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ABSTRACT. Half-hourly time series of net ecosystem exchange (NEE) of CO2, latent heat flux (LE) and sensible heat flux (H) measured 

through the micro-meteorological eddy covariance (EC) technique are noisy and show a high percentage of missing data. By using EC 

measurements that are part of the FLUXNET2015 dataset, we evaluate the performance of a multiple imputation (MI) strategy based on 

an efficient computational strategy introduced in Honaker and King (2010), combining the classic Expectation-Maximization (EM) 

algorithm with a bootstrap approach, in order to take draws from a suitable approximation of posterior distribution of model parameters. 

Armed with these instruments, we are able to introduce three new multiple imputation models, characterized by an increasing level of 

complexity, and built on top of multivariate normality assumption: 1) MLR, which imputes EC missing values using a static multiple 

linear regression of observed values of suitable input variables; 2) ADL, which enriches with dynamic properties the static specification 

of MLR, by considering an autoregressive distributed lag specification; 3) PADL, which adds further complexity by embedding the ADL 

model in a panel-data perspective. Under several artificial gap scenarios, we show that PADL has a better ability in modeling the complex 

dynamics of ecosystem fluxes and reconstructing missing data points, thus providing unbiased imputations and preserving the original 

sampling distribution. The added flexibility arising from the time series cross section structure of PADL warrants improved performances, 

outperforming those of other imputation methods, as well as of the marginal distribution sampling algorithm (MDS), a widely used gap-

filling approach introduced by Reichstein et al. (2005), especially in the case of nighttime flux data. It is expected that the strategy 

proposed in this paper will become useful in creating multiple imputations for a variety of EC datasets, providing valid inferences for a 

broad range of scientific estimands (such as annual budgets).  

 

Keywords: eddy covariance, net ecosystem exchange, carbon budget, missing data, multiple imputations, Expectation-Maximization 

(EM) algorithm, panel autoregressive distributed lag model (PADL). 

 

 
 

1. Introduction 

The major sinks of atmospheric carbon dioxide (CO2) are 

represented by terrestrial ecosystems. Among these systems, 

forests sequester about one-third of the total anthropogenic emi- 

ssions and play a major role in global carbon dynamics by ex- 

changing trace gases between the atmosphere and the bio- 

sphere. A better understanding of the potentials of ecosystems 

to reduce the rise of atmospheric CO2 levels, as well as a better 

ability to properly quantify the terrestrial carbon stocks and 

model the temporal and spatial variation in carbon uptake, are 

crucial in order to develop mitigation strategies in response to 

climatic changes. 

For these reasons, an important research frontier in ecol- 

ogy is directed toward measuring exchange rates of trace gases 

over natural ecosystems and agricultural fields. The eddy co- 
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variance (EC) technique is nowadays the most reliable and 

direct method for this purpose (Aubinet et al., 2012), because 

it allows scientists to readily calculate the main fluxes of Net 

Ecosystem Exchange (NEE) of CO2, Latent Heat (LE) and Sen- 

sible Heat (H) at ecosystem scale. In particular, NEE is ex- 

pressed as the difference between the CO2 assimilated by pho-

tosynthetic activities, and the CO2 released to the atmosphere 

through ecosystem respiration processes. 

Despite improved accuracy of measurement devices, EC 

datasets are characterized by a large amount of missing data. 

Breakdowns and damage of measurement instruments, wrong 

system calibrations and ordinary maintenance interventions are 

unavoidable events, resulting in the presence of gaps and mis- 

sing data in the sequence of measurements over time. In addi- 

tion, missing data are also caused by quality control (QC) pro- 

cedures (Aubinet et al., 2012; See chapters 3-5 for examples of 

data-filtering procedures), which aim to discard bad data ac-

quired under non-ideal conditions with respect to the character-

istics of instruments and physical assumptions behind the EC 

technique (in particular, those assumptions related to well-

developed and stationary turbulence regimes). To give an idea 
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of the scale and the importance of missing data issues, Falge et 

al. (2001) reported that the average NEE data coverage during 

a year, across 18 sites from the EUROFLUX project and the 

AmeriFlux network, was only 65% due to system failures or 

data rejection. Similarly, Papale et al. (2006) estimated that the 

percentage of half-hourly data rejected under different condi- 

tions varied from 20% to 60%, depending on the quality of the 

raw data as well as on the severity of QC procedures. 

Several ad hoc gap-filling methods in EC measurements 

have been developed until today (Aubinet et al., 2012; see 

Chapter 6 and references therein). One of the earliest exam- 

ples is reported in Hui et al. (2004), which propose a multiple 

imputation (MI) algorithm based on a multivariate normal  

(MVN) model. In synthesis, MI is a Monte Carlo simulation 

technique imputing missing values M times to obtain M multi-

ple copies of a complete data set, and then combining parame-

ter estimates for all M complete data analyses to have a single 

point estimate, with associated uncertainty properly reflecting 

the presence of missing data. On the contrary, single imputation 

(SI) yields a single value per missing datum. For example, mean 

substitution is a standard SI imputation method with which the 

missing values are imputed with the mean value based on the 

observed values. Also in this case, many SI gap-filling algo- 

rithms have been proposed to reconstruct the missing data in 

EC datasets. In a classic review paper, Moffat et al. (2007) pro-

vided an extensive comparison of both SI and MI selected tech-

niques, by evaluating their performance for different artificial 

gap scenarios on a set of 10 benchmark datasets. According to 

the results of the simulation experiments, Moffat et al. (2007) 

concluded that SI methods, such as artificial neural network 

based techniques and marginal distribution sampling (MDS; 

Reichstein et al., 2005), generally showed a good overall per- 

formance, whereas the MI algorithm proposed by Hui et al. 

(2004) showed high biases and markedly underperformed in 

terms of NEE annual sum estimates. 

This apparently awkward behavior can be explained by 

introducing the notion of proper MI algorithm (Rubin, 1987; 

van Buuren, 2012). Any complete data analysis procedure Q̂   

for estimating a scientific estimand Q is said to be valid if: 1) 

the average of the MI estimate Q̂  over all possible complete 

samples Y is unbiased; 2) the actual coverage of the associated 

confidence intervals, based on estimated variances, equals (at 

least approximately) the nominal coverage (Rubin, 1996). Any 

MI procedure is said to be proper if we can convert an incom- 

plete sample M times into a complete sample and compute M 

different point estimates for Q under the complete data analysis 

procedure, combining them according to rules introduced by 

Rubin, without introducing any further bias. When a MI proce- 

dure is proper, the imputation model preserves those aspects of 

the distribution that are relevant to the analysis model, and im- 

puted values act like the observed values when used in the ana- 

lysis stage, yielding valid inferences in the sense defined above. 

It is not always easy to check analytically whether a certain 

procedure is proper (sufficient conditions are given, for exam- 

ple, in van Buuren, 2012) and numerical experiments are often 

the only resort. Although ‘crude’ MVN modelling has proven 

to be useful even in some cases of violation of normality as- 

sumption, it was often unable to correctly reproduce the data 

generation process (DGP) of EC data, and produced low-quali- 

ty imputations characterized by high out-of-sample perfor-

mance. Proper imputation methods are, therefore, needed to 

guarantee that the estimates of interest will be unbiased in the 

presence of missing data. 

In other words, we can say that when the goals of analysis 

are limited, a crude normal model can often be useful. To be 

more precise, a gap-filling algorithm is crude if no use is made 

of special time series characteristics, such as the presence of 

temporal autocorrelation, as well as of heavy-tailed and time 

varying random errors. However, EC data are a special chal- 

lenge because of their complex stochastic structure (Richard-

son et al., 2012), so that broad imputation models are more like-

ly to be ineffective and to produce biased inferences. It is thus 

sensible to design imputation algorithms especially tailored to 

the above-mentioned characteristics. With this goal in mind, in 

this paper we propose a data analysis strategy based on the algo- 

rithm recently proposed by Honaker and King (2010). Similar 

to Hui et al. (2004), the underlying imputation model assumes 

that the complete data likelihood is MVN. However, the unique 

computational strategy, henceforth labelled EMB, combines 

the classic Expectation-Maximization (EM) algorithm with a 

bootstrap approach, in order to draw simulated values from the 

approximate posterior distribution of parameters. The increased 

computational efficiency makes possible the implementation of 

suitable conditional MI models, where imputations of missing 

data in the flux time series of interest are typically based on the 

relationship between the incomplete variable and the observed 

part of some suitable input variables (predictors), possibly 

including deterministic polynomial functions of time, as well 

as lagged endogenous and exogenous variables, in order to 

enrich the generative process of complete data with dynamical 

characteristics. Armed with these ideas, we propose three new 

conditional MI models, based on the multivariate normality 

assumption: M1. MLR, a ‘baseline’ model, which imputes EC 

missing values using a static multiple linear regression of ob-

served values of input variables; M2. ADL, which enriches 

with dynamic properties the static specification of MLR by 

considering an autoregressive distributed lag (ADL) specifica-

tion; M3. PADL, which adds further complexity by embedding 

the ADL model in a panel-data perspective. Reproducibility of 

our results is greatly facilitated by the availability of the Amelia 

R package (Honaker et al., 2011), which provides an interface 

to the Amelia II program for MI imputation of incomplete data-

sets under the EMB approach outlined above. 

