to the township-, community- and 

even village-level. 

4. Data Quality and Uncertainty Analysis 

Though there is very limited optional approaches to ex-

amine the uncertainty of the high-resolution grid emission 

data, the authors have tried to control the uncertainty and 

guarantee the accuracy through two ways. The first is process 

control. The present study applied the IPCC Tier 3 level (the 

highest accuracy level recommended by IPCC) calculation of 

the point source. Emissions from industrial enterprises, or 

point sources, comprise the majority of CO2 emissions. The 

data quality of point sources was checked through cross veri- 

fication, including logical analysis between different indica- 

tors and statistical analysis between facility and macro-econo- 

mic data. Abnormal data were identified and revised after data 

verification. The accuracy of the spatial location of industrial 

enterprises was verified through employing dual-control of 

spatial accuracy of point emission sources based on both the 

geographic coordinates and reversed geocoding from facili- 

ties’ registered addresses. High-resolution Google Earth ima- 

ges were used when necessary to visually reconfirm the posi- 

tions of facilities with large emissions by locating the emis- 

sions stack or cooling tower.  

Secondly, a comparison of the spatial data aggregation 

with top-down emission accounting was carried out. Consi- 

dering the fact that the energy use related CO2 emission domi- 

nates total emission output, to conduct a gridded emission data 

quality check, the energy statistics should be taken into consid- 

eration. Beijing, Shanghai, Tianjin, Chongqing and Guangzhou have 

established a systematic and relatively complete energy statis- 

tic system and the energy data publication system, which 

contains reliable data quality. Calculated with a top-down method- 

ology, the CO2 emission levels based on primary energy 

consumption in these cities can be used as reference level. 

Emissions calculated from 1 km × 1 km resolution gridded data 

(a) 1 km X1 km emission maps                   (b) 10 km X 10 km emission maps 

 

Figure 12. Comparison of the 1 km × 1 km and 10 km × 10 km resolution CO2 emission maps of Fuyang District, Hangzhou City. 
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of example cities and from the energy statistics are compared 

in Figure 13. An overall consistency of the two data sets can 

be seen, and the data differ by 2, 3, 4 and 5% for Guangzhou, 

Beijing, Shanghai and Chongqing, respectively; whereas there 

is a difference of 8% in Tianjin. These findings reflect the fact 

that CO2 emission based on gridded emission data should be 

viewed as being within an acceptable and realistic range.  

However, there is still deficiency in the uncertainty con-

trol for the current study. In the near future, with the devel-

opment of carbon concentration remote sensing satellite, and 

the accumulated local emission monitoring data, more ap-

proaches are expected to be available to verify and evaluate 

the uncertainty of spatial emission data.  

5. Conclusions 

Based on the China National Pollution Source Census 

(NPSC) database, which has been updated to 2012, and the 

CHRED 1.0, which provides 10×10 km spatial resolution of 

CO2 emissions estimation of China, the CHRED 2.0 was de-

veloped to map a high-resolution 1×1km emission gridded 

database of CO2. This article elaborated the method, data 

foundation and its application in the spatial pattern analysis of 

CO2 emission for China. 

For the development of the CHRED 2.0, the strict control 

of data quality as well as computing processes plays an im-

portant role in providing accurate data, highlighting the fol-

lowing four characteristics. The accuracy of computing pro- 

cess is strictly required. The national emission factors for the 

GHGs inventory and some monitoring data are used. The CO2 

emissions (both from combustion of fuels and industrial pro- 

cesses) of each enterprise are calculated based on surveyed 

data. Direct verification and indirect validation of essential 

data, which ensures data quality. Verification and quality in- 

spection of basic data is carried out repeatedly as well as 

comparison between data from different resources. CO2 emis-

sion data have been compared and verified with calculated 

results based on authentic energy statistic of example cities. 

The spatial mapping methods to formulate the grid data are 

drawn from the literature and have been tested and validated 

many times and are proved to be mature and reliable. To 

improve accuracy, the point emission data was checked by 

comparing longitudinal and latitudinal data with coordinating 

information based on API Geocoding. 

The trial application of the CHRED 2.0 proved its super- 

iorrity in terms of reliability and suitability for use at the 

macro-scale, as well as to determine provincial-, city-, pre- 

fecture- and county-level CO2 emission estimations, spatial 

distribution analysis and emission reduction plan making. 

This system’s superiority is due to the accuracy of the resolu-

tion possessed by the CHRED 2.0. Thus, this system can 

identify the emission and can help split the data between nei- 

ghbor provinces, cities or counties, accurately allocating the 

responsibility of emission outputs. Thus, at province-, city- 

and county-levels, the emission information can be correctly 

disclosed to the public for effective regional evaluation and 

emission management, and an emission reduction plan and 

countermeasure decisions can be made and taken into a consi- 

deration in an economically rational and viable way. 

In the future, the authors will continue updating the data- 

base and providing timely and accurate carbon emission data 

to meet more challenging data demands.  
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