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ABSTRACT. This article proposes and verifies a novel intelligence approach for modelling forest fire danger developed based on a 

hybrid model of Imperialist Competitive Algorithm (ICA) and Relevance Vector Machine (RVM). The hybrid model is named as ICA-

RVM. They are state-of-the art machine learning techniques that have not been investigated for forest fire danger modeling. RVM is 

used to establish a prediction model that computes probability of fire danger, whereas ICA is adopted to optimize the predict ion model. 

The tropical forest at Gia Lai province, Central Highland (Vietnam), was used as a case study. A geographic information system (GIS) 

database featuring 12 fire ignition factors has been established to train and verify the hybrid intelligence model. Area under the curve 

(AUC) and statistical measures were used to assess the model performance. The result showed that the proposed model achieves high 

performances; AUC is 0.842 and 0.793 on the training dataset and the validation dataset, respectively. Compared to two benchmarks, 

Random Forests and Support Vector Machine, the proposed model performs better. Therefore, the propose ICA-RVM is a valid alternative 

system for forest fire danger modeling. 
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1. Introduction 

Forest fire, which is currently a global problem, is a result 

from complex interactions among vegetation fuels, weather and 

climate and human landuse activities (Dupire et al., 2017). Over 

the past decades, due to climate change, forest fires have in-

creaseingly become a serious natural hazard that threaten local 

communities, destroy vast amounts of natural resources, causing 

soil degradation and air pollution (Conard et al., 2017; You et 

al., 2017). In addition, change of climate i.e., prolonged dry weath- 

er with high temperature is expected to increase in both number 

of fires and areas burned in many regions in the world (Doerr 

and Santín, 2016). Therefore, a better knowledge of fire risk 

valuably helps to minimize losses to residents, economic active- 

ities, and buildings within territories vulnerable to forest fires. 

A forest fire danger map is able to reveal areas highly 

vulnerable and affected by the hazard and therefore assists the 
development of land use planning. In addition, information on 

the spatial distribution of fires is a requisite to meliorate fire 
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prevention strategies and tactics (Pourghasemi et al., 2016), 

quantify economic losses from wildfires (Alcasena et al., 2016), 

study the human influence on fire ignition (Fusco et al., 2016), 

or investigate the effects of climatic and local factors on fire 

occurrences (Wu et al., 2014). Furthermore, the spread of fires 

in forests is a complicated phenomenon conditioned by the fuel 

area, wind speed, wind direction, slope, and other factors (You 

et al., 2017). These facts make spatial modeling forest fire is 

indeed still a challenging task. 

Recent advancements in geographic information system 

(GIS) and remote sensing (RS) technologies have facilitated 

many research works on spatial modeling of forest fires 

(Chuvieco et al., 2010; Duarte, 2013; Teodoro et al., 2015; 

Teodoro and You et al., 2017) due to the ability to handle large-

scale databases with multi-layered information of spatial char- 

acteristics (Tien Bui et al., 2017a). Various studies have em- 

ployed probabilistic and physical models including Fuel Mois- 

ture Content (FMC) (García et al., 2008), Fire Area Simulator 

(FARSITE) (Krasnow et al., 2009), Maximum Entropy (Renard 

et al., 2012), mathematical models (Grishin and Filkov, 2011), 

analytic hierarchy process (Güngöroğlu, 2017), and numerical 

simulation (Sanjuan et al., 2016). However, due to the multi- 

variate nature of the problem at hand, it is still difficult to 

predict future forest fires. 
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Figure 1. An illustration of RVM classification concept. 

 

Therefore, advanced statistical and machine learning meth-

ods have drawn the attention of researchers in spatial modeling 

of various natural hazards (Bui et al., 2016; Hoang and Tien 

Bui, 2016a; Pham et al., 2016; Tien Bui et al., 2016c; Shirzadi 

et al., 2017). Since the problem of fire danger mapping can be 

formulated as a pattern classification task, machine learning 

algorithms can effectively help to establish accurate prediction 

models based on GIS databases. Carvalho et al. (2006) attempt-

ed to construct a forest fire modelling method based on fuzzy 

logic and cellular automata. Koetz et al. (2008) relied on Sup-

port vector machine (SVM) for performing multi-source land 

cover classification for forest fire management. Bisquert et al. 