The paper is organized as follows. Subsections 2.1 and 2.2 

briefly review some missing data theory and terminology. Sub- 

sections 2.3 and 2.4 describe both EM- and data-augmentation 

algorithms behind the joint MVN imputation model. Section 

2.5 introduces three new conditional imputation models based 

on the MVN complete data likelihood and, finally, Subsection 

2.6 shows how imputations are combined to obtain a final esti- 

mate of scientific estimands of interest. Study sites, data collec- 

tion and basic pre-processing tools are introduced in Section 3, 

where we also describe suitable in-sample indicators to evaluate 

the quality of imputed values from MI, as well as the design of 
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a simulation experiment to assess the out-of-sample performance. 

Section 4 presents a detailed multi-site comparison (including 

the analysis of some issues that can arise from computational 

difficulties). Finally, Section 5 refocuses on the purpose of the 

research, draws conclusions and proposes future developments. 

2. Methods 

In this section, we review some missing data terminology 

and the theory behind our algorithms; we refer the reader to 

existing literature on the topic for more details (Schafer, 1997; 

Schafer and Graham, 2002; Little and Rubin, 2002; van Buu- 

ren, 2012). 

 

2.1. Definitions and Basic Notations 

Let z  denote the complete T K  data matrix, including K 

variables (NEE, LE, H and other micrometeorological and soil 

variables described in Section 3) at T equally spaced half-hour- 

ly timestamps. Let z be not fully observed and partitioned as
obs mis( , ),z z z= where obsz denotes those entries actually observed 

and misz those missing. For any complete data set z we define a 

fully observed set of indicator variables R, referred to as the 

missingness, which is a matrix data structure of the same di-

mension of ,z indicating whether the corresponding measure- 

ment is observed ( 1)R = or missing ( 0).R = Missingness is con- 

veniently described as a probabilistic phenomenon, as it is not 

realistic to describe accurately all potential causes for missing data. 

The probability distribution of missingness (or missing da- 

ta model), say ( | )p R z , can depend on either the observed or 

the missing data, and can be classified according to the nature 

of relationship between the missingness itself and the observed 

data. If
obs( | ) ( | )p R z p R z= the missing data are defined to be 

missing at random (MAR). In other words, MAR allows proba- 

bilities of missingness to depend on observed data but not on 

missing data. This terminology is unfortunate and particularly 

confusing, as MAR does not actually indicates that missing 

data are distributed at random. If the data are MAR, the propen-

sity for a data point to be missing is not related to the missing 

data, but it is related to some of the observed data (e.g. NEE is 

missing when the friction velocity is below some threshold 

value; see Papale et al., 2006). If ( | ) ( )p R z p R= the missing 

data are said to be missing completely at random (MCAR). 

MCAR is a special case of MAR, occurring when the distri-

bution of missingness does not depend on observed data either. 

The underlying idea is more appealing in this case, as the miss-

ing data are just a random subset of the complete data. Finally, 

when the distribution of missingness also depends on unobserved 

information, that is on misz , then the missing data are said to be 

missing not at random (MNAR). For example, MNAR occurs 

when missingness depends on the missing value itself (e.g. NEE 

is missing if NEE is greater than a given threshold, expressed 

in
2 1

2mol CO  m s − −
) or when missingness depends on an un-

observed variable. Among these possibilities, at least MAR as-

sumption is required for missingness to be ignorable, in the 

sense that we can draw valid inferences without knowing the 

process that generates the missingness (Rubin, 1987). Unfor-

tunately, MAR assumption is not testable, being a condition 

depending on unobservable data. In Appendix B, we discuss an 

experimental arrangement under which MAR can reasonably 

hold (or, at least, that a non-ingnorable missingness pattern is 

less likely). 

 

2.2. Multiple Imputation Under a Joint MVN Model 

In what follows, we assume that the complete dataset z is 

a random sample of size T from a K-dimensional MVN distri- 

bution (. | , ),KN    with K-dimensional mean vector    and 

positive definite covariance matrix  , where off-diagonal ele-

ments of    allow marginal components to depend on each 

other. For 1, ,t T= , let
tz denotes a generic row of the com-

plete data matrix .z Under the assumption of multivariate nor-

mality, the complete data likelihood has the following form: 

  

obs mis obs mis

1

( | , ) ( , | ), with ( , )
T

K t t

t

L z z N z z   
=

= =       (1) 

 

This exchangeable assumption would seem a crude approx-

imation to the true distribution of the data. However, as will be 

explained later, with a careful choice of the K variables enter-

ing the complete-data likelihood, we can design relatively narrow- 

scope imputation methods such that the imputed values act like 

the observed values when used in the analysis stage. 

As we said before, following arguments reported in Schafer 

(1997), Schafer and Graham (2002), it can be shown that under 

MAR assumption posterior Bayesian inference about can be 

performed without regard for the missing-data mechanism (pro-

vided that and nuisance parameters pertaining to the probabil-

ity distribution of R are independent a-priori), and all informa-

tion about is summarized in the observed-data posterior: 

 
obs obs( | ) ( | ) ( )p z L z             (2) 

 

where ( )  is the prior distribution over model parameters , 

and
obs( | )L z  is the observed data likelihood: 

 

obs miobs miss

1

( | ( , | )) K t

T

t t

t

N z zL z dz
=

 
 
 

         (3) 

 

Under a flat non-informative prior distribution, ( ) 1   , 

the observed data posterior reduces to the observed data like- 

lihood, and posterior and likelihood inference turn out to be 

equivalent. As in Hui et al. (2004), assumption (1) is the basis 

for drawing from the complete data posterior, and making im-

putations by drawing value of misz  from its distribution 

conditional on obsz and the draws of (to account for estimation 

uncertainty). The naïve algorithm runs as follows: 

• Use the MVN distribution as an approximation to the joint 

posterior distribution of model parameters ( , ) =   under 

a flat prior, and find approximate posterior modes by max-

imum likelihood estimates of mean vector  and covariance 

matrix  using the EM algorithm for incomplete data. 
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• Draw imputations for the missing values from the normal 

model using a Gibbs sampling over the joint posterior dis- 

tribution of model parameters and missing values, using 

the EM modal estimates from the previous step as a star- 

ting point for the sampler. 

In what follows we briefly review the algorithms, in order 

to better appreciate the characteristics of the approach proposed 

in Hui et al. (2004). Those readers uninterested in the statistical 

details may safely skip ahead to Subsection 2.5. 

 

2.3. The EM Algorithm for Incomplete Data 

The EM algorithm for maximum likelihood estimation 

from incomplete data has been originally proposed by Demp- 

ster et al. (1977). Here, we present a modern ‘variational’ expo- 

sition, closely following Tzikas et al. (2008). A convenient start- 

ing point is the following decomposition of the observed data 

log-likelihood (Blei et al., 2017): 

 
obsln ( | ) ( , ) KL( || )p z F q p q = +         (4) 

 

where 

 
obs mis

mis mis

mis

( , | )
( , ) ( )ln

( )

p z z
F q q z dz

q z




 
=  

 
        (5) 

 

where
mis( )q z denotes any probability density function over the 

missing data, while KL( || )p q is the Kullback-Leibler divergence 

between the posterior distribution of missing data and 
mis( )q z :

 

 

mis obs
mis obs

mis

( | , )
KL( || ) ( )ln

( )

p z z
p q q z dz

q z

 
= −  

 
       (6) 

 

It is important to note that KL( || ) 0,p q   with KL(p||q) = 0 

only for the special choice
mis mis mis obs

0( ) ( ) ( | , )q z q z p z z  = . 

Moreover, from KL( || ) 0p q   it follows that 
obsln ( | )p z   

( , ).F q    In other words, ( , )F q   is a lower bound of the 

observed data log-likelihood. Based on this result, the EM 

algorithm can be presented as a two-step iterative algorithm 

that maximizes the observed data log-likelihood by maximiz-

ing the lower bound ( , )F q  . To verify this claim, we assume 

that the current state of the parameter vector is ( )s . In the E-

step, the lower bound
( )( , )sF q   is maximized with respect to

mis( )q z , and it is straightforward to verify that this occurs when 

KL( || ) 0p q =  or, equivalently, when
mis( )q z  is set equal to

mis mis obs ( )

0( ) ( | , ).sq z p z z =   In the M-step,
mis

0( )q z   is held 

fixed and 0( , )F q  is maximized with respect to  to give some 

updated value ( 1)s + . We can summarize these two steps by the 

following chain of inequalities, showing that the observed data 

log-likelihood increases monotonically to a local maximum: 
 

M-step
obs ( 1) ( 1)

E-step
( ) ( )

0

ln ( | ) ( , )

( , ) ln ( | )

s s

o

s obs s

p z F q

F q p z

 

 

+ + 

 =

        (7)

 

Sufficient conditions to ensure that the algorithm con- 

verges to a global maximum rather than to a stationary point 

are given by Wu (1983), and these conditions are known to hold 

under our MVN likelihood. It is worth noting that if we sub- 

stitute
mis mis obs ( )

0( ) ( | , )sq z p z z = into ( , )F q  we obtain: 

 

( )

mis obs ( ) obs mis mis

0

mis obs ( ) mis obs ( ) mis

( )

( , ) ( | , )ln ( , | )

( | , )ln ( | , )

| constant with respect to 

s

s s

s

F q p z z p z z dz

p z z p z z dz

Q

  

 

  

= −

− =

= −



      (8)

 

 

Therefore, the EM can be summarized as an iterative 

algorithm involving the following two steps: 

• E-step: Compute the posterior predictive distribution of 

the missing data
mis obs ( )( | , )sp z z  and

( )( | )sQ   . 

