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ABSTRACT. The increasing penetration of wind power raises the problem of maintaining grid frequency stability. The purpose of this 
paper is to quantitatively describe the relationship between wind power fluctuations and grid frequency deviation. The fluctuation 
characteristics of wind power are analyzed in multi-time scales by wavelet methods. Then, a mathematical model representing wind 
power fluctuations is established. Using this model and the frequency response transfer function of power system, the frequency deviation 
can be obtained. A coefficient to measure the frequency regulation ability (FRA) of power system is defined as the ratio of wind power 
fluctuations to frequency deviations. Based on a series of calculation results of FRA in a two-area power system with large-scale wind 
power integration, a strategy for deploying appropriate thermal units participating in frequency regulation is proposed. In this strategy, 
the future frequency deviation of the system can be assessed, which helps operators to adjust the deployment of thermal units reasonably. 
Case studies show that this strategy can be widely applied in decreasing grid frequency deviation caused by wind power fluctuations. 
 
Keywords: frequency deviation, frequency regulation ability, frequency regulation, wind power fluctuation, wavelet methods, units 
deployment 
  

 

1. Introduction 

As a renewable and environmental friendly energy source, 
wind generation has recently witnessed accelerated expansion 
throughout the world (Yao, et al., 2012; Wu et al., 2016; Ji, et 
al., 2016). However, due to the stochastic nature of wind, the 
resulting fluctuations in intermittent wind energy substantially 
handicap large-scale integration of wind power into regional 
power grids (Tan et al., 2013; Suo et al., 2013; Hu et al., 2014). 
In order to maintain stable operations, electric power utilities 
need some technical support to suppress the fluctuations of 
wind power (Bouffard and Galiana, 2008; Luickx et al., 2009; 
Al-Awami and El-Sharkawi, 2011). 

Wind power fluctuations would cause frequency deviation 
from the standard. Excessive grid frequency deviation could 
affect normal system operations and, may even cause power 
system splitting. In this case, it is important to find the quan-
titative relationship between wind power fluctuations and grid 
frequency deviation. By analyzing this relationship, strategies 
for wind power smoothing can be made and the risk of exces-
sive frequency deviation can be avoided. 

To figure out the relationship, the primary concern is the 
modeling of wind power fluctuation characteristic. Many ap-

proaches have been proposed to quantify wind power fluc-
tuations in published studies, such as the probabilistic fore-
casting method (Boutsika and Santoso, 2012; Khosravi et al., 
2013; Can et al., 2014), and the frequency and time domain 
analysis method (Sorensen et al., 2007; Nazir and Bouffard, 
2012). In this paper, the characteristics of wind power fluctua-
tions are analyzed by the wavelet methods in multi-time scales. 
Figure 1 describes three wavelet components of wind power. 
Figure 1a presents the low frequency component of wind pow-
er. Figure 1b and Figure 1c present minute time-scale and sec-
ond time-scale fluctuating component respectively. As shown 
in Figure 1, there is a significant relationship between low fre-
quency component and fluctuating components (Kisi et al., 
2013). Based on this relationship, a wind power fluctuation 
model is constructed. 

In terms of assessing grid frequency deviation, the meth-
odology used in (C. Luo, 2006; C. Luo, 2007; H. Banakar, 
2008) consisted of modeling a test power system in a simula-
tion software. The wind farm output power fluctuation is repre-
sented by a sinusoidal time varying signal. Conclusion regard-
ing robustness against wind power fluctuation in (Luo and Ooi, 
2006; Luo et al., 2007; Banakar et al., 2008) is formed until 
wind penetration reaches 27.6%. Such conclusions are drawn 
only based on the analysis of deterministic wind power fluctu-
ations. However, the stochastic power fluctuation of the wind 
farm is not included (Luo and Ooi, 2006; Luo et al., 2007; 
Banakar et al., 2008). In Lin et al. (2012), a method based on 
“Time-Frequency Transformation” is presented, where the sto-
chastic wind power fluctuation is taken into full account. In this 
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paper, a stochastic analytical approach is applied for analyzing 
the relationship between the stochastic wind power and grid 
frequency deviation. Then, a new coefficient to measure the 
frequency regulation ability of power system is defined.  

