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ABSTRACT. Based on the China National Pollution Source Census database that has beehtof®@t2, and the China High
Resolution Emission Gridded Data Version 1.0, a 1xkbhkm finer resolution emission gridded database of, @GPIRED 2.0, is deve
loped. In the paper, the method, the data sources, a conceptual foundation for the datazamthbsiapplication in a spatial pattern
analysis of C@emission for China are described. For the development of CHRED 2.0, the strict control of data quality and computing
processes plays an important role in providing accurate data, highlighttingatheteristics of high accuracy, direct verification, and
indirect validation of essential data, mature and reliable mapping methods, and the precise spatial location of loagiudinal
latitudinal data. The trial application of the China High Resoluioission Gridded Data Version 2.0 proves its superiority in terms
of reliability and suitability at the macro scale as well as at provinaay-, prefectureand countylevel CQ emission estimations,
spatial distribution analysis, and emission redugplan making. The system is superior because thedgghition accuracy can split
emissions between neighbor provinces, cities or counties, and the emission responsibility can be correctly allocattedeMirson
reduction plan and countermeasoam be established and taken in an environmentally rational and viable way
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1. Introduction cteristics, and convenient for the decision makers and carbon
emission reduction planners to allocate emission remluct
High-resolution spatial data used to expleatialpat  resources and efforts, either at national, provincial, city or
terns of carbordioxide (CO,) emissions has long e an  county level. On the other hand, with the accumulation -of re
important issue in international climate change mitigation mote sensing satellites data from GOSAT (and the to be laun
circle. Europe and the United States have done leading reched GOSAT) and OCE2 program launched by Japan, and
search in C@GHGs emission gridand patterns (Gurney et  the TanSataunched by China in 2016, higlesolution spatial
al., 2009; Oda and Maksyutov, 2010; Geyret al., 2012;  emissjon data will be used as the earth surface emission back
European Commission, 2015). ground to verify and calibrate the column carbon concentra
High-resolution spatial carbon emission data is useful fortion (monitored by the satellites) through inverse algorithm.
identification of the carbon emission hotspots and the emi To meet an increasy demand for highresolution CQ

ssion responsibility. Especially for countries like China, who emission maps, researchers and practitioners have recently
are characterized with largerritory and varied sociaécone opted for high quality emission data based on boitipmap

mic and natural conditions, and the varied data sources angroaches that rely on district G@mission monitoring, re

data treatment methodologies across different provinces an@orting, and checking (Oda and Maksyutov, 2@hao et al.,
regions, and very pecdata comparability, such higlesolu 2012 Wang et al., 2014

tion data sets are of more importancaind spatialized and
high-resolution visual data produced with the uniform stand
ard, it is easier to directly perceive the emissipatial chara

Numerous studies hawdevelopedCO, emissionsgrids
on global, regional, and national scal&uf(ney et al., 2009;
Rayner et al., 2030Andres et al., 2012; Aseflajafabady et

* Corresponding authofel.: +86 1058807812 fax: +86 1082025600 al., d2014; Cag and Zhalrllg, 2014rhe ”(;et,h"dg used 'r(‘j tgese
E-mail address:maoxq@bnuedu.cn(X.Q. Mao). studies can be generally categorized into-dop/n and bot

tom-up approaches (IPCC, 2014).
ISSN:17262135print/1684-87990nline In a topdown approach, aggregated emissions data is
© 2019 ISEISAIl rights reserved. doi:10.3808/j2D1800390 downscaled in accordance with seemnomic datavan Vuuren
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et al., 2010). This appaoh assumes that G@missiongelate Najafabady et al., 20)4both based on botteop approaches
quantitatively to soci@conomic activity, and thus soeszo using point source emissions, have provided finer resolution
nomic characteristics may act as proxies for emissions.-PopuCQ, emissions data at &Q.1%roughly 10 km x10 km) for China.
Ia}tlon.densllty (Andres et al., 1996; Olivier et al.l, 2005) and More recently, the first National Pollution SeaiCensus
nighttime light imagery of th&efense Meteorological Satel  (\psc) database, which contains information on 1.58 million
lite Programds Operati oQLg!l [L4dmies;can ySyrsetgeing t(OBMSP /e nt er pris
(Andres et al., .1996; Doll et al., 2000; Meng et al., 2014) E."reconsumption details, and accurate geographic coordinates in
the two most widely used approaches to estimate and Spat'a”&hina allowed for the development of the China High Reso
locate CQ emissions. However, due to dataality issues uti e : ;