• M-step: Update the current guess of model parameters by 
( 1) ( )argmax ( | )s sQ



  + = . 

The E-step and the M-step are repeated alternately until 
obs ( 1) obs ( )ln ( | ) ln ( | ) ,s sp z p z  + −  where is a pre-assigned 

tolerance. Calculations under the complete data MVN likely- 

hood (1) are straightforward. Explicit expressions of 
mis(p z

obs ( )| , ),sz  ( )( | )sQ   and ( 1)s + are provided, for example, by 

Hui et al. (2004), Section 2.1, and Gelman et al. (2013, pp. 454). 

 

2.4. Filling in Missing Data with Gibbs Sampling 

To fill in missing values misz we can exploit the posterior 

predictive distribution: 

 mis obs mis obs obs( | ) ( | , ) ( | )p z z p z z p z d  =         (9)

 
 

Sampling from the posterior predictive distribution (9) is 

accomplished using a data augmentation (DA) algorithm (Tan- 

ner and Wong, 1987) over the augmented parameter space
mis( , )z  , treating missing values as latent variables. This algo-

rithm consists of alternately drawing misz and from their con-

ditional posterior distributions, which both have closed form 

under multivariate normality (Schafer, 1997): 

• I-step: draw mis,( 1)gz +  from 
mis obs ( )( | , )gp z z  . 

• P-step: draw ( 1)g +   from 
obs mis,( 1)( | , )gp z z +

. 

This iterative algorithm is a Gibbs sampler that generates 

a Markov chain for 1, ,g G= , converging in distribution to 

the joint posterior of parameters and missing values,
mis( ,p z   

obs| )z , after a transient burn-in period (Gelman et al., 2013). 

In particular, the MI method proposed by Hui et al. (2004) uses 

precisely the sampling-based algorithm described above. As we 

said before, modal estimates of  outputted by the EM algo- 

rithm are used as a starting point for the first iteration of the I-

step. Missing values are imputed by storing, after the burn-in 

period, M  draws from
mis obs( | , ),p z z   thinning the sample 

using only every nth step to reduce the strong autocorrelation 

usually present in the Gibbs sampler output. Alternatively, at 

the computational cost of running 1M − additional independent 
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chains, the DA algorithm can be run M times in parallel to draw 

a single imputation from every chain. 

 

2.5. The Proposed Imputation Models 

A first concern of the above described approach is the effi-

ciency of the algorithm. The Gibbs sampler can converge very 

slowly to its limiting stationary distribution in the event that the 

true posterior of model parameters describes a highly corre-

lated multidimensional random variable. In addition, building
M  complete data sets involve running M  simulations, thus 

generating a large amount of random draws, most of which are 

discarded and not needed anymore in any subsequent analyses. 

To overcome the computational overloading of Gibbs sam- 

pling, Honaker and King (2010) propose a computational stra-

tegy combining the Expectation-Maximization algorithm with 

Bootstrap, henceforth labelled EMB (see also Schomaker and 

Heumann, 2016). The combined EMB algorithm runs as follows: 

• Bootstrap-step: use non-parametric bootstrap to draw M  

sample with replacement (including missing data) of di-

mension T K from .z   

• EM-step: for each bootstrap sample, find approximate 

posterior modes by maximum likelihood (ML) estimates 

of   and ,  using the EM algorithm for incomplete data 

under a flat prior of model parameters, as described before. 

Bootstrapping the complete data matrix is aimed at simu- 

lating estimation uncertainty, and it is carried out by consi- 

dering each row as one multivariate observation. When incom-

plete data are resampled, each bootstrap sample has high proba- 

bility of being incomplete, and thus posterior estimates of   

can be approximated using the EM algorithm under incomplete 

data, as seen before. Interestingly, Efron (2012) points out that 

ML estimates from the bootstrap samples are asymptotically 

equivalent to a sample from the posterior distribution of  (also 

in the case when ( )  is not flat), thus propagating correctly 

uncertainty in estimating .  

Once estimates of complete data parameters are available, 

imputations of missing values are drawn, as shown below, 

conditional on observed values of explanatory variables and 

each of the M  estimates of .  The idea of substituting ML 

estimates
( ) ( ) ( )( , )m m m =  from M bootstrapped samples (for

1, , )m M=  to draw missing values from the approximate 

posterior predictive distribution
mis obs ( )( | , )mp z z  dates back to 

Efron (1994). To put this idea to work with EC flux data, we 

partitioned complete data vectors as ( , )t t tz y x=  for 1, ,t T=  

where ty  denotes the dependent variable, while tx  includes 

explanatory variables to be used in the gap-filling phase. In most 

case studies, the dependent variable ty is one among NEE, LE 

or H. Inputs tx of the imputation phase can include the remain-

ning fluxes and soil and micro-meteorological variables, as 

well as suitably defined additional synthetic inputs aiming at 

improving basic imputation models, in order to reflect the 

special nature of time series data. For example, we can include 

the information that some variables have smooth trends by 

supplementing z with new input variables (columns) contruct- 

ed prior to running the algorithm, based on q-order polynomials 

or function bases, such as splines or wavelets (which have good 

approximation capabilities for any functional form of t; Hastie 

et al., 2009). Another way of handling time series information 

is to include lagged variables (Honaker and King, 2010; 

Honaker et al., 2011). 

Armed with this machinery, we consider three novel impu- 

tation models which are able (with different degrees of effect- 

tiveness) to accommodate for some dynamic characteristics of 

EC flux data. The final objective is to provide proper MI gap-

filling procedures, thus reducing biases occurring with the cru- 

de MVN-based algorithm proposed by Hui et al. (2004). 

 

MLR 

The first imputation model is a static multiple linear re- 

gression (labelled as MLR) of input variables, conditional on 

the observed part, with parameters that can be calculated direct-

ly from . It is a commonly accepted practice to estimate sepa-

rate imputation models from the qualitatively different daytime 

and nighttime data subsets (Moffat et al., 2007; See also Appendix 

B), a difference due to variation in fluxes in response to changes 

in meteorological conditions, often leading to very different 

performance of gap-filling techniques. Moreover, as will be 

better explained in Appendix B, conducting separate analysis 

for daytime and nighttime has a regularizing effect over the MI 

procedure, in the sense that MAR hypothesis is more likely to 

hold. We have, therefore, the following switching regression 

model (daytime  diurnal regime, where assimilation processes 

are prevalent; nighttime  nocturnal regime, where respiration 

processes are prevalent): 

 
obs ( ) ( )

1 1( )

obs ( ) ( )

2 2

 daytime

nighttime

m m

t tm

t m m

t t

x t
y

x t

 

 

 + 
= 

+ 

    (10)

 

 
where

( )m

ty  indicates the mth imputed value, t indicates half-

hourly timestamps,
( )

1

m  and
( )

2

m  are vectors with 1K −  ele- 

ments. Under the MVN likelihood (1), the distribution of ty

conditional on
obs

tx  is Gaussian, with conditional expectation 

that can be expressed as a linear function of parameters

( , ). =    This fact justifies the linear specification of the 

conditional imputation model (10). Random draws
( )m

i of the 

regression coefficient vector can therefore be calculated direct-

ly by boots-trapped ML estimates
( )m

i  and
( )m

i (with 1,2i =  

corresponding to daytime and nighttime estimates, respective-

ly; see, e.g., Honaker and King, 2010, pp. 576), based on 

standard expressions of conditional distributions of a multi-

variate normal distribution. Similarly, random error
( )m

it  is a 

normal random variable with zero mean and variance equal to 

the corresponding diagonal element of
( )m

i . 

It is worth noting that randomness in
( )m

ty is generated by 

estimation uncertainty due to not knowing parameters, as well 

as by irreducible uncertainty in the DGP, since the diagonal 

elements of 
( )m

i are not null. This means that even if we had 

an infinite sample, thus replacing
( )m

i with ‘true’ value, there 

would still be a source of uncertainty taken into account by 

drawing from the distribution of
( ).m

it  However, MLR model 
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defined by equations (10) is static, in the sense that input vari- 

ables have an instantaneous impact on the imputed flux. In 

agreement with Hui et al. (2004), it must be stressed that MLR 

model (10) is not estimated by a full data set spanning a single 

calendar year, but separate models are fitted for each hydro-

ecological regime identified on the basis of a data-driven pro- 

cedure described in Appendix A. 