 

 
 

Figure 1. Modulation effect between 15-minute moving 
average wind power Pഥw(t) and fluctuations component m(t), 
s(t). (a) low frequency component of wind power; (b) minute 
time-scale fluctuating component of wind power; (c) second 
time-scale fluctuating component of wind power. 

 

To reduce the risk of excessive frequency deviation, rea-
sonable power system operating strategies should be formu-
lated. Many studies have shown that wind power fluctuations 
can be smoothed by appropriate control and deployment of 
conventional thermal units. The effect of fluctuating wind pow-
er on frequency deviation is studied in (Sorensen et al., 2007) 
and operation reserve is suggested to increase with the increase 
of wind power scale. In (Ortega-Vazquez and Kirschen, 2009; 
Xia et al., 2013), methods about how to determine and deploy 
the system operation reserve to compensate the fluctuation of 
wind power are presented. In addition, system operators should 
dictate the dynamic requirements of the scheduled reserve ca-
pacity for conducting the primary and secondary frequency 
regulation tasks at the system level (Galiana et al., 2005; 
Bouffard and Ortega-Vazquez, 2011). In general, most thermal 
units are participating in primary frequency regulation and only 
a few AGC units would participate in secondary frequency reg-
ulation. In order to avoid excessive grid frequency deviation, 
both system operation reserve and the deployment of different 
kinds of thermal units should be taken into consideration. In 
this paper, a FRA based strategy for appropriately deploying 
thermal units participating in frequency regulation is proposed. 
Case studies are conducted to show how this strategy is im-
plemented to reduce excessive frequency deviation caused by 
wind power fluctuations. 

The main contributions of this paper are: 

1) a novel multi-timescales wind power fluctuation model 
based on wavelet multi-resolution signal decomposition and re-
construction method is proposed; 

2) a method to analyze the relationship between the sto-
chastic wind power and grid frequency deviation using the sto-
chastic analytical approach is proposed. A new coefficient to 
measure the FRA of power system is defined; 

3) a strategy for thermal units deployment to avoid exces-
sive frequency deviation caused by wind power fluctuations is 
conducted. 

The remainder of the paper is organized as follows. In Sec-
tion 2, a time domain model of wind power fluctuation is pre-
sented. The theoretical foundation and procedure for calculate-
ing FRA are shown in detail in Section 3. FRA under different 
conditions is calculated and a strategy for deploying thermal 
units participating in frequency regulation is presented in Sec-
tion 4. Case studies are conducted in Section 5. Conclusions are 
finally drawn in Section 6. 

2. Modeling of the Wind Power Fluctuations 

2.1. Modulation Effect of Wind Power Low Frequency 
Component 

In this paper, the characteristic of wind power fluctuations 
mainly refers to the fluctuation magnitude in different time 
scales. The analysis is based on the actual wind power data 
sampled every 5-second. Measured wind power time series 
Pw(t) are decomposed into three parts by 8-level discrete wave-
let decomposition and reconstruction methods (Rahmani, 
2015). The three parts of Pw(t) are low frequency component 
Pഥw(t) , minute time-scale wind power fluctuation component 
Ptm(t) and second time-scale wind power fluctuation compo-
nent Pts(t). 

As shown in Figure 1, there is a significant relationship be-
tween the low frequency component Pഥw(t) and the fluctuation 
components Pt(t) = Ptm(t) + Pts(t). The amplitude of Ptm(t) and 
Pts(t) are large when the amplitude of Pഥw(t) is large. When the 
amplitude of Pഥw(t) is nearly zero, the amplitudes of Ptm(t) and 
Pts(t) are also very small. 

To analyze the relationship between each component in 
more detail, standard deviations of Pt(t), Ptm(t) and Pts(t)    
are marked as (t), m(t) and s(t). Then, Pഥw(t)  and its cor-
responding (t), m(t) and s(t) are sorted by amplitude. The 
curve fitting result of Pഥw(t) and (t) is shown in Figure 2.  