. . ution Emission Gridded Data/ersion 1.0 (CHRED 1.0).
with DMSP/OLS data (Elvidge et al., 2014), Doll et al. (2000) CHRED 10 provides al0 kmx10 km spatial resolution for
found that intracountry spatial correlation of estimated emis Chi n agdemissDi® (Wang et al., 2014). To date, it is the

zlogj Z\éisnggsa?ﬁggn?a;ﬁ\rlvﬂe;elorg:ghggutgtgizrﬁ;g]).;_develmost accurate and thorough bottoim quantitative and spatial
P ' ’ pp CO; emission dataset fathina.

sions in developing countries such as China may prove to be
less reliable. Moreover, empirical findings suggest that top Although CHRED 1.0 has largely met and satisfied the
down approaches may result in an error rate of approximatelylemand of spatial pattern analysis for &nission reduction
50% per pixel, and these errors are spatially correlated (Raynetnd management plans at national and regional levels, the 10 km
et a., 2010). Furthermore, emissions from industrial and Spatial resolution is still too coarse at levels of county, prefec
transportation sectors are often underestimated byloom ture, and province. Managing carbon sources requires- emis
approaches based on soeeimonomic data (Ghosh et al., 2010) sion map at finer spatial resolutions. Here, we show é¢veld
because large emission sources (e.g.-fia power plants)  opment of CHRED 2.0, & km x1 km finer resolution emison

might be locaté in less populated areas or fail to emit detec gridded database for GQand its trial applications for China.
table light. Thus a topdown approach is preferred when finer

scale data are nawailable 2 Methods and Data
When detailed emission data are available, a bettpm

approach is preferred as it provides more accurate emissio2.1 Data Sources

mapping, especially at smaller spatial scales (Kennedy et al.,  Emissions from industrial enterprises comprise the
2010;Gurney et al., 2012; Wang et al., 2012). An eadier  majority of CQ emissionsn China(Wang et al., 2014). For
tempt to estimate COemissions through a botteup ap this study, thedetailed data  the various types dhdustrial
proachin China considered data on power plants, though thisfacilities was drawrfrom the China National Poltion Source
attempt yieléd a coarse spatial resolutioat 0.25>0.25° Census (NPSC) database (Wang et al., 2014). This database
(roughly 25km x 25 km) (Zhao et al., 2008; Zhao et al., 2012). was constructed from 2007 data and subsequently updated
The Emission Database for Global Atmospheric Researchusing 2012 industrial enterpridevel data based o@hing s
(EDGAR) (Olivier et al., 2012) and the Fossil Fuel Data environmentabtatistics(NBS and MEP, 2013). This detailed
Assimilation System (FFDAS) (Raynet d., 201Q Asefi dataset pvides facilityspecific information of fossil fuel

Table 1. Summary of Data Sources Used in tBisdy

€O Spatial
emissions Sectorial data P Description Data sources
resoluton
sources
China industrialCOz point emission:s
The detailed data afdustrial facilitiesof data seinferred fromthe National
Point various types of industrial enterprise® Pollution Source Census (NPSC)
Industry SoUrces provided. Data quality is checked by cross database and its dynamically
verification, including logical analysis, updating system, environmental
statistich analysis and macreconomic data statistics database, field survey da
E?e_rtgy industrial stastic data.
activities i i i
Agrlcglture _ Agrlculture/rur_al energy use data is used to China Energy Statistical Yearbook
production/rural Provinces calculate provincial agriculture/rural GO
. o (NSB, 2015)
household consumptior emission
A Tran_sport C_Z@eml_ssons from _Chlnese . China Energy Statistical Yearbook
Transport Provinces  provinces, including road, railway, water and i
(NSB, 2015)
transports.
LandScan is developed by Oak Ridge Nationi
. Spatial population Laboratory(ORNL). It is the finest resolution
e?c?r%antwic distribution Lkm global population distribution dataset availabl LandScan data set
(30" x30" globally, andabout 1kn? in Ching).
PTOCESSES  Urban construction lanc
30m Land use data Globeland362010