It is important to note that MLR can be considered as a 

‘baseline’ conditional MI model, forming a basis for compare- 

sons with other more structured models. Apart of its computa- 

tional efficiency, no special time series characteristics are taken 

into account by generative equations (10). In other words, MLR 

is essentially equivalent to crude joint MVN model, and quality 

of MIs is not expected to improve dramatically. 

 

ADL 

In order to add dynamic features to the static specification 

outlined above, we propose a narrower conditionally Gaussian 

linear imputation model, based on a first-order trend-stationary 

switching autoregressive distributed lag specification (labelled 

as ADL): 

 
( ) ( ) ( ) 2

10 11 12

( ) 3 obs ( )

13 1

( ) ( ) ( ) obs ( ) ( )

1 1 1 1 1

( ) obs ( ) ( ) ( )

20 2 1 2

obs ( ) ( )

1 2 2

DoR( ) DoR( )

DoR( )

daytime

nighttime

m m m

m m

t

m m m m m

t t t t

m m m m

t t

m m

t t

c c t c t

c t x

y y x t

c x y

x t



  

 

 

− −

−

−

 + + +


+ + +


= + + + 


+ + +
 + + 

  (11)

 

 

In dynamic equations (11), t indicates half-hourly time- 

stamps ( 1, , ,t T=  where T  is the total sample size) and

DoR( )t is the corresponding day of the regime which is being 

reconstructed (thus DoR( )t ranges from 1 to RT , where RT is the 

total number of days in the regime, and remains constant 

throughout each calendar day),
( )m

i is a scalar,
( )m

i  and
( )m

i
are vectors with 1K −  elements. Also in this case, the ADL 

specification (11) was separately estimated for each of regime 

detected following the procedure described in Appendix A. For 

daytime subsets, the deterministic term included in the ADL 

model corresponds to a cubic function of time. A cubic trend is 

flexible enough to capture, at a modest computational cost, the 

medium-long term component of diurnal flux time series. 

During nighttime, the high percentage of missing data, the low 

signal-to-noise ratio and the presence of spikes (which is 

attributable, in most cases, to the presence of extreme values 

rather than measurement errors) limited the use of deterministic 

terms to a simple intercept term. Note that this choice does not 

prevent the possibility of modelling the trend component during 

nighttime periods, but means that any temporal dynamic in EC 

flux variables is fully driven by the relationships with other 

meteorological factors, if any. 

It is interesting to study the characteristics of the stochastic 

part of model (11) for fixed m (that is, for a single imputation). 

Therefore, for notation simplicity, from now on until the end of 

this subsection, we can suppress both indices m and i (day- 

time/nighttime indicator). Stable dynamic behaviour requires 

that input variables
tx  are second-order stationary and

t  is an 

uncorrelated White Noise, and finally that | | 1   (iivot and 

Wang, 2006; Hassler and Wolters, 2006). It is also useful to 

observe that the ADL model (11) is quite general, as it encom- 

passes as a special case several other basic models. By momen- 

tarily neglecting deterministic terms, a static regression with 

independent and identically distributed (IID) errors is obtained 

when 0, = = corresponding to (10); A static regression with 

stable AR(1) disturbances is obtained when ; = −  The 

AR(1) model corresponds to 0; = = A first-difference model 

is obtained when 1 =  and . = −   Finally, it can be shown 

that, after some algebraic manipulation, the ADL model can be 

re-parameterized as an error-correction model (Hassler and 

Wolters, 2006). 

The lacking of dynamic properties of MLR model (10) can 

be conveniently described in terms of the immediate impact 

multiplier, ,j

t ty x   consisting of a spike of length j  associ- 

ated with the instantaneous change of
ty in response to a unit 

change in one component of ,tx say
j

tx (we use superscripts to 

denote components of vectors, such as ). The remaining lag-

ged multipliers
j

t t ky x −  are null for 1k  , and the immediate 

impact thus coincides with the long-run effect. Similarly, the 

immediate impact multiplier of ADL shows a spike of length

.j However, lagged multipliers are not null, as the impact of

1

j

tx −  on
ty  is ,j j  +  and thereafter the equilibrium is pro-

gressively restored toward a new long-run level, as the effect 

of
j

t kx −  on
ty  dies out geometrically at rate   as k →+  . This 

nice transient dynamical feature may be not enough to capture 

special characteristics of EC time series data, but it does repre-

sent a marked improvement over static imputation models such 

as MLR (10). 

 

PADL 

With the aim of allowing more flexibility in modelling the 

complex diurnal cycle, we consider a panel data perspective 

sharing many similarities with the approach proposed in Huis- 

man et al. (2007), which introduces a panel model for hourly 

electricity prices in day-ahead markets and examines their cha-

racteristics. By taking this approach, we have S  consecutive 

cross-sectional units ( 1, , ),h S= entering the following panel 

autoregressive distributed lag model (hereafter PADL; Beck 

and Katz, 1995; Hsiao, 2007):  
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It is unusual, in standard panel data econometric theory, 
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that .T S However, under this condition, it is possible to es- 

timate a separate linear imputation model for each cross-sec- 

tional unit, which is indeed not possible in the smallT case, and 

it becomes natural to consider heterogeneous panel models 

where the parameters can differ over units (Smith and Fuertes, 

2016). The data structure implied by the model (12) can be 

better appreciated by representing, for the first day of the year, 

a generic flux time series
ty  in a panel data form ( )h ty  (we 

consider 12S = in this example, thus each row corresponds to 

a two-hour interval): 

 

00 : 30 01 : 00 01 : 30

00 : 00 (1)1 (1)2 (1)3 (1)4

02:30 03:00 03:30

02 : 00 (2)5 (2)6 (2)7 (2)8

( ) ( ) 1 ( ) 2 ( ) 3

22 : 30 23 : 00 23 : 30

22 : 00 (12)45 (12)46 (12)47 (12)48

h t h t h t h t

y y y y

y y y y

y y y y

y y y y

+ + +

  

 

Implicitly, when timestamp t  indicates the first column,

( )h ty  is regressed over ( 1) 1h ty − −  and ( 1) 1,h tx − −  so that each cross-

sectional unit is augmented with the last observation of the 

preceding unit. Similar to the ADL model (11), the effects of 

explanatory variables are assumed to be stable inside each 

regime, and for each regime they do not vary across cross-

section units and over time. On the contrary, deterministic 

terms are stable inside each regime, but are allowed to change 

across cross-section units (adding more flexibility). In partic-

ular, for nighttime data we have a fixed effect model where 

every cross-sectional unit has its own estimated constant term 

(also in this case we considered only a fixed constant for the 

nighttime imputation model, because numerical stability issues 

arising with the MLR model can be even more severe in this 

case), while for daytime data a cubic function of time was 

included. By construction, error terms are IID over h and within 

t, and are independent of input variables. Panel data contain 

many degrees of freedom and more sample variability than time 

series data, which is a panel with 1.S = These unique character-

istics are expected to further improve the quality of imputations. 

 

2.6. Annual Budget Estimation 

One of the most used scientific estimand of interest is the 

annual sum (or annual budget) of NEE, LE and H fluxes, each 

one of the three being denoted by Q. With M complete data sets, 

we can compute M different point estimates for Q and combine 

them according to Rubin’s rules, to obtain valid inferences 

when the MI procedure is proper. Specifically, let
( )mQ the cu- 

mulative annual sum, i.e. the sum over all half-hourly measured 

and gap-filled values in a given year from the mth imputed data 

set, 1, , .m M= The final combined estimate is defined as (Ru- 

bin, 1987): 

( )

1

1 M
m

m

Q Q
M =

=              (13)

 
 

The estimate V  of the variance of Q  can be obtained by 

combining a within component term U and a between compo- 

nent term B. The within term accounts for sample variability, 

and it is the average of the variance estimates ( )ˆ mU for complete 

data, for 1, , ,m M=  that is 1 ( )

1

ˆM m

m
U M U−

=
=   . The between 

term 1 ( ) 2

1

ˆ( 1) ( )
M m

m
B M Q Q−

=
= − −  measures the uncertainty 

due to imputations. The total variance of Q is thus estimated as
1(1 )V U M B−= + + . 