(2012) applied artificial neural networks (ANN) and logistic 

regression (LR) to predict forest fire danger. Pourtaghi et al. 

(2015) employed Shannon’s entropy to construct forest fire 

susceptibility maps in Iran. Pierce et al. (2012) and Pourtaghi 

et al. (2016) used random forests (RF) to construct forest fire 

susceptibility maps. Adaptive neuro-fuzzy inference systems 

have been employed Tien Bui et al. (2017b). A common finding 

of these studies is that machine learning provides an effective 

solution for analyzing large-scale data sets and deriving highly 

accurate prediction models for forest fire mapping. Therefore, 

exploration of new machine learning algorithms for forest fire 

modeling is highly necessary. 

In this study, we aim at extending the body of knowledge 

by proposing a new alternative for the problem of forest fire 

danger modeling. The proposed approach is a novel integration 

of Relevance Vector Machine (RVM), the Imperialist Competi-

tive Algorithm (ICA), and a GIS database. RVM, which was 

proposed by Tipping (2000), is a Bayesian inference approach 

for probabilistic classification. Since forest fire evaluation is 

undoubtedly a complicated and uncertain problem (Brunette et 

al., 2017; Tien Bui et al., 2017b) and it is very desirable for the 

decision-makers to obtain a prediction model that can exhibit 

the uncertainties associated with the estimations, probabilistic 

models for forest fire susceptibility mapping is a practical need. 

Furthermore, the model construction of RVM requires an ap-

propriate setting of its tuning parameter, so ICA is integrated 

with RVM to assist the model establishment. ICA has been 

demonstrated in the previous studies to be an effective meta-

heuristic approach for solving optimization method in continu-

ous space (Hosseini and Al Khaled, 2014). The tropical forest 

of the Gia Lai province in the Central Highland of Vietnam was 

selected as a case study to train and verify the proposed inte- 

grated model. This province has particularly faced with the 

forest fire problem during the last ten years. Especially, this is 

one of the most sensitive provinces to El Niño Southern 

Oscillation that caused serious droughts and forest fire in 2016 

(CGIAR, 2016). 

2. Theoretical Background of the Methods Used 

2.1. Relevance Vector Machine 

Developed by Tipping (2000), Relevance vector machine 

(RVM) is a Bayesian inference method which can be applied 

for probabilistic pattern recognition. The functional form of 

RVM is similar to that of the SVM proposed by Vapnik (1998). 

Moreover, RVM is capable of yielding probabilistic classifi-
cation. Different from SVM, expectation maximization-based 

method is employed to establish the RMV prediction model. 

This algorithm also relies on a kernel function to deal with data 

nonlinearity. RVM first maps the input data from the original 

space to a high dimensional feature space where the data can 

be linearly separated (see Figure 1). 

The following section briefly describes the RVM-based 

classification model. For more detail of this algorithm as well 

as its implementation, readers are guided to previous works of 

Tipping (2000) and Tipping (2009). Given a training data con-

sisting of a set of fire ignition factors  
1
,

N

i i 
X x with corre-

sponding target classes  
2

1
,i i

C C


 the task at hand is to construct 

a classification boundary that separates the input vector X into 

the two classification regions. In the current research context, 

forest modeling is considered to be a binary classification prob-

lem, the target outputs ci has two possible class labels, 0 for the 

non-forest fire class and 1 for the forest fire class. Given the 

input vector, the conditional distribution of the class label is 

provided as follows (Bishop and Tipping, 2000): 

 

   | ,iP c w yx  (1) 

 

where    1 1 yy e    denotes a logistic sigmoid function; 
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where w denotes a vector of the model weights;  represents 

a vector of basis function. The basis function that is often em-

ployed is the Gaussian radial basis function (Samui, 2012): 
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where r represents the width of the radial basis function. It is 

proper to note that the parameter r affects the smoothness of the 

classification boundary, and therefore, this parameter should be 

appropriately selected for the training process of the RVM 

model. 