Rural residents land
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consumption, geographic coordinates (latitude and longitude)(Natonal Geomatics Center of China, 20re usedo spa
administrative properties, addresses, products, productionially allocatemissions fronChinesaurban and rural households
technology, kiln and boiler,nal other data. The data quality Data sources and their resoluticare shown irTable 1

was checked througleross verification, including logical \hich demonstrates how the Chinese industrial facility, CO
analysis between different indicators and statistical analy5|sp0int emiston database . inferred from the NPSC database and
between facility and macreconomic data. Abnormal data jis continually updated system, lays the foundation for the
were identified and revised after data verification. calculation and spatial mapping of g@missions. A sketch

The same methods as Cai et al. (2012) wasl, usith map of all the spatial data sources is showfigure 1
data updated to the year of 2012, to calculate transport energy

use data. This study considers transpgrtCO, emissions

from road, railway, water, and air transports, from Chinese2-2. COz2 EmissionsAccounting

provinces, with data sourced fro@hina Energy Statistical Calculation of CQ@ emissions complies with th@uide

Yearbod (NSB, 2015). lines on Building Provincial GHGs Emissions Inventory of
Fossil fuel consumptions from agriculture, rural and ur China (National Development and Reform Commission,

ban households were also inferred fr@mina Energy Statisti 2011). Emission source classification is mainly based on the

cal YearbooKNBS, 2019. For this study, LandScag@Bhaduri National Pollution Source Cans (NPSC) The IPCC guide

et al., 2007)coupled withland cover data from GlobeLand30 lines and theGHG Inventory in theSecondCommunication

Ihdustri

al facilities

Agriculture lands

'? %9

Rural settle,ments

Railway — Water transport network Airports

Figure 1. Sketch ma of the spatial data sources to map@dissions in the sample areas of China (Beijing and the sur
rounding ares).
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on Climate Change of Chinaere referred to for emission Industrial emission factors are inferred from the National De
factors and the accounting system (National Development andelopment and Reform Commission (205)dthe main out
Reform Commission, 2013, 2014). €émissions from land come from theSecond National Communication on Climate
use change and forestry are not within the scopbepresent  Change of Chia, which contains detailed and officially rec
study. CQ emissions of industrial enterprises was calculated ognized emission factors for different industries in terms of
by summingup emissions from the combustion of fossil fuels energy type and combustion equipment in different regions.
and industrial procességquation(1)):

2.3 Methods of Downscaling and Combining Various of

Streams of Data fora Finer Resoluion of Carbon Emission
fuel Ep (l)

E = a. M fuel 3F
Spatial mapping is achieved through a botgmap
proach. This approach allows farfine spatial resolution of 1
whereE is CQ, emissionf an enterpriseMie is energy use  km x 1km by combining information from point sources and
of a specific fuelFwe is the CQ emission factor for a specific  gridded area sourceBigure?2 illustrates he protocol of co-

fuel, andE; represents CQemissiongrom industrial processes piling the 1km x 1 km resolution gridded C£2missions data.

For CQ emissions from the industrial processesly This study refines the previous studies of the research
production of clinker, lime, and iron and steel are consideredteam of Wang et al. (2014) through the following manipu

L Spatial . s . .
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Figure 2. A schematic of the spatial mapping okrh x 1 km gridded CQ@emissions.
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lations.First, a base map of fishnet grids of China &frix 1 E, = &"" §" B° E¥Y E% E"+E°" (2
km resolutionusng the Krasovsky 1940 Albers Projected
Coordinate System was created. whereE, | is thetotal emission from grid, j, E"°, EN,

For the point emission sources in the industrial sector, E**, E°, ET™™, “jb, Rl“ representsemissions from

dots based on their coordinates with values of €@issions  industrial energy, industrial rpcess, agricultural, service,
(from both energy consumption and industrial process) wereransport, rural and urban emissions, respectively.

creaed and the C@emissions of dots that were within each After the improvement and downscaling manipulation,
cell of the 1km x 1 km fishnet grids were summedh&  the spatialized CQemissions of the current product combin

accuracy of the spatiabcation of industrial enterprises was eq and merged several streams of data and were refined to
verified through employing duadontrol of spatial accuracy of  mch higher resolution

point emission soues based on both thgeographiccoordi
nates andreversegeocoding from facilitieso resg_li.slt e[.ed addresses.
High-resolution Google Earth images were used when necessary - Trial Application

to visually reconfirm theositionsof some facilities witHarge 3.1 Spatial Pattern Analysis of CO, Emission of Key
emissions by locatintile emissions stack or cooling tower. Industrial Sectors