As shown in Figure 2, the relation between (t) and Pഥw(t) 
can be described by a power exponential function. It can be in-
ferred that the amplitude of Pt(t) is modulated by Pഥw(t). 

The functional relation between (t) and Pഥw(t) can be ob-
tained by fitting the empirical data: 

 
b

Wa P c      (1) 
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Figure 2. Fitting curve between Pഥw(t) and (t). 

 

2.2. Minute-scale Wind Power Fluctuation Model 

The relative variation between m(t) and Pഥw(t), which is 
defined as rm(t), can be calculated by the ratio of m(t) to 
Pഥw(t) . The correspondence between rm(t) and Pഥw(t)  in per 
unit value is shown in Figure 3.  

 

 
 

Figure 3. Fitting curve between m(t) and Pഥw(t). 
 

From Figures 2 and 3, m(t) increases, while rm(t) de-
creases as Pഥw(t)  increases. In addition, as Pഥw(t)  increases, 
rm(t) decreases in a gradually gentler way. By curve fitting, 
this relation can be expressed as an approximated power func-
tion:  

 
mb

rm m W m W mP a P c        (2) 

where am, bm, and cm are fitting coefficients. 

In order to compare the fluctuation characteristics of wind 
power from different wind farms, the wind power data from 
northeast and northwest of China have been analyzed. The 
curve fitting results are shown in Table 1. 

 
Table 1. Curve Fitting Results of Different Wind Farms 

Sequence number 
of wind farm 

Curve fitting results 

1 σrm = 0.0086PഥW
-0.5927

 + 0.0076 

2 σrm = 0.0123PഥW
-0.7526

 + 0.0043 

3 σrm = 0.0115PഥW
-0.4665

 + 0.0129 

4 σrm = 0.0201PഥW
-0.6752

 + 0.0274 

5 σrm = 0.0251PഥW
-0.5307

 + 0.0108 

 
As shown in Table 1, the values of am, bm, and cm vary from 

different wind farm locations and topographies. The maximum 
values of am and cm are 3 and 6 times larger than their minimum 
values respectively. The variations of bm have significant influ-
ence on rm only when Pഥw is small. 

From Equation (2), the standard deviation of minute time-
scale wind power fluctuations can be forecasted. In power sys-
tems, secondary frequency regulation is mainly responsible for 
frequency deviation in minute time-scale. Thus, this model is 
suitable for analyzing the influence of wind power fluctuation 
on secondary frequency regulation. 

 

2.3. Second-scale Wind Power Fluctuation Model 

The relationship between rs(t) and Pഥw(t)  can be seen 
from Figure 4 using above method. 

 

 
 

Figure 4. Fitting curve between rs(t) and Pഥw(t). 
 

The relationship between rs(t) and Pഥw(t)  can be ex-
pressed as an approximate power function: 
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sb

rs s W s W sP a P c        (3) 

 
where as, bs, and cs are fitting coefficients. 

The curve fitting results are shown in Table 2 using the 
same data from five wind farms. 

 
Table 2. Curve Fitting Results of Different Wind Farms 

Sequence number of 
wind farm 

  Curve fitting results 

1 σrs = 0.0042PഥW
-0.5409

 + 0.0022 

2 σrs = 0.0059PഥW
-0.3462

 + 0.0037 

3 σrs = 0.0054PഥW
-0.4188

 + 0.0085 

4 σrs = 0.0069PഥW
-0.7408

 + 0.0234 

5 σrs = 0.0102PഥW
-0.3612

 + 0.0062 

 
Results in Figures 3 and 4 show that the method above is 

useful in modeling wind power fluctuations. The approximate 
power function universally applicable to describe wind power 
fluctuations from different wind farms in various time-scales. 
The coefficients in the functions can be obtained by processing 
the historical data from different wind farms. 