Assuming that, under repeated sampling, parameter esti- 

mates Q are normally distributed around the population value 

(that is, Q is unbiased for Q), it follows that
1/2( ) ~Q Q V t− , 

where
2( 1)(1 )v M r−= − +  indicates the degrees of freedom 

(DOF) and
1(1 ) /r M B U−= + represents the relative increase in 

variance due to missing values (van Buuren, 2012; see also 

Barnard and Rubin, 1999, for an adjusted version of ,  valid 

when the complete data DOF is small and the percentage of 

missing data is not too high). Thus
1/2

,1 /2vQ t V− provides the 

100(1 )%− confidence interval of the annual budget Q. Final- 

ly, it is worth mentioning the fraction  of information about Q 

missing due to nonresponse (sometimes simply referred to as ‘frac-

tion of missing information’), defined as ( )( )2 / ( 3)r = + +  

/(1 ).r+  If 0.5  , statistical inferences are highly dependent 

on the way in which the missing data were handled, and the 

influence of the imputation model is much larger than that of 

the complete data model (van Buuren, 2012, pp. 41-42). 

3. Data, Simulation Design and Evaluation Criteria 

3.1. Eddy-Covariance Study Sites 

Data used in this work are part of the FLUXNET2015 

dataset, and subject to a highly standardized data pre-pro-

cessing and QC pipeline, that generates uniform and high 

quality derived data products suitable for studies requiring 

inter-comparability of data from multiple sites (the interested 

reader can consult the documentation reported at: 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-

processing/, and references therein). 

Ten benchmark sites were selected, with a brief descript- 

tion of site characteristics being shown in Table 1 (AT-Neu: 

Wohlfahrt et al., 2008. AU-Cpr: Meyer et al., 2015. AU-How: 

Beringer et al., 2007. DK-Sor: Pilegaard et al., 2011. FI-Hyy: 

Suni et al., 2003. FR-Pue: Rambal et al., 2004. GF-Guy: Bonal 

et al., 2008. IT-CA1: Sabbatini et al., 2016. US-Los: Sulman et 

al., 2009. US-Ne2: Verma et al., 2005). The site selection was 

done to ensure the representativeness of different climates and 

ecosystem types. The years under investigation were selected 

to guarantee the highest coverage of NEE time series in order 

to facilitate the simulation of the macro-scenarios described in 

Section 3.2. 

On average, the missing data percentages of NEE, LE and 

H fluxes were about 50, 19 and 18%, respectively. Regarding 

NEE, the percentage of missing values was higher during 

nighttime (~60%) than daytime (~30%) because low turbu- 
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lence conditions occur most often during these periods, and QC 

procedures aimed to verify the validity of EC assumptions (e.g. 

u* filtering) flag and discard a large amount of data. 

Several micrometeorological variables and soil parameters 

(abiotic factors) were taken into consideration: shortwave 

(SW_IN, Wm-2) and longwave (LW_IN, Wm-2) incoming radi-

ation, net radiation (NETRAD, Wm-2), air (TA, °C) and soil 

temperature (TS, °C), relative humidity, (RH, %), soil water 

content (SWC, %), friction velocity (USTAR, ms-1), wind speed 

(WS, ms-1) and precipitation (P, mm). Vapour pressure deficit 

(VPD, hPa) was calculated from TA and RH. As a consequence 

of system maintenance and data rejection after QC post-pro-

cessing, most of abiotic parameters showed a percentage of 

missing data less than 5%. Larger percentages were commonly 

due to instrument breakdowns resulting in long gaps. 

As an example, Figure 1 depicts half-hourly time series for 

the IT-CA1 use case. The IT-CA1 site was a 2-year rotation-

cycle-managed poplar plantation of 11 ha (Poplar cultivar was 

Populus x Canadensis, for more detail see Sabbatini et al., 

2016) cultivated in the Gisella ed Elena Ascenzi S.A.S. private 

farm, located in Castel d’Asso (Viterbo, Italy, lat: 42°38’ N, 

lon: 12°03’ E). The climate is Mediterranean, with mild winters 

and hot-dry summers, which is responsible for water stress con-

ditions, clearly reflected in both NEE and LE flux dynamics. 

3.2. Simulation Design and Performance Measures 

Evaluating the quality of an imputation strategy is not an 

easy task. An informal approach to evaluating whether MI’s 

can provide valid statistical inferences (in the sense discussed 

in the introductory section) can be based on the overimputation 

procedure discussed in Honaker et al. (2011), which involves 

treating observed values as if they had been actually missing. 

For each observed value several hundred imputed values are 

generated, a large number that allows us to calculate a mean 

imputation and construct a confidence interval of imputed val- 

ues, given the imputation model. In particular: (i) for each im-

putation model, the averaged in-sample bias error (BE) can be 

computed, defined as the average difference between observed 

and mean imputed values. Inference is considered valid when 

BE is close to zero, and thus bias is negligible; (ii) in the same 

way, the mean absolute error (MAE) defined as the average of 

the absolute differences between observed and mean imputed 

values can be used to evaluate the in-sample model perfor-

mance. Another valid measure useful for judging the quality of 

an imputation model is (iii) the coverage rate (CR), defined as 

the percentage of cases where the observed value falls within 

the 95% confidence limits. Honaker et al. (2011) recommend 

that CR should be around 90%. Finally, (iv) the average confi-

dence interval width (W) is defined as the average length of the 

 

Table 1. Information about the ten selected FLUXNET benchmark sites (Latitude, Longitude, IGBP designation, climate 

classification), percentages of missing data in Net Ecosystem Exchange (NEE) of CO2 time series during the whole year (Y), 

and separately for daytime (D) and nighttime (N) subsets, and estimates of the friction velocity threshold value (u*th). 

         Missing (%)   

Site ID Country Lat Alt IGBP Clim Y D N u*th Ref 

Year Location Long m asl (a) (b) (c) (c) (c) ms-1  

AT-Neu 2010 Austria,  

Neustift 

47.12°E,  

11.32°N 

970 GRA Dfb 69 29 49 0.092 Wohlfart et al. 2008 

AU-Cpr 2012 Australia,  

Calperum 

34.00°W,  

140.59°N 

53 SAV BSk 39 20 57 0.216 Meyer et al. 2015 

AU-How 2011 Australia,  

Howard Springs 

12.49°W,  

131.15°N 

na WSA Aw 58 34 83 0.222 Beringer et al. 2007 

DK-Sor 2009 Denmark,  

Soroe 

55.49°E,  

11.64°N 

40 DBF Cfb 23 14 31 0.255 Pilegaard et al. 2009 

FI-Hyy 2007 Finland,  

Hyytiala 

61.85°E,  

24.30°N 

181 ENF Dfc 56 49 62 0.406 Suni et al. 2003 

FR-Pue 2008 France,  

Puechabon 

43.74°E,  

3.60°N 

270 EBF Csb 56 44 68 0.296 Rambal et al. 2004 

GF-Guy 2008 French Guayana 

Guayaflux 

5.28°E,  

52.92°S 

48 EBF Af 53 35 70 0.160 Bonal et al. 2008 

IT-CA1 2012 Italy,  

Castel d'Asso 

42.38°E,  

12.03°N 

200 DBF Csa 61 45 78 0.180 Sabbatini et al. 2016 

US-Los 2006 USA,  

Lost Creek 

46.08°E, 

89.98°S 

480 WET Dfb 40 21 60 0.134 Sulman et al. 2009 

US-Ne2 2012 USA, 

Lincoln (NE) 

41.16°E,  

96.47°S 

362 CRO Dfa 38 21 56 0.114 Verma et al. 2005 

(a) International Geosphere-Biosphere Programme (IGBP) designations. CRO: Croplands; DBF: Deciduous Broadleaf Forests; EBF: Evergreen 
Broadleaf Forests; ENF: Evergreen Needleleaf Forests; GRA: Grasslands; SAV: Savannas; WET: Permanent Wetlands; WSA: Woody Savannas. 

(b) Köppen climate classification (Clim). Af: Tropical, Rainforest; Aw: Tropical, Savanna; BSk: Arid, Steppe, Cold; Cfb: Temperate without dry season 

and warm summer; Csb: Temperate with dry and warm summer; Csa: Temperate with dry and hot summer; Dfa: Cold (continental) with hot summer; 
Dfb: Cold (continental) without dry season and warm summer; Dfc: Cold (continental) without dry season and cold summer. 

(c) Missing data percentage refers to NEE time series across the whole year (Y), for daytime (D) and nighttime subsets (N). Daytime and nighttime 

subset are defined using a global radiation threshold set equal to 10 Wm-2. 
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95% confidence interval. Parameter W should be as small as 

possible and, all other things being equal, imputation methods 

providing narrower confidence intervals should be preferred. 

However, W should not be too small as to affect the CR. 

We have also compared the out-of-sample performances 

of the three proposed imputation models (MLR, ADL and PA- 

DL). The comparison was achieved by superimposing several 

artificial gaps on the already incomplete NEE, LE and H time 

 

Figure 1. The eddy-covariance dataset collected at IT-CA1 use case during 2012. 
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series. In particular, similarly to Moffat et al. (2007) but adding 

a longer gap, we simulated the following 5 macro-scenarios: 

• S1 – additional 5% of randomly distributed single hour or 

half-hour missing data points. 

• S2 – additional 5% of randomly distributed short gaps of 

4 consecutive hours missing data points. 