The likelihood function for all data points is given in the 

form of a Bernoulli distribution (Tipping, 2000) as follows: 
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In addition, a sparse weight prior distribution can be 

obtained by assigning a different variance parameter for each 

weight (Tipping, 2001). Hence, the prior distribution over w is 

given in the following manner (Tipping and Faul, 2003): 
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where N(z|µ, S) is a multivariate Gaussian distribution over z 

with mean µ and covariance S; α = (α0, α1, …, αM) is a vector 

of independent hyper-parameters; each element αj of the vector 

controls the strength of the prior over its associated weight wj. 

Given initial values of the hyper-parameter α, it is noted 

that      w |C, C | w w |p p p  and the most probable 

weight µ can be found by maximizing the penalized negative 

log-likelihood function over w (Tipping and Faul, 2003): 

 

1
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 (6) 

 

where A = diag (α1, α2,…, αM). 

The iteratively reweighted least squares algorithm (Nab-

ney, 1999) and the Laplace approximation procedure are then 

applied to solve the above optimization problem; the most 

probable weight µ and its covariance Σ are found as follows 

(Tipping, 2000; Tipping and Faul, 2003): 

T   BC  and T 1( )  B A   (7) 

 

where B = diag (β1, β2, …, βN) with βi = σ{y(xi)}. [1 – σ{y(xi)}]. 

Notably, when the optimization process ends, an inter-

esting outcome is that many elements of the hyper-parameter 

vector α approach infinity; thus, the weight vector w only has 

a few non-zero elements which are considered as relevant 

vectors (Tipping, 2000). After the training process, the vector 

of model weights w is then used to predict the posterior of the 

class label ci given an input vector x using Equation1. 

 

2.2. Imperialist Competitive Algorithm 

Imperialist Competitive Algorithm (ICA), proposed by 

Atashpaz-Gargari and Lucas (2007), is inspired from the field 

of human social evolution. This algorithm belongs to the group 

of swarm intelligence which can effectively deal with contin-

uous optimization problems (Hosseini and Al Khaled, 2014). 

However, exploration of ICA for forest fire modeling has not 

been carried out. 

Basically, as other metaheuristics, ICA is specifically de-

signed for solving optimization problem in which no exact 

algorithm can be applied in polynomial time, also called Non-

deterministic Polynomial time (NP)-hard problem (Marandi et 

al., 2014). The task of finding an optimal value for a machine 

learning model can be classified as a NP-hard problem since 

the interaction between the model structure and the training 

data is highly complex and there is an infinite number of pos-

sible values of the tuning parameter. Since successful appli-

cations of ICA have been widely observed (Hosseini and Al 

Khaled, 2014; Sadowski and Nikoo, 2014), this algorithm can 

be helpful to assist the training phase of RVM by selecting an 

optimal width of the radial basis function. 

In essence, ICA is a population-based stochastic search 

inspired by imperialistic competition. This algorithm attempts 

to mimic the social policy of imperialism in the real world.  

When an empire raises, it dominates more colonies and take 

advantage of their sources; if one empire falls, other empires 

will compete to take its possession. In ICA, individuals within 

the population represent countries and they interact with each 

other to form empires that possess colonies. 

ICA begins with an initial population and a pre-specified 

objective function (see Section 4.2). Based on the objective 

function value, the most powerful countries are chosen as im-

perialists and the others are colonies of them. The algorithm 

then simulates the competition among imperialists in order to 
acquire more colonies. The best imperialist typically has more 

chance to occupy more colonies. A population of ICA is illus-

trated in Figure 2. 

After colonies have been assigned to each imperialist, 

these colonies move towards their corresponding imperialists. 

These movements of colonies are demonstrated in Figure 3. In 

this figure, it is noted that α represents a uniformly distributed 

random number, generated as follows: 
 

 0,a U S:   (8) 
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where θ denotes a constant variable; typically, θ is greater than 

1 (e.g., 1.5) (Atashpaz-Gargari and Lucas, 2007). S is the 

distance between the colony and the imperialist. 

During the competition process, the weakest empire grad-

ually loses their colonies and other powerful empires attempt 

to obtain them. Moreover, if the colonies demonstrate more 

power than its relevant imperialist, they will exchange their 

positions (Kaveh and Talatahari, 2010). The empire that has no 

colonies will collapse and eventually the most powerful empire 

will dominate all other empires and represent the final optimal 

solution for the optimization problem at hand. The overall algo-

rithm of ICA is demonstrated in Algorithm 1. 

Begin algorithm 

Select population size, maximum iteration, and define object-

tive function  

Initialization of the algorithm 

// Generate some random solution in the search space and create 

initial empires. 

For each iteration do 

1-Move the colonies toward their possessed imperialist. 

2-Exchange the position of a colony and the imperialist based 

on the objective function value. 

3-Calculate the objective function of empires. 

4-Assign the weakest colony to one of the most powerful 

empires. 

Delete the powerless empires. 

If there is just one empire, stop; otherwise, go to 1 

If the current iteration exceeds its maximum value, stop, if not 

go to 1. 

End for 

End algorithm 

Algorithm 1. The ICA optimization process 

 

 
 

Figure 2. (a) An initial population of the Imperialist Competitive Algorithm and (b) Movements of colonies. 

 

 
 

Figure 3. The study area and forest fire locations. 
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2.3. Performance Evaluation Metrics 

To evaluate the goodness-of-fit and prediction power of 

the forest fire susceptibility models are evaluated based on 

statistical measures (Tien Bui et al., 2016a) such as classifica-

tion rate (CR), specificity, sensitivity were computed as follows: 
 

TP TN
CR

TP TN FP FN




  
 (9) 

 

TP
Sensitivity

TP FN



 (10) 

 

where TP, TN, FP, and FN denote the values of true positive, 

true negative, false positive, and false negative, respectively. 

CR is the number of forest fires and non-fire points that 

are correctly classified divided to the total points. Sensitivity is 

the percentage of correct forest fire points whereas specificity 

is the percentage of correct non-fire points in the training or 

validation datasets. In addition, specificity provides a measure 

of the proportion of non-fire samples that are accurately catego-

rized as such. 

Moreover, the global performance of the forest fire models 

is evaluated using the receiver operating characteristic (ROC) 

curve that is constructed based on sensitivity (true positivity 

rate) and specificity (false negative rate) (Tien Bui et al., 

2017a). To quantify the global performance, area under the 

curve (AUC) that varies between 0.5 and 1 is also used. AUC 

values of 0.5 ~ 0.6 indicate insufficient whereas values of 0.6 

~ 0.7 indicate poor performance. Models with AUC values of 

0.7 ~ 0.8 denote moderate performance while models with 

AUC values 0.7 ~ 0.8 denote good performance. Models with 

AUC values of 0.8 ~ 0.9 will indicate very good performance 

(Peterson et al., 2008). 

3. The Study Area and GIS Database 

3.1. Description of the Study Area 

The study area is the Gia Lai province that is located at the 

Central Highlands region in Vietnam (Figure 3.), between lon-

gitudes 107o26’00’’E and 108o51’00’’E, and between latitudes 

12o58’00’’N and 14o35’00’’N. It covers an area of 15512.8 km2. 

The elevation is from 80 m to 1740 m above the sea level, with 

the mean is 522.3 m and the standard deviation is 278.2 m. 

The province is inhabited by nearly 1.4 million people 

with the average population density of 90 persons/km2 in 2015 

and around 70% of the settlements are non-urban areas (GSO, 

2015). Due to its special location, Gia Lai is crucial for socio-

economic connection with the Southern Central coast of Viet-

nam and is the center of the Vietnam-Laos-Cambodia triangle 

development zone. The overall poverty rate in the province is 

11.36%, and the annual GDP per capita is about 1100 USD 

(GSO, 2015). The economy of the province is mainly based on 

agriculture with 500 thousand hectares of annual crops and per-

ennial trees). The industry is agro-forestry processing and hy-

droelectric power with 82 hydroelectric projects in the whole 

province. 

Climate of the study area is characterized by a tropical 

monsoon and plateau climate (Van et al., 2014) with two sea-

sons: a rainy season from June to October and a dry season 

from November to May. The average annual temperature is 18 

~ 20 ºC for areas with elevation is above 600 m, whereas the 

average temperature is around 25 ºC for the other areas. The 

average annual rainfall is 1634 mm, the average annual hum-

idity is 80%, and the number of hours of sunshine is about 2757 

hours (GSO, 2015).  

According to the land use statistics (CGIAR, 2016), forest 

and perennial crop lands cover approximately 64.5% of the 

total study area. The production forest land and the protection 

forest land account for 33.4% and 9.7% of the total study area, 

respectively. Due to climate changes such as prolonged dry 

weather in recent years (Van et al., 2014), the forest fire prob-

lem at the province seems to be severe i.e. a huge forest fire 

occurred in December 2013 at the protected pine forest at Bac 

Bien Ho areas destroyed around 250 ha; a huge forest fire also 

occurred on March 2015 at the tourist spot of Ham Rong moun-

tain destroyed more than 3 ha pine forests; therefore, study of 

forest fire for this province is an urgent task. 

 

3.2. Forest Fire 

Historical fires, their locations, and their influencing fac-

tors are a main key for modelling forest fires (Massada et al., 

2011). Therefore, an inventory map with a total of 2530 his-

torical fire location for the study area was prepared first. These 

fires that occurred during the last 10 years (2007 – 2016) were 

provided by the Department of Forest Protection of Vietnam 

(Ministry of Agriculture and Rural Development of Vietnam, 

2016). This is the official forest fire database in Vietnam, and 

is now available at http://www.kiemlam.org.vn/firewatchvn/. 

Temporal analysis of the forest fires (Figure 4) shows that 

88.8% of the total fires occurred in the dry season, from Janu-

ary to May, in which the forest fires are at the peak on March 

(39.4%). In contrast, few forest fires occurred in the rainy sea-

son. Many forest fires occurred in years 2015 (33.9%), 2016 

(16.3%), 2010 (19%), and 2013 (13.2%), whereas, few forest 

fires occurred for the other years. Surprisingly, no fire occurred 

in 2011. It is emphasis that a series of floods occurred in 2011 

(Tien Bui et al., 2016a) whereas prolonged dry weather with 

worst droughts occurred years of 2010, 2013, 2015, and 2016 

due to El Niño Southern Oscillation (CGIAR, 2016). 

 

3.3. Ignition Factor 

Occurrence of forest fires is influenced by interactions of 

various factors such as topography, fuels, and climate patterns 

(Cary et al., 2009); therefore, determination of fire ignition 

factors is a crucial task in forest fire modeling. In this study, a 

total of 12 ignition factors were considered (Tien Bui et al., 

2017b), slope (o), aspect, elevation (m), curvature, NDVI (Nor-

malized Difference Vegetation Index), NDWI (Normalized 

Difference Water Index), NDMI (Normalized Difference  
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Figure 4. Temporal analysis of the forest fires occurrence for the study area. 

 

 

  
 

Figure 5. Forest fire ignition factors used in this study: (a) Slope map; (b) Aspect map; (c) Elevation map; (d) Curvature map; (e) 

Landuse map; (f) NDVI map. 
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Moisture Index), land use, temperature (o), wind speed (m/s), 

relative humidity (%), and rainfall (mm). 

Slope and aspect should be selected because slope influ-

ences fire spread rate, whereas aspect is related to wind speeds, 

a major factor affecting fires propagation (Pimont et al., 2012). 

Elevation influences vegetation distribution, fuel moisture, and 

air humidity that indirectly relate to forest fires (Verde and 

Zêzere, 2010). Curvature is used for the forest fire modeling 

because lower local curvature has proven to spread fires faster 

than those with higher local curvature (Hilton et al., 2017), 

therefore it may influence behaviors of forest fires. In this 

study, the slope map (Figure 5a), the aspect map (Figure 5b), 

and the elevation map (Figure 5c) were generated with 9 

classes, whereas the curvature map was compiled with 7 cate-

gories (Figure 5d). These classes and categories were deter-

mined based on histogram distribution analysis of the data 

values of these maps using the natural breaks algorithm with 

the Jenks optimization algorithm (Jenks, 1977) in ArcGIS 10.4. 

Accordingly, the data in the four maps were analyzed to exploit 

natural breakpoints in which the inter-variance of the homoge-

nous classes is maximized and the intra-variance of the ho-

mogenous classes is minimized. 

Topography influences fire behavior because it affects the 
local climate, wind direction, and vegetation cover (Oliveira et 

al., 2012); therefore, it was considered for analyzing forest fire 

occurrence in this study. For this purpose, a Digital Elevation 

Model (DEM) of the study area was generated using national 

digital topographic maps at a scale of 1:50,000 using ArcGIS 

10.4 software. Based on the DEM, slope, aspect, elevation, and 
curvature were generated. 

NDVI is considered as a proxy for vegetation health status 

that related to the flammability and quantity of surface fuel 

(Zylstra et al., 2016), whereas, behaviors of forest fires are also 

influenced by vegetation water content (Maki et al., 2004) and 

live fuel moisture (Dennison et al., 2005). Therefore, these 

factors should be considered in forest fire modeling. For this 

research, reflectance (Vlassova and Pérez-Cabello, 2016) in 

Landsat-8 Operational Land Imagery spectral bands (30 m 

resolution) and available at http://earthexplorer.usgs.gov) was 

used to compute the three indices, i.e., NDVI using Equation 

11 (DeFries and Townshend, 1994). The vegetation water 

content was derived using the Normalized Difference Water 

Index (NDWI) in Equation 12 (Gao, 1996), whereas the live 

fuel moisture was estimated through Normalized Difference 

Moisture Index (NDMI) in Equation 13 (Xu, 2006) as follows: 
 
NDVI = (Band 5 – Band 4)/(Band 5 + Band 4)  (11) 

 
NDVI = (Band 3 – Band 5)/(Band 3 + Band 5)  (12) 

 
NDVI = (Band 5 – Band 6)/(Band 5 + Band 6)  (13) 

 

where Band 3 is the Green band (0.53 – 0.59 µm); Band 4 is 

the Red band (0.64 ~ 0.67 µm); Band 5 is the Near-infrared 

band (0.85 ~ 0.88 µm); and Band 6 is the Short-wave Infrared 

(SWIR) band (1.57 ~ 1.65 µm).  

For the forest file modeling, the NDVI map (Figure 5e) 

with five classes was generated, whereas for the NDWI map 

(Figure 5f) and the NDMI map (Figure 5g), seven classes were 

considered. These classes were determined using the natural 

breaks algorithm in ArcGIS 10.4 as mentioned above. For land 

use, this factor should be used for the forest fire modeling be-

cause it relates to anthropogenic activities, an important igni-

tion sources for fire occurrence (Huesca et al., 2009). In this 

study, the land use map (Figure 5h) with eleven groups at a 

scale of 1:50,000, which was provided by the authority of the 

Gia Lai Province, was used. This map was produced in the 

national project on land use inventory carried out in 2013 by 

General Department of Land Administration of Vietnam. 

Regarding weather, this is considered as one of the largest 

driven factor to burned areas (Abatzoglou and Kolden, 2013), 

and in most cases, forest fire happened based on intersections 

of ignition sources, fuel, and dry weather (Jolly et al., 2015). 

Therefore, climatic factors should be used. Specifically, four 

factors (temperature, wind speed, relative humidity, and were 

selected for this study because these factors have proven 

influencing both spread rates and intensities of fires other 

researches (Jolly et al., 2015). In this analysis, climatic data for 

the period 2007 ~ 2014 provided by CFSR (Climate Forecast 

System Reanalysis, available at https://www.ncdc. noaa.gov/) 

that consist of average maximum monthly temper-ature, 

average monthly wind speed, average monthly relative 

humidity, and average monthly total sum of precipitation were 

used. The temperature map (Figure 5i) was constructed with 

nine classes, whereas six classes were considered for the wind 

speed map (Figure 5j). For the relative humidity map, nine 

classes were adopted, and for the case of the rainfall map 

(Figure 5k), eight classes were employed. We determined these 

classes using the natural breaks algorithm (Tien Bui et al., 

2017b) available in ArcGIS 10.4 that was mentioned above. 

4. Proposed ICA-RVM for Modelling and Predicting 
Tropical Forest Fire Danger Using GIS 

The overall structure of the proposed ICA-RVM model 

which is a combination of RVM and ICA algorithms is shown 

in Figure 6. ICA-RVM used a pattern recognition approach to 

distinguish the pixels in the study area into the forest fire class 

and the non-forest fire class. As result, probability of a pixel 

belongs to the forest fire class was used as forest fire danger 

index. 

It is worth to notice that these data were acquired, proc-

essed, and integrated using ArcGIS 10.4 and IDRISI Selva 16 

packages. The relevance vector machine (RVM) is available at 

http://www.miketipping.com/sparsebayes.htm, while the pro-

posed ICA-RMV model was developed by the authors in Mat-

lab. In addition, a geospatial tool developed in C++ also by the 

authors was used to transform forest fire danger indices into a 

rater format for implementation in ArcGIS package. 

 

4.1. GIS Database, Training Dataset and Validation Dataset 

In order to construct a machine learning based model for 

predicting tropical forest fire danger, it is necessary to establish 
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Figure 5. (continue); (g) NDWI map; (h) NDMI map; (g) NDWI map; (h) NDMI map; i) Temperature map; (j) Wind speed map; 
(k) Relative humidity map; and (l) Rainfall. 

 

 
 

Figure 6. The proposed ICA-RVM model for the forest fire modeling in this study. 
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a GIS database. Accordingly, digital topographic maps and 

land use map at a scale of 1:50,000, Landsat-8 OLI images with 

a resolution of 30 m, climatic data (temperature, wind speed, 

re-lative humidity, and rainfall), and 2530 historical forest fires 

have been attained, processed, and integrated into the men-

tioned GIS database. All factors were converted into a raster 

format with 30 m resolution. 

Because we formulate the forest fire danger modeling as a 

binary supervised learning task, therefore it is necessity to 

generate a training dataset and a validation dataset. The first 

dataset was used to train the proposed model whereas the 

second dataset was used to validate the model and confirm its 

prediction accuracy. Accordingly, the data of 2530 forest fire 

locations were split into two subsets, the first subset consists of 

2118 fire locations, occurred from 2007 to 2015, was used for 

training model, whereas the second subset contains fire loca-

tions, occurred in 2016 only (412 forest fire locations), was 

used for the model validation. The same amounts of non-forest 

points were randomly generated in non-forest areas with NDVI 

is less than 0. The forest fire data were assigned to the fire class 

label of C1 = 1 whereas the label of non-forest fire data were 

denoted as C2 = 0.  

Finally, a sampling process was conducted to extract the 

values of 12 ignition factors to build the training dataset (4236 

samples) and the validation dataset (824 samples). To facilitate 

the modeling process, normalization of input data should be 

carried out (Hoang and Tien Bui, 2016b); therefore, the 12 fac-

tors were converted from categorical classes into continuous 

values within the range of 0.01 and 0.99 using a method de-

scribed in Tien Bui et al. (2016e). 

 

4.2. Determination of Objective Function for the ICA 

Optimization 

The behavior of the RVM model is influenced by the RBF 

basis width that is explained in section 2.1; therefore, the RBF 

basis width should be carefully determined. In this research, the 

ICA optimization is utilized to optimize the RBF basis width. 

Accordingly, the fitness of the RVM model is measured using 

our proposed objective function (Equation 15). Thus, the train-

ing dataset (4236 samples) was further divided into two groups, 

Group 1 (70% or 2962 samples) was used for the construction 

of the RVM model, whereas Group 2 (30% or 1271 samples) 

that served as unknown patterns was used to test the RVM 

model.  

The purpose of the aforementioned separation of the train-

ing dataset is to alleviate the potential overfitting problem. It is 

noted that one may simply identify the most suitable RBF basis 

width parameter by considering the model prediction perfor-

mance on the whole the training dataset. However, the predic-

tion result on the training set alone is not a good indicator of 

the model generalization due to overfitting issue (Hoang et al., 

2016). Overfitting generally occurs when a model learns the 

training data very well but it predict poorly with the data out-

side the training set. Therefore, the data in Group 2 is utilized 

to penalize over-fitted model (Hoang et al., 2016): 

1 2

1
RVM

Group Group