3. Method for Assessing System Frequency 
Regulation Ability Consider Wind Power 

Fluctuations 

After analyzing the fluctuation characteristic of wind pow-
er, this section outlines the method for assessing frequency reg-
ulation ability of power systems with wind power fluctuations. 

 
3.1. Basic Mathematical Theories for Stochastic Process 
Analysis 

In stochastic system analysis, the stochastic time series in-
put signal x(t) is divided into segments xk(t) (k = 1, 2, …, n), 
with equal time duration. Each segment undergoes Fast Fourier 
transform (FFT) to form frequency domain inputs xk(f). In a sto-
chastic system, the relation Y(f) = H(f)X(f) cannot be used. In-
stead, a similar relation exists based on the concept of power 
spectrum density (PSD) theory. The PSD Sx(f) is determined as 
(Sorensen et al., 2007): 

 

      
x

S f f E X f X f
      (4) 

 
where f is the sample frequency, X(f) represents a vector con-
sisting of Xk(f), the  operator denotes the complex conjugate 
of X(f) and E() represents ensemble average. E() is calculated 
as the average of the product of Xk(f) and Xk

(f) in frequency 
domain as: 

 

        * *

1

1 n

k i i
i

E X f X f X f X f
n 

      (5) 

For an input PSD, Sx(f), the output PSD, Sy(f) is obtainable 
from the following formula: 

 

     2

y xS f H f S f    (6) 

 
The input signal x(t) is assumed to be a zero-mean random 

stationary process. As a stationary process, the variance of out-
put y(t) is obtainable from Equation (7). 

 

 2 1

2
y yS f df







     (7) 

 
3.2. Definition of Primary Frequency Regulation Ability 

Primary frequency regulation in a power system is a dy-
namic stochastic process that can automatically respond to fre-
quency deviation within second time-scale (Daren and Yufeng, 
2004). The variance of a stochastic variable is an illustration of 
the amplitude of variation. Then, a coefficient called primary 
frequency regulation ability (PFRA) is introduced as follows:  

 

variance of wind power fluctuation (seconds)

variance of grid frequency deviation

PFRAD 

  (8)  

 
This coefficient represents the influence of second time-

scale wind power fluctuations on system frequency deviation. 

The frequency response |H(f)| of the power system is con-
structed by transfer functions of many components. DPFRA is af-
fected by transfer function of each component. Since the goal 
of frequency regulation is to maintain system frequency devia-
tion within a certain range fT, Equation (8) can be transformed 
into Equation (9): 

 

1

variance of wind power fluctuation (seconds)

f

PFRAD

 

   (9) 

 
where f1(t) is the frequency deviation caused by second time-
scale wind power fluctuation. fT (fT = 3fT) is the threshold 
val-ue of frequency deviation. 

 
3.3. Definition of Secondary Frequency Regulation Ability 

Secondary frequency regulation in a power system mainly 
deals with minute time-scale wind power fluctuations. Similar-
ly, a coefficient named secondary frequency regulation ability 
(SFRA) is defined as follows: 

 

variance of wind power fluctuation (minute)

variance of grid frequency deviation

SFRAD 

   (10) 
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DSFRA represents the ratio of variance of minute time-scale 
wind power fluctuation and variance of frequency deviation 
during a period of time only with secondary frequency regula-
tion effect. Equation (10) can be transformed into Equation (11) 
with the above method: 

 

2

variance of wind power fluctuation (minute)

f

SFRAD

 

   (11) 

 

where f2 is the frequency deviation caused by minute time-
scale wind power fluctuation. 

Based on the above analysis, a method for assessing fre-
quency regulation ability of power systems with wind power 
fluctuations is illustrated in Figure 5. 

 

 
 

Figure 5. Overview of the calculation process of DPFRA and 
DSFRA. 

Three major steps of the method are outlined as follows: 
(1) The minute and second time-scale wind power fluctuation 
time series xm(t) = m(t) and xs(t) = s(t) are predicted from 
Equations (2) and (3). Then, Xmk(f) and Xsk(f) are obtained via 
FFT. (2) By substituting Xmk(f) and Xsk(f) into Equations (4) ~ 
(7) respectively, the variance of grid frequency deviation 
caused by minute and second time-scale wind power fluc-
tuation are obtained. (3) Finally, the DPFRA and DSFRA are 
calculated to quantify frequency regulation ability of power 
systems with wind power fluctuations in different time-scales. 

4. System Frequency Regulation Ability Calculation 
in a Case Study 

A two-area power system for case study is presented in 
Figure 6 (Elgerd and Fosha, 1970). 

 

 
Figure 6. Block diagram of two-area system with AGC control 
include wind power. 

 

This paper focuses on the influence of wind power fluctua-
tions on system frequency. Thus, the load stochastic fluctuation 
and faults of power system are not considered. Area A com-
prises of a wind farm and thermal plants, whereas area B com-
prises only of thermal plants. The two areas are connected by a 
tie-line. Data used for analysis is a one-month record of the ac-
tual wind power data sampled every 5 seconds from a wind 
farm located in China. This section is organized as follows: 

1) Analytical expressions of DPFRA and DSFRA in a two-area 
power system are given and calculated.  

2) The influence of different factors on frequency regula-
tion ability of power systems are given and calculated. 
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4.1. Derivation of DPFRA and DSFRA 

Step I: The first step is to obtain the variance of stochastic 
wind power fluctuation.  

The 15-minute moving average wind power time series 
Pഥw(t) is taken as the input of Equations (2) and (3). The minute 
and second time-scale wind power fluctuation components are 
predicted from Equations (2) and (3). In this case, the coeffi-
cient values are am = 0.0115, bm = −0.4665, cm = 0.0129, as = 
0.0054, bs = −0.4188, cs = 0.0085. 

The minute time-scale fluctuation component m(t) is split 
into 5-minute segments and second time-scale fluctuation com-
ponent s(t) is divided into 30-second segments. Each segment 
undergoes FFT to yield X(f) in frequency domain. The period 
of each segment is Tseg. Thus, the corresponding frequency f 
in (4) is 1/Tseg. Using Equations (4) and (5), PSD of wind power 
fluctuations Sw(f) are computed. 

By substituting Sw(f) into Equations (7), the variance of 
wind power fluctuations can be obtained by:  

 

 2 1

2pw wS f df






     (12) 

 

Step II: This step is to obtain the variance of frequency 
deviation in area A caused by wind power fluctuations and the 
frequency response transfer function |H(f)|. 

Since the focus is the impact of wind power fluctuations 
on system frequency deviation. The load fluctuation is assumed 
to be zero in Figure 6. 

1) Primary frequency regulation: In this subsection, 
only the primary frequency regulation effect is taken into con-
sideration. The frequency deviation fA1(s) in area A caused by 
second time-scale wind power fluctuation pw1(s) can be ex-
pressed as:  

 

     1 1

1
fA pw

a A A A

s s
T s G s

 


 
 

   (13) 

 

and GA(s) = ∑ αiA

δiA
GiA(s)M1

i=1 . 

 

The primary frequency response transfer function Hp(s) = 
fA1(s)/pw1(s) has been obtained through Equation (13). 

 

   
1

p
a A A A

H s
T s G s


 

   (14) 

 

Where Sw1(f) is the PSD of second time-scale wind power 
fluctuation. By substituting Sw1(f) and Equation (14) into 
Equation (6), Sy1(f), the PSD of grid frequency deviation caused 
by second time-scale wind power fluctuation is predicted. 

     
2

1 1

1
y w

a A A A

S f S f
T s G s

 
 

   (15) 

 

where fA1 is a deviation variable with a mean value of 0. By 
substituting Equation (15) into Equation (7), the variance of 
fA1(s) is computed as:  

 

 

   

22
1 1

2

1

1

2

1 1

2

fA fA

w
a A A A

f df

S f df
T s G s

 


 












 




   (16) 

 

2) Secondary frequency regulation: In this subsection, 
only the secondary frequency regulation effect is taken into 
consideration. The frequency deviation in area A caused by 
minute time-scale wind power fluctuation pw2(s) can be ex-
pressed in the same form as Equation (13), where GA(s) is 
changed. 

The secondary frequency response transfer function Hs(s) 
= fA2(s)/pw2(s) can be expressed as: 

 

 
 

1

d

s
sA

a A A A

H s
BT s e G ss

 



   

   (17) 

 

Where Sw2(f) is the PSD of minute time-scale wind power 
fluctuation. By substituting Sw2(f) and Equation (17) into Equa-
tion (6), Sy2(f), the PSD of grid frequency deviation caused by 
minute time-scale wind power fluctuation can be predicted: 

 

 

 
 

2

2

2

1

d

y

w
sA

a A A A

S f

S f
B

T s e G s
s

 



   



   (18) 

 

The variance of fA2(s) is computed based on Equation (7):  

 

 

 
 

22

2 2

2

2

1

2

1 1

2 d

fA fA

w
sA

a A A A

f df

S f df
B

T s e G s
s



 


 















   




 (19) 

 

Step III: The last step is to obtain the analytical expression 
of DPFRA and DSFRA defined in Equations (8) and (10). 
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By substituting Equations (12) and (16) into Equation (8), 
the primary frequency regulation ability can be expressed as:  

 

 

    

2 2

1 1

1

2

11

PFRA pw fA

w

a A A A w

D

S f df

T jf G jf S f df

 

















   





   (20) 

 

where pfr and iA are the two main factors which influent the 
value of DPFRA. 

By substituting Equations (12) and (19) into Equation 
(10), the secondary frequency regulation ability can be ex-
pressed as:  

 

 

   
 

2 2

2 2

2

2

2

1

SFRA pw fA

w

w

a A A A A A

D

S f df

S f df
T jf B K jf G jf

 









 





 
   





(21) 

 

where GAሺsሻ = ∑ αiARiAGiA(s)M2
i=1 , Sw2(f) is the PSD of minute 

time-scale wind power fluctuation; sfr and KA are the two main 
factors which influent the value of DSFRA. 

 

4.2. Calculation of DPFRA and DSFRA of a Two-area Power 
System with Wind Power Fluctuations 

In this section, DPFRA and DSFRA of a two-area power sys-
tem are calculated. The system consists of two areas connected 
by a tie. Area A consists of four thermal units and a wind farm. 
The overall capacity of Area A and the wind farm is 3,000 and 
600 MW respectively. Area B consists of four thermal units and 
the overall capacity is 2,000 MW. Condensation steam turbine 
generator is utilized in this case study. The transfer function of 
generator i is Giሺsሻ = 1/ሺT0s + aሻ∙1/ሺTss + 1ሻ, where Ts is the 
time constant for hydraulic servomotor, T0 is the time constant 
for high pressure cylinder volume. The values of these coeffi-
cients are Ts = 0.2 s, Ts = 0.2 s, iA = iB = 0.05, KA = KB = 0.25. 

(1) Calculation of DPFRA: pfr and iA are the two main 
factors that influent the primary frequency regulation ability. 
By applying the variable control method, the impacts of each 
factor on DPFRA are analyzed. DPFRA under different values of 
iA and pfr can be calculated using Matlab. The calculation re-
sults are shown in Table 3. 

As shown in Table 3, the DPFRA of area A increases as iA 
decreases or as pfr increases. Concrete analysis results are as 
follows: 

Table 3. DPFRA at different δiA and αpfr 

             δiA = 0.03 δiA = 0.04 δiA = 0.05 

αpfr (%) 10 
20 
30 
40 
50 
60 
70 
80 

3.3155  
6.6310 
9.9466 
13.2621  
16.5776  
19.8931  
23.2086 
26.5242 

2.4854  
4.9709 
7.4563 
9.9418 
12.4272  
14.9127  
17.3981 
19.8836 

1.9881  
3.9761 
5.9642  
7.9523 
9.9403 
11.9284  
13.9164 
15.9045 

 

a) DPFRA is in direct proportion to pfr when iA stays invari-
ant. When the proportion of primary frequency regulation units 
pfr changes from p to q%. DPFRA changes from the original val-
ue x to ሺq/pሻ∙x. 

b) When pfr has an invariant value of w, the relationship 
between DPFRA and iA can be described as: 

 

PFRA
iA

w
D


    (22) 

 

(2) Calculation of DSFRA: Proportion of thermal units in-
volved in secondary frequency regulation and KA are two main 
factors affect the secondary frequency regulation. The effects 
of each factor on DSFRA are studied using the variable control 
method. DSFRA under different values of sfr and KA are calcu-
lated which is shown in Table 4. 
 

Table 4. DSFRA at different KA and αsfr 

                KA = 0.25 KA = 0.5 KA = 0.75 

αsfr (%) 10 
20 
30 
40 
50 
60 
70 
80 

5.9818 
11.9636  
17.9455  
23.9273  
29.9091  
35.8909  
41.8727 
47.8545 

15.0133  
30.0267  
45.0459  
60.0533  
75.0667 
90.0800 
105.0933 
120.1067 

23.8114  
47.6227  
73.4341 
95.2454 
119.0568 
146.8642 
166.6795 
190.4909 

 

From Table 4, DSFRA of area A increases as sfr increases. 
Concrete analysis results are as follows: 

a) DSFRA is in direct proportion to sfr when KA stays invari-
ant. When the proportion of primary frequency regulation units 
sfr changes from p to q%, DSFRA changes from the original val-
ue x to ሺq/pሻ∙x. 

b) When sfr is invariant, DSFRA increases as KA increases. 
When KA increases from 0.25 to 0.5, DSFRA increases to 2.5 
times of the previous value. When KA increases from 0.25 to 
0.75, DSFRA increases to nearly 4 times of the previous value. 

Grid operators mainly concerned about the risk of exceed-
ing the frequency deviation limits due to wind power fluctua-
tions for the next dispatch cycle. DPFRA and DSFRA are two prac-
tical indexes to evaluate the grid’s ability of smoothing out 
wind power fluctuations. 
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5. Applications of DPFRA and DSFRA on Power 
System Operation 

This section outlines how DPFRA and DSFRA are utilized in 
power system operation. Figure 7 illustrated the major steps of 
the method based on the test system of Figure 6. 

 

 
 

Figure 7. Method of utilizing DPFRA and DSFRA on power system 
operation. 
 

As shown in Figure 7, after wind power fluctuations are 
predicted by Equations (2) and (3), DPFRA and DSFRA can be 
computed by Equations (20) and (21). System frequency devia-
tion due to different time-scale wind power fluctuations can be 
obtained from Equations (9) and (11). If the frequency devia-
tions exceed the threshold values, the operator can adjust the 
proportion of units participating in frequency regulation in the 
following dispatch cycle until an acceptable frequency devia-
tion is obtained. 

Four case studies based on the two-area system in Figure 
6 are presented: 

Initial operation condition of the system: the units par-
ticipating in primary frequency regulation in area A and B ac-
count for 10 and 20% respectively, the units participating in 
secondary frequency regulation in area A and B account for 10 
and 20% respectively. iA = iB = 0.05，KA = KB = 0.25. Ac-
ceptable grid frequency deviation is limited to ±0.02 Hz.  

Based on the method in Figure 7, four cases study are pre-
sented to decrease frequency deviation. The operation condit-
ions of each case are shown as follows: 

Operation condition of Case I: w = 20%; pfr increases 
from 10 to 20%; ∑ αiA

M2
i = 1  increases from 10 to 20%. 

Operation condition of Case II: w = 20%; ∑ αiA
M1
i = 1  in-

creases from 10 to 20%; KA increases from 0.25 to 0.5. 

Operation condition of Case III: w = 20%; ∑ αiA
M2
i = 1  

increases from 10 to 20%; iA decreases from 0.05 to 0.03. 

Operation condition of Case IV: w = 20%; KA increases 
from 0.25 to 0.5; iA decreases from 0.05 to 0.03. 

Simulations are performed using MATLAB under dif-
ferent operating conditions. Corresponding frequency devia-
tion curves are shown in Figure 8. Figure 8a shows the frequen-
cy deviation under the initial operation condition. Figure 8b ~ 
8e show the frequency deviations under operation conditions 
of each case respectively. As seen from Figure 8a, grid fre-
quency deviation cannot be maintained within a stable range of 
±0.02 Hz when wind power accounts for 20% in grid. 

 

 
 

Figure 8. Frequency deviation of Area A in different cases. (a) 
frequency deviation of initial condition; (b) frequency 
deviation of CASE I; (c) frequency deviation of CASE II; (d) 
frequency deviation of CASE III; (e) frequency deviation of 
CASE IV. 
 

Under the operation condition of Case I, DPFRA increases 
from 1.9881 to 3.9761 and DSFRA increases from 5.9818 to 
11.9636. Under operation condition of Case II, DPFRA increases 
from 1.9881 to 3.9761 and DSFRA increases from 5.9818 to 
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15.0133. Under operation condition of Case III, DPFRA in-
creases from 1.9881 to 3.3155 and DSFRA increases from 5.9818 
to 11.9636. Under operation condition of Case IV, DPFRA in-
creases from 1.9881 to 3.3155 and DSFRA increases from 5.9818 
to 15.0133. 

DPFRA and DSFRA increase from the initial value in Case I ~ 
Case IV. The standard deviations of system frequency devia-
tion under each case are shown in Figure 8. The standard devia-
tion of system frequency deviation reduces from 0.00060035 
to 0.00030733, 0.00029944, 0.00029641 and 0.00029335, re-
spectively. 

6. Conclusions 

This work presents a novel method for assessing the influ-
ence of stochastic wind power fluctuations on system frequen-
cy deviation. This research has the following advantages:  

1) Wind power fluctuation model. Stochastic wind power 
fluctuations are fully analyzed in multi-time scales by the 
wavelet methods. A power-law model with three parameters is 
presented. The model is available for predicting both second 
and minute time-scale wind power fluctuations in time domain.  

2) Quantitative frequency deviation assessment. The rela-
tionship between the stochastic wind power and grid frequency 
deviation is analyzed. Two practical indexes are defined to 
evaluate the grid’s ability of smoothing out wind power fluctua-
tions. The evaluation results help to verify whether the perfor-
mance of power system satisfies grid codes.  

3) Wide adaptability. Based on the online calculation re-
sults of DPFRA and DSFRA, a strategy for deploying appropriate 
thermal units participating in frequency regulation is presented. 
Cases study show that this strategy is adaptable for decreasing 
grid frequency deviation. 

In summary, this method is particularly valuable and 
practical for interconnected grids with a large amount of wind  
power integration. 
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Nomenclature 

M1 Number of thermal units that participating in primary 
frequency regulation in area A. 

M2 Number of thermal units that participating in second-
ary frequency regulation in area A. 

N1 Number of thermal units that participating in primary 
frequency regulation in area B. 

N2 Number of thermal units that participating in second-
ary frequency regulation in area B. 

δiA Speed droop of generator i in area A. 
αiA Ratio of installed capacity of generator i to installed 

capacity of area A. 
Ri Coefficient of power budget of the units that partici-

pating in secondary frequency regulation. 

αpfr Proportion of thermal units participating in primary 
frequency regulation, α

pfr = ∑ αiA
M1
i = 1 . 

αsfr Proportion of thermal units participating in secondary 
frequency regulation, α

pfr = ∑ αiA
M1
i = 1 . 

Gi(s) Transfer function of generator i. 
Tai Time constant of rotor i, in s. 
TaΣ Inertia time constant of electric power system. 
TAB Synchronizing torque coefficient. 
β Coefficient of load-frequency characteristic. 
KA Integrator gain in AGC control of area A. 
BA Frequency bias factor in area A. 
χNL(s) Variation of system load in the frequency domain. 
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