• M5 – medium gaps of 5 consecutive days randomly distri- 

buted across the year. 

• L10 – long gaps of 10 consecutive days randomly distribu- 

ted across the year. 

• L20 – long gaps of 20 consecutive days randomly distribu- 

ted across the year. 

On the basis of a large collection of EC time series data, 

Falge et al. (2001) concluded that over 50% of the gaps present 

in the analysed data sets were less than 2 hours, and less than 

4% were longer than 21 days. S1 and S2 scenarios aim to simu- 

late missing data points due to QC filtering procedures and 

system maintenance. On the contrary, M5 scenario simulates 

gaps that are often present, and due to system failure. L10 and 

L20 scenarios test the stability of MI procedures under extreme 

conditions, that are however also present in the real data, 

generally due to important damages to the sensors. All the 

above scenarios were permuted 10 times for each benchmark 

site (giving a total 100 simulations for each scenario). It must 

also be noted that gap locations were always identical in each 

flux variable. This setting allowed for considering the possibili-

ty that missing values caused by real system failure or main-

tenance simultaneously affect each flux variable (with the only 

exception being data discarding in consequence of QC proce-

dures). Gap co-occurrence has also the obvious consequence 

that any of the three flux variables cannot be used as an input 

variable in a MI model (for example, LE and H, both or in-

dividually considered, cannot be used to reconstruct NEE). 

For each imputation model and each of the 500 simulated 

gaps, we computed the out-of-sample bias error (BE) and mean 

absolute error (MAE): 

 

( ), ,

1
BE t gap t gap

gap

y i
T

= −              (14) 

, ,

1
MAE t gap t gap

gap

y i
T

= −               (15)

 
 

where ,t gapy indicates any observed value that has been flagged 

as missing, while ,t gapi is the corresponding imputed value. The 

statistical metrics were then grouped and averaged along each of 

the 5 artificial macro-scenarios defined above, to aid in comparisons. 

For an overall evaluation of the proposed MI models, we 

applied the Friedman test (Friedman, 1940) using a significance 

level 0.05, = followed by a post-hoc test based on the proce-

dure introduced in Nemenyi (1963). The Friedman test is a non-

parametric statistical test, equivalent to repeated-measures ANOVA, 

which can be used to compare the performances of several 

models on multiple data sets (Demšar, 2006). In order to do 

that, ranks are assigned to models. For each data set, the model 

with the best performance gets the lowest (best) average rank. 

The null hypothesis of the Friedman test is that there are no sig-

nificant differences between the mean out- and in-sample per-

formances of all the considered models. 

Provided that significant differences were detected by the 

Friedman test (that is the null hypothesis is rejected) the Ne- 

menyi test can be used for pairwise multiple comparisons of the 

considered algorithms (Demšar, 2006). Nemenyi test is simi- 

lar to the post-hoc Tukey test for ANOVA, and its output consists 

of a critical difference (CD) threshold. The mean performance 

of two imputation models is judged to be signifycantly different 

if the corresponding average ranks differ by at least the critical 

difference (the graphical output of Nemenyi test was imple-

mented using tools provided in the TStools R package; Kouren-

tzes and Svetunkov, 2017). 

 

3.3. Benchmark Gap-Filling Algorithm 

In order to better evaluate the in-sample and out-of sample 

performances of the three MI models, results obtained using the 

marginal distribution sampling (MDS) method proposed by 

Reichstein et al. (2005) were also added to the comparison. The 

choice of MDS algorithm as a benchmark is motivated by its 

good performances in the simulation study by Moffat et al. 

(2007), despite a simple logic and implementation that made 

the MDS one of the most used tools in EC data gap-filling. In 

synthesis, MDS replaces any missing values by the average 

value under similar meteorological conditions within a time-

window constructed around each missing value and with the 

minimum length possible (starting from 7 days). It is assumed 

that similar meteorological conditions are present inside that 

window if SW_IN, TA and VPD do not deviate by more than 

50 Wm-2 (when SW_IN > 50 Wm-2, otherwise 20 Wm-2 are 

used), 2.5 °C, and 5.0 hPa, respectively. If no sufficient data 

points under similar conditions are found, less restrictive 

conditions are imposed in a hierarchical way, increasing the 

temporal window size, defining the similar meteorological 

conditions only on the basis of SW_IN or applying the mean 

diurnal variation method (Falge et al., 2001), i.e. by the 

arithmetic mean of valid values measured on adjacent days at 

the same time of the day. More details on how the different 

conditions are combined can be found in Reichstein et al. 

(2005). As proposed by Lasslop et al. (2008), we used the 

standard deviation of observation measured under similar 

meteorological conditions as a measure of uncertainty of the 

imputed values. In this work we used the implementation of the 

MDS algorithm implemented in the REddyProc R package. 

 

4. Results and Discussion 

In this Section, we report the performance of the three pro- 

posed imputation models, where each model has been com- 

pared with respect to each other and with the MDS baseline 

algorithm. Finally, we show annual budget estimates with the 

associated uncertainty, as an example of the application of 

Rubin’s rules during the complete data analysis stage. 
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4.1. Algorithmic Details and Additional Data Pre-Processing 

All the proposed imputation models were fitted and 

checked by the Amelia R package (Honaker et al., 2011; Yucel, 

2011; R Core Team, 2017) which provides an interface to the 

Amelia II program for MI of incomplete datasets under the 

EMB approach depicted in Section 2.5. 

We set 30M = (the number of imputed datasets), despite 

the fact that the classic advice is to use a low number of impu- 

tations, between 3 and 5, for moderate amounts of missing 

information (van Buuren, 2012). However, as clarified by a 

large Monte Carlo study reported in Graham et al. (2007), the 

number of imputations required is substantially greater (be- 

tween 20M = and 100M = ) than previously thought, if we are 

not willing to tolerate power falloff and abnormally wide confi-

dence intervals of scientific estimands. To speed up the compu-

tational time we ran the EMB algorithm in parallel mode. With

30M = , the execution times for a complete data analysis per 

site, including the overimputation procedure, were respectively 

of about 4, 7 and 10 minutes for MLR, ADL and PADL models, 

using a 2.2 GHz Intel Core i7 CPU. 

We checked the convergence of the EM algorithm at each 

iteration by monitoring the number of parameters that had sig-

nificantly changed since the last iteration. Convergence prob-

lems can arise when data contains a high degree of missingness, 

very strong correlation among the variables and/or too many 

parameters to estimate in respect to the sample size. These prob- 

lems happened more frequently in the case of nighttime sub-

sets, where the percentage of missing data can go beyond 80%, 

and became worse with PADL specification. To circumvent this 

drawback, we added a ridge prior over the covariance matrix

,  shrinking toward zero the covariances among variables, 

thus preventing quasi-singular posterior estimates and helping 

with numerical stability (see Honaker et al., 2011, for details). 

The level of the empirical ridge prior was dynamically set equal 

to 0.5% the number of dataset rows when the percentage of 

miss-ing data in NEE time series was 70% , otherwise it was 

set to 0.25%, in order to prevent instability of the algorithm in 

case of multicollinearity among the variables. For the PADL 

model, the number of cross-sectional units was allowed to vary 

from 3S =  to 4  during daytime, whereas two cross-sectional 

ob-servations, the first extending until midnight, the second 

after midnight, were used during nighttime, to prevent the 

possibility of empty cross-sectional observations.  

Within each regime, abiotic variables affected by long 

consecutive gaps (with a fraction of missing data 40% ) were 

discarded, because of their heavy impact over the computa- 

tional burden of MI algorithms, an impact not associated with 

any appreciable improvement in the quality of imputations. 

The EMB algorithm is not limited to flat priors over model 

parameters. With a few modifications the EM algorithm can 

incorporate prior information over the parameter space, in 

order to obtain maximum-a-posteriori (MAP) estimates of   

(Gelman et al., 2013). In particular, Amelia has a number of 

methods of setting priors over the mean and the standard 

deviation of one or more missing input data cells, and to derive 

the implied priors over   and   (Girosi and King, 2008; 

Honaker and King, 2010; Honaker et al., 2011). The use of such 

observation-level priors can vastly increase the computational 

efficiency of the algorithm and improve the quality of impu-

tations (if unbiased and accurate information is provided). We 

used this functionality for those input variables which are difficult 

to impute from other variables, showing high persistence, low 

variability and smooth behavior. In particular, TS and SWC 

were preliminarily gap-filled by linear inter-polation, and each 

missing data point was subsequently endowed with a Gaussian 

prior having mean equal to the interpolated value and standard 

  

Figure 2. Work Flow of the MI strategy developed for 

EC datasets. 

  

Figure 3. Observed and gap-filledNEEfor the IT-CA1 use 

case (for MI models one of the M=30 complete time series). 
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deviation equal to 10% of the same value. By exploiting this 

machinery, imputed values become a compromise between model 

imputations and prior means, with imputations increasingly 

reflecting only the observed data and ignoring the prior values 

when the model predicts missing values with high accuracy.  