In the previous study{ang et al.2014) CO; emissions Due to the dominant proportion of industrial emissions in
from agriculture/rural household energy consumption werey,a national total, spatial pattern of £€mission of key in
calculated at the proviral level based on the data from China q;strial sectors igledsive to the natiomwide CG emission
Energy Statistical Yearbook and werertfallocated evenly o gjtyation. Kernel density is a ngrarametricmethodto esti
grid cells in the corresponding provinces. For the presentnaie the probability density function of a variable. In this
study, he spatialization ofemissions from agriculture and  stdy, we used the Kernel density model to explore the spatial
rural househol dso6 energy C @naractefRfics bf CHemisdoRsSrom ey inBudtfiaf séctors. ¥
integrating information on human settlements drawn fromThrough calculating the magnitude of €®missions from
remot sensing image and population density data. industrial enterprises per unit area, the Kernel density model

The urban residential energy consumption consisting ofi denti fi es hotspot s, or fAgravit
energy use from hotels, restaurants, hospitals, schools, andistribution of CQ emissions from key wustrial sectors.
household energy use (heating and/or cooling and cooking)  Spatial patterns of C@emissions from codired power
were also drawn from thepdatedChina Pollution Source  plants are shown in Figure 3. Although cieéd power
Census (CPSC). The residential energy consumption waglants are distributed across North and South China, the
surveyed at the county/district level. The urban householdKernel density spatial map of G@missions (Figure 3 (b))
energy use was determined by sampling conducted in everghows thatEast China and North China contain heavy
town, and then the average level was multiplied by the popu emission centers, while Northwest, Southwest and Northeast
lation of the districts/counties. The G@missions in urban China contain scattered emission spots. High emission centers
residential sector were made spatially explicit by allocatinginclude major coal production and cdakd power genera
the CQ emissions in each county/district proportionally based tion and supply areas, such as MoshanxiErdos of Inner
on the 1km x 1 km population grids. Mongolia, East Ningxia, North Henan, South ShandiNiogth

In the previous workWang et al. 2014, the transport ~ Jiangsu, North Guizhou, etc., as well as the coal consumption
CO, emissions including emissions from road, railway, water, 2nd coaffired power generation and consumption regions,
and aviation, were allocated to each fince proportionally ~ Such as Jingin-Ji, Yangtze River Delta, Pearl Riverelta,
to the 10km x 10 km population grid cells. In the present and Central Liaoning regions.
study, emission data associated with transportation were The Kernel density spatial map of emissionspofver
refined through accounting traffic flow atehgthdensity for plants (Figure 3 (b)) also highlights cities identified as -hot
road, rail, navigationand aviation (airpors). CQ emissions  spots or emission gravity centers, including Shuozhou, Da
from road transportation were allocated into eadkmilx 1 tong, Yinchuan, Shizuishan, Jiaozuo, Zhermgzh uoyang,
km grid in proportion to gradeeighted roadength density. Zaozhuang, Jining, Xuzhou, Tianjin, Shanghai, Wuxi, Suzhou,
Different gades of road refer to different degrees of designed Bijie, and Guangzhou. All these cities are either economically
traffic volume. In addition, street traffic volume was fully developed or rich in coal resources and major suppliers and
taken intoconsideration. Similarly, Cfemissions of rail and producers of coal for China. Thuthe Kernel spatial patter
water tranportation were allocated into each grid in closely coincides with the spatial characteristics of the
proportion to railway andvater way densities, respectively, country6s resources and economi
while CO, emissions of aviation were allocated equally to  Figure 4 (a) illustrates the emissions of cement facilities.
airportsin each province Unlike coalfired power plants, cement production resources,

Similar to the previous study\ang et al.2014) the CQ namely limestone, can beuiod across China and transport
emissions from the industrial sector, agriculture/rural house tation distance for cement facilities are much more evenly
hold sector,urban residential sector, and transport sector in distributed spatially within the territory. However, from west
every grid were summed to complete the gridded €flssions to east, a distinct increase in Kernel density can be observed
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(a) CO, Emissions of coal-fired power plants (b) Kernel density spatial map
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Figure 3. Spatial pattern of C&emissions from codired power plants(a) CO, emissions of coafired power plants(b)
Kernel density spatial map of G@missions of codiired power plants.

(a) CO, Emissions of cement facilities (b) Kernel density spatial map
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Figure 4. Spatial pattern of CQemissions from cement facilitie@) CQ emissions of cement fadiles; (b) Kernel density
spatial map of Cg@emissions of cement facilities

(a) CO, Emissions of iron and steel facilities (b) Kernel density spatial map
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(Figure 4 (b)). In the Yangtze River Delta, Pearl River Delta, of thel km x 1 km resolution map indicates that 1% of total
and other coastal areas, the density is much higher than itand accounts for about 94% of the total G&mission. Regu
other parts of China where high emission sources that dislating 0.1% of total land teitory could enable the manage
charge 2.0 to 5.0 Mt per year appear frequently amcprse ment of roughly 85% of emissions in China. In comparison,
main components of the eastern region. Emission gravity cenestimations from the previous kén x 10 km resolution maps
ters appear in and around the cities such as Zaozhuang, Ziiwang et al., 2014) indicated that regulating 1% of total land
engzhou, Xinxiang, Tongchuan, Wuhu/Tongling, Xuancheng, could only enable the management of 70%enissions in
Huangshi, Nanning, Qingyuan, Longyan, and others. China. These findings could help central and local govern
Comparativelythe Kend density of CQ emissions for ~ ments to more accurately target emission reduction efforts and
iron and steel facilities is unevenly distributétigure 5. The resources for these top 0.1% grid cells in order to optimize
regional differentiation between west and east of China isresults from reduction efforts.
distinct. High Kernel density areas center around such cities
as Liaoyang, Benxi, Anshan, TangehBlandan, Laiwu, Wuxi,
and Changzhou. These emission gravity centers, especiall
those located around the Jidig-Ji area, have a remarkable

3.2.2. Spatial Pattern Alysis at Regional and Provincial
{eves: Yangtze River Delta and Zhejiang Province

influence on the emissions of traditional local air pollutants ~ Intuitively, the fine resolution map is more accurate and
such as S© PMys, NOX, etc., and thus impact thé quality suitable for smaller scale analyses of ;Gnission spatial
of the surrounding area. patterns and can provide much stronger support foomaly

provincial, city (or prefecture), and county level studies.

Taking the Yangtze River Delta region as an example, a
comparison of the km x 1 km and 10km x 10 km resolution
CO; emission distribution maps shown inFigure 8

. . . ) ) From thelOkm x 10 km resolution CQemission distribu

_ Figure 6 shows the gridded @@missions map with emis  jon map Figure8 (b)), it is observed that the high emission
sion data ugated to 2012. The overall spatial patternG®,  re5 s surrounding and to the east of Taihu Lake. However,
emissions in China observed from this map does not showne high emission grids with emission of over 100,000 ton/a
much difference compared with that of the previdskm x appear closely together; each of tyvéds is hard to identify

10 km resolution gridded COemission map with the 2007 5nq agsign to a city or prefecture, such as Shanghai,-Hang
data sets (Wang et al., 2014). Temeissions in the eastern part ., ‘Nanjing, Ningbo, Changzhou or Suzhou, etc. Even the
of China are obviously higher than thoseVifestern China.  yjqs of the Taihu Lake water surface are marked with colors
Within the eastern region, the @®missions in and around representing quite high G@mission, which contradts the

key cities (e.g., Beijing, Shanghai, Wuhan, Zhengzhou, and Guang, et This is due to the fact that each grid is too large (100
zhou) are much higher than other regioN&thin the western  .2) ang often extends across different administrative and .
region, large cities such agyddbfyfhghf bolindaries. THsGisdnfiatly infichlathat! 0 an
a.nd 'thelr'surroundlng areas are emission 'hotspots. The Jing o km x 10 km resolution CQ emission distribution map is
Jin-Ji region, the Yangtze River Delta region, and the Pearl,q; g jtapie for or supportive of local emission management.
River delta regions are peak areas of,@@issionin China. The 1km x 1 km resolution CQ emission mapRigure 8

_ However, oncloser observation, the im x 1 km rese 4y gives a much clearer picture of g&mission distribution
lution CO; emission map, whenompared with the 18m x 504y Emission hotspots (high emission grids) arestly
10 km resolution map, has a much smoother color transition,j.ated in key citiestch as Shanghai, HangzhoNanijing,
especially for the eastern part of China. This essentiaIIyNingbO, Changzhou, Suzhou, etc., where thieeeannual CQ
indicates a much finespdial resolution of C@ emission in emission per kihcan reach 100,000 tows more. The spatial
the map, which is expressed by much richer gradation of theyisinution of CQ emissions in thévangtze River Delta re
emission quantity. A disclosure of more detailed spatial distri gion shows three gradienShanghaiasthe economic core of
bution facts of C@ emission is of interest especially for @ vangt7e River Deltdjes at the highest level: the second level
6zoom i nd st uddensehoCQeriteng areay h loy, Adksrrounding cities, such as Changzhou, Wuxi; Hu
In looking at_ the Westerr_1 parts of China and espec_|all_y North zhou, Hangzhou, Shaoxing and Ningbo etc.; areas outside of
western China, many line traces refléhe CO, emissions e first and second level form the third leirethe picture of
from transportation .routes. Also in the westerngaftChina, CO; spatial distribution. Cities like Nanjingfangzhou, Tai
ther_e are I_arge white or blank greas_tbanvey no human zhou, Xuzhou, Lianyungang, SugiaQuzhou, Jinhua and
habitation in a vast, remote, uninhabited areas, and thus NQyenzhoy are featured with scattetadyer emission grids, but
human activity induced C{emissions. relatively lower emission level§here are many filiformihes

Figure 7 shows a comparison of the cumulative curves ofconnecting high emissiospots that are roads, railways and

the grid cells contribution to total emission of China, forthe waterways. The vast rural aremainly comprised of farm
km x 1 km and 10km x 10 km resolution maps. Though both land and water surface, forms the grey background in the
curves illustrate a high degree of emission clustetimgcurve image. This image accurately reflects the distribugb€O,

3.2 Spatial Pattern Analysisof CO2 Emissiors at Different
Levels of Administrative Divisions

3.2.1. SpatiaPattern Aalysis afThe National Level
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(a) 10 km X10 km resolution gridded CO2 emission map (2007)

€O, emissions/t
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500001 - 1000000 4
>1000000 » _ g Economic hotspots
Not available

(b) 1 km X 1 km resolution gridded CO2 emission map (2012)
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Figure 6. Comparison of 18@m x 10 km resolution gridded C&emission map (2007) andkin x 1km resolution gridde
CO, emission map (2012) of China.
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emissions accounting for total emissions of China
Note: The grid cells are ranked in terms of emission quantil
descending order before the cumulative percditilation

(a) 1km X 1km emission maps
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Figure 9. Comparison of cumulative percentage of grid
emissions accounting for total emissions of Yangtze
River Delta

Note: The grid cells are ranked in terms of emission quantit
descending order before the cumulative percent calculation

(b) 10km X 10km emission maps
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Figure 8. Comparison of the km x 1 km and 10km x 10 km resolution CQ emission maps of the Yangtze River Delta
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emissions in the Yangtze Delta where industries and businesspectively. Energy use statistics for Shanghai and Jiangsu are
are highly developed and the spatial distribution of high emis relatively complete, which leads to much closer results for the
sion grids are highly calated with regional geographical character two estimates and statistical data. The industry of Zhejiang is
istics (e.g., land divided intensively by lakes and waterways). characterized by over 14,000 srsdlale townshu erterprises

The fine resolution CQgrids also facilitates accounting whose energy may have been underestimatedakignalen
for total CQ emissions. Total CQemissions, calculated from ergy statistics that only capture enterprises with larger pro
the gridded emission datade, is compared with calculations duction. However, the highesolution gridded C©Oemission
from energy statistics on Shanghai, Jiangsu and Zhejiang (Cal,at a ref |l ect s most of the smal
et al,, 2015), which report differences in total emissions ascurae locations.
3.46% lower for Shanghai, 3.16% higher for the Jiangsu Figure 9shows a comparison of the cumulative curves of
Province, and 10.78% higher for the Zhejj Province, re the grid emission of Yangtze River Delta for thkm x 1 km

(a) 1 km X1 km emission maps (b) 10 km X 10 km emission maps

(c) Cumulative curves

Figure 10. Comparison othe 1kmx1kmand 10kmx10km resolution CQemission maps and their cumulative percentage
curves of grid emissions accounting of Zhejiang Province
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