As both ADL and PADL include autoregressive terms, 

missing data falling around the boundary between nighttime 

and daytime regimes would be imputed twice, from two very 

different generative models. Suppose, for example, that the be- 

ginning of the daytime regime is determined at 6:00AM. In this 

case a missing flux at 5:30AM would be first imputed as the 

output variable of the nighttime model, and then it would also 

be imputed by the daytime generative model, because it enters 

such model as a lagged dependent variable. To prevent this 

double estimate, missing data falling at the beginning of the 

daytime regime were endowed by informative priors having 

mean and standard deviation based on data imputed during the 

nighttime regime. In this way we were able to link nighttime 

and daytime missing data imputations, and the algorithm be- 

came more stable, given the high percentage of missing data 

falling near the transition from nighttime to daytime periods. 

To further improve the quality of missing data imputa-

tions, we augmented the covariate set with additional input var-

iables, the downscaled time series from ERA-interim reanaly-

sis (Vuichard and Papale, 2015), consisting of SW_IN, LW_IN, 

TA and VPD variables. Finally, the contribution of precipitation 

was taken into account by adding a new predictor to the impu-

tation model given by the logarithm of the cumulative sum of 

measured rainfall (or gap-filled with ERA-interim product 

when some measurements were missing) in the past 24 hours, 

i.e. 
47

0
log( 1)t kk

P−=
+ in the case of half-hourly time series. 

Further computational issues occurred with some of the 

macro-scenarios described in Section 3.2. In particular, with 

M5 and L10 we found that deterministic term parameter esti- 

mation might become unstable when gaps occurred near the 

boundaries of the time intervals defining the regimes. On the 

contrary, L20 simulations convergence issues were predomi- 

nantly driven by the high degree of missingness. Several strate- 

gies are useful to overcome this issue. A first possibility con- 

sists in modifying the detected regime break dates (see Appen- 

dix A), by shortening or extending the temporal window of the 

regime. Another possibility consists in a preliminary imputa- 

tion of any gap longer than 5 days, by considering a buffer 

temporal window beginning at 30 days before the beginning 

time of the gap, and ending at 30 days after the end of gap. After 

some empirical testing, we adopted this last choice. When the 

  

Figure 4. Graphical visualization of the Nemenyi’s test for the evaluation of the in-sampleaccuracy measures for NEE. 
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gap crossed two regimes, a dummy variable was introduced in 

the set of input variables to keep into account the change in 

regime. This first preliminary run of the MI algorithm was used 

to estimate the average and the standard deviation of multiply 

imputed values in each missing data cell inside the buffer time 

window. Subsequently, a new global run of the MI algorithm 

was carried out, using informative priors having mean and 

standard deviation over the missing data cells as determined 

before.  

The proposed MI strategy developed for EC datasets can 

then be summarized in three main steps (see also Figure 2):  

1. Identification of homogeneous ecological regimes, as well 

as of daytime and nighttime subsets (Appendices A and B). 

2. Preliminary imputation of any gap present in NEE, LE and 

H flux series, longer than 5 consecutive days, in order to 

estimate informative priors in missing data cells using a 

sort of empirical Bayes procedure. 

3. Multiple imputation of EC dataset, separately for each re- 

gime, and daytime/nighttime subsets (possibly using prior 

information determined in step 2, or any available prior 

information on missing data cells). 

An example of gap-filled NEE time series for the IT-CA1 

use case is shown in Figure 3. Visual inspection cannot high- 

light any significant difference between the algorithms used. 

Therefore, in the next section we carefully inspect both in-

sample and out-of-sample accuracies.  

4.2. In-Sample and Out-of-Sample Accuracy 

In this section, we report both the in-sample and out-of 

sample performance of the three proposed MI models, as well 

as of the baseline MDS algorithm. For each of the 10 selected 

FLUXNET sites and the four gap-filling algorithms under con-

sideration, out-of-sample metrics (14) and (15) were calculate-

ed, then the four algorithms were compared as a whole, on the 

basis of a new 100-dimensional vector of out-of-sample accu-

racies (one for each of the 10 sites times 10 simulations) for 

each synthetic gap macro-scenario, using Friedman non-para-

metric ANOVA (see Section 3.2). In-sample indicators were 

  
Figure 5. Kernel density estimates comparing observed and 

overimputed data by MDS algorithm and PADL model for 

the IT-CA1 use case. 

 

Figure 6. Kernel density estimates of observed and gap-filled NEEfor the GF-Guy use case, over a short period of 60 days 

(for MI models one of the M = 30 complete time series). 

 



D. Vitale et al. / Journal of Environmental Informatics 34(2) 68-87 (2019) 

 

81 

 

 

calculated inside each hydro-ecological regime (see Appendix 

A). The results were summarized through standard box-plots 

and Nemenyi Critical Difference (CD) plots (Demšar, 2006), 

separately for daytime and nighttime (daytime and nighttime 

regimes are defined by means of a global radiation threshold, 

set equal to 10 Wm-2).  

The in-sample bias error (BE), mean absolute error 

(MAE), coverage rate (CR) and interval width (W) for NEE 

flux are summarized in Figure 4 (plots related to LE and H 

fluxes are reported in the supplementary material, due to space 

limitations). On average, the three proposed multiple imputa- 

tion models provided less unbiased estimates than the MDS 

algorithm, this last showing much more variability than MI 

models. In any case the maximum absolute value of bias was 

<1/100 than the range of observed data, and can be considered 

negligible. For NEE, LE and H flux data, the lowest in-sample 

MAE was always achieved by PADL model during daytime 

and by ADL during nighttime. As far as the coverage rate (CR), 

the approach proposed by Lasslop et al. (2008) for the uncer- 

tainty estimation of imputed value through the MDS algorithm 

leads to significantly higher values than those obtained through 

the three MI models. However, this difference can be explained 

by the largest interval width (W) of the MDS algorithm. Con-

versely, both ADL and PADL provided slightly narrower confi-

dence intervals (W) at about the same actual coverage rate (CR).  

In order to further investigate the performance of the im- 

putation models from a purely data-analytic point of view, we 

plotted kernel density estimates comparing observed and over- 

imputed data. Figure 5 shows the comparison results for the IT-

CA1 use case (similar results were found for all the benchmark 

sites considered in this paper). It was evident how the PADL 

method preserves the sampling variability, both during daytime 

and nighttime, under almost all regimes. In comparison, the 

MDS-based imputations, albeit at least approximately unbiased 

  

Figure 7. Graphical visualization of the Nemenyi’s test for the comparison of the out-of-sample bias error for NEE in 

different scenarios. 
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(the estimated densities were not markedly asymmetric), did 

not preserve sampling variability, in particular at nighttime. 

To better appreciate one of the key advantages of MI based 

procedures with respect to methods based on averaging pro- 

cedures (here represented by the MDS), in Figure 6 we plotted 

the complete NEE time series and kernel density estimates of 

observed and imputed time series by each method (GF-Guy use 

case). We zoomed into a section of the plot, showing a short 

temporal window of 60 days (we randomly selected one of the 

complete multiply-imputed time series). As can be seen, also in 

this case the distributions of observed and imputed values are 

almost identical in the three MI methods. The MDS instead 

shows a peak in the distribution in correspondence of data 

values. This effect increases progressively as the signal-to-

noise ratio is decreased. An explanation of this behavior relies 

upon the fact that MI procedures are designed not only repro-

duce the ‘true’ signal, but also to properly manage both the 

uncertainty arising from both estimation of model parameters 

and random error affecting observed data, thus preserving the 

original variability of the DGP (Kunwor et al., 2017). For these 

reasons, MI algorithms can be considered a valid and more ap-

propriate alternative to SI methods (van Buuren, 2012, Chapter 1).  

Out-of-sample bias error (BE) and mean absolute error 

(MAE) for NEE flux, under the 5 synthetic macro-scenarios 

and for daytime and nighttime separately, are respectively pre- 

sented in Figures 7 and 8 (plots showing results for H and LE 

flux variables are reported in the supplementary material). By 

looking at the reconstructed NEE flux, both ADL and PADL 

models showed less unbiased estimates and lower MAE than 

MLR and MDS imputation methods, although no marked bias 

differences are present. The BE showed higher variability in 

M5, L10 and L20 scenarios reaching the highest values, in 

absolute terms, in cropland (US-Ne2) and tropical (GF-Guy) 

sites. The lowest daytime MAE was achieved by PADL model 

  

Figure 8. Graphical visualization of the Nemenyi’s test for the comparison of the out-of-sample mean absolute error for NEE 

in different scenar. 
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under all the 5 macro-scenarios, while the better performances 

during nighttime were achieved by both ADL and PADL mo- 

del. Similar consideration holds for LE and H flux variables. 

These results demonstrate that the introduction of lagged 

endogenous variables, entering both ADL and PADL specifi- 

cations, substantially improves flux reconstruction. This rein- 

forces the hypothesis that flux variability (or, at least, a part of 

it) is most likely to be not only explained by exogenous vari- 

ables (e.g. meteorological factors), but also by the ecosystem 

state itself, which is well suited to be represented by lagged 

endogenous variables as those introduced in both ADL and 

PADL models.  

Yet another confirmation that both PADL and ADL meth- 

ods better reproduce the data distribution and implement a cor-

rect DGP can be obtained by looking at the lack of temporal au-

tocorrelation in the residual component (observed minus over-

imputed values). This has been observed in most of the use 

cases under investigation. As an example, Figure 9 shows po- 

wer spectra (estimated by Lomb-Scargle periodogram) of the 

NEE flux residual time series at FI-Hyy site. While MDS and 

MLR residuals showed significant peaks at a period of 1 day, 

both ADL and PADL spectral estimates closely resembled the 

typical flat pattern of a white noise process. On the contrary, 

power spectra of absolute residuals invariably showed a signif- 

icant daily peak, a fact indicating the presence of a correlation 

structure in the second moment (heteroscedastic variance) of 

the data, that would need further development and refinement 

of the imputation models. 

The low performance of the MDS algorithm at nighttime 

can be attributed to several concurrent factors, such as: (i) the 

criteria used to define similar meteorological conditions could 

often be too simplistic, as only two variables are involved in 

the algorithm (SW_IN is always 0 at nighttime); (ii) the lack of 

robustness occurring when the temporal search window is get-

ting wider, or when the flowchart of the algorithm has reached 

the step consisting in the application of mean diurnal variation 

method; (iii) the leverage effect of anomalous values on the 

calculation of the mean. In addition, the presence of sites where 

management activities are present (e.g. crop harvesting) is par-

ticularly challenging for methods where there are no indication 

of changes in the regime (like the one introduced in the PADL 

and ADL methods). 

 

4.3. Annual Budget Estimation 

As an example of a complete data analysis, in this Section 

we report on annual budget estimates and associated uncer- 

tainties obtained through the PADL model and the MDS base- 

line algorithm. As far as LE and H were concerned, annual esti-

mates from both algorithms showed fairly good agreement in 

all the use cases under investigation (numerical details are pro-

vided in supplementary material). On the contrary, a slight to 

moderate discrepancy was found between annual carbon bud-

get estimates, even though in most cases the respective 95% CIs 

were overlapping (see Figure 10). 

The most interesting differences can be appreciated by 

analyzing the uncertainty associated to the annual budget val- 

ues. Table 2 shows the total uncertainty at 95% confidence 

level obtained by combining the within uncertainty
1/2U , with 

the between uncertainty due to missing data imputation 1/2B , 

as described in Subsection 2.6. For MDS algorithm the 95% CI 

for the annual budgets was estimated by doubling the within 

uncertainty (the B  component is obviously undefined in this 

case). The 
1/2U component was estimated through the square-

root-of-time rule as
1/2

NEET s , where T is the sample size (e.g. 

 
 

Figure 9. Lomb-Scargleperiodograms of residual time series 

for the FI-Hyy use case. 

  

Figure 10. Cumulative NEE for each of the 10 benchmark 

use cases. 
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17520 half-hours in a year) and
NEEs  is the sample standard 

deviation of half-hourly NEE time series (comparable 

estimates were obtained by ordinary bootstrap resampling, but 

our simple rule of thumb has an apparent advantage from a 

computational point of view). 

As a result, the net effect of including the between uncer- 

tainties was an increase in the total uncertainties, which were 

on average higher by about 50% than those estimated by dou- 

bling the within uncertainty. Highest differences were observed 

for GF-Guy (+100%), US-Los (+98%) and AT-Neu (+78%), 

while negligible discrepancies were obtained for DK-Sor 

(+5%) and US-Ne2 (+2%). 

These differences are also reflected in the estimates of the 

fraction of missing information. In fact, when the between un- 

certainty is higher than the within,  increases proportionally to 

their ratio. As we said before, significant values ( 0.5)   indi- 

cate that statistical inferences are highly dependent on the way 

in which the missing data were handled. This means that the in-

fluence of the imputation model is much larger than that of the 

complete data model (van Buuren, 2012), and further investi-

gations (with special attention to data quality issues, in parti-

cular during the nighttime period) are necessary to reach a conclusion. 

Anyway, all these quantities provide a useful tool for the 

evaluation of the reliability of the annual budget estimates. It is 

worth noting that as annual budgets obtained through the MDS 

algorithm cannot be endowed with a between-imputation varia- 

bility estimate (like any other SI algorithm), this often results 

in underestimating the total uncertainty. 

5. Concluding Remarks 

In this paper we have presented three new imputation 

models, built on top of multivariate normality assumption and 

characterized by an increasing level of complexity. All these 

procedures are based on the hybrid EM-Bootstrap algorithm, in 

short EMB, introduced by Honaker and King (2010), which has 

several advantages over its direct competitors: (i) its high com-

putational efficiency allows it to cope with large datasets, (ii) 

effective imputations making use of special time series charac- 

teristics becomes possible, (iii) a large number of diagnostic 

checks, based on overimputing the observed data, are natively 

available in the Amelia R package, which provides an interface 

to the Amelia II program for MI of incomplete datasets under 

the EMB algorithm. 

Under several synthetic gap-scenarios, the PADL model 

showed the best out-of-sample performance in imputing miss- 

ing values, producing unbiased imputations and preserving the 

original variability in the data. To a large extent, the ADL mod- 

el also shares these merits. In fact, both models have an im- 

proved ability to capture temporal dynamics of EC fluxes, since 

temperature and water supply, which are considered the prima- 

ry controlling factors of photosynthetic response, not only have 

an instantaneous impact, but also play a role by way of cumu- 

lated and/or lagged effects. At the same time, the role of the 

deterministic trend and of its added flexibility must be stressed, 

because of its ability to model irregular seasonal and diurnal 

cycles. In view of all these considerations, we can conclude that 

natural variability of half-hourly EC flux time series cannot be 

Table 2. Annual Budget Estimates, Associated Uncertainties, and Fraction of Missing Information ρ of Net Ecosystem Exchange 

(NEE, gC m-2y-1) Gap-filled Flux, Reconstructed through MDS and PADL Algorithms 

   Uncertainty (gC m-2y-1)  

Site ID / Year Model ~ 
Q  Within Between Total  95% CI ρ 

  (gC m-2y-1) — 
U 

1/2 B1/2 
2

~ 
V 

1/2 Lower Upper  

AT-Neu 2010 MDS 558 24.7  49.4 509 608  

 PADL 645 27.2 34.2 88.4 556 733 0.63 

AU-Cpr 2012 MDS -203 6.6  13.2 -216 -190  

 PADL -232 6.7 6.1 18.2 -250 -214 0.46 

AU-How 2011 MDS -576 21.2  42.4 -618 -533  

 PADL -689 21.5 25.7 67.6 -756 -621 0.60 

DK-Sor 2009 MDS -314 22.7  45.4 -359 -268  

 PADL -312 22.8 7.2 47.9 -360 -264 0.09 

FI-Hyy 2007 MDS -240 12.1  24.3 -264 -216  

 PADL -282 11.9 10.2 31.5 -314 -251 0.44 

FR-Pue 2008 MDS -285 11.9  23.9 -309 -261  

 PADL -355 12.1 10.8 32.6 -387 -322 0.46 

GF-Guy 2008 MDS -103 34.4  68.8 -172 -34  

 PADL -85 37.7 56.6 137.6 -223 52 0.71 

IT-CA1 2012 MDS -319 14.8  29.6 -349 -290  

 PADL -383 14.9 12.8 39.5 -423 -344 0.44 

US-Los 2006 MDS -13 10.6  21.2 -34 8  

 PADL -15 10.7 17.7 41.8 -57 27 0.75 

US-Ne2 2012 MDS -452 42.2  84.3 -537 -368  

 PADL -480 42.4 6.5 85.9 -566 -395 0.02 
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adequately described using a linear relationship with abiotic 

exogenous factors. In contrast, the effect of lagged variables, in 

particular of biotic endogenous factors, plays a key role in ex-

plaining the complex dynamics of EC fluxes. 

Improvements in correctly reproducing the DGP of EC 

fluxes are indeed possible if we take into account that the ab-

solute value of overimputed residuals, under both the ADL and 

PADL models, show significant intra-day correlations. This 

empirical evidence suggests that variability in EC flux time 

series varies with time. For this purpose, on the basis of the 

results found in Richardson et al. (2008), which reported that 

random flux errors more closely followed a fat-tailed non-

Gaussian distribution, we considered a stochastic volatility mod- 

el for high-frequency data proposed by Beltratti and Morana 

(2001). This model showed an improved ability in modelling 

both persistence and intra-day cyclical components in flux 

variability. These results will be published elsewhere. 

Notwithstanding that there still remains a vast room for 

exploration of more flexible models, we expect that the strategy 

proposed in this paper will become useful in creating multiple 

imputations for a variety of EC dataset, and providing valid in-

ferences for a broad range of scientific estimands (such as an-

nual budgets). 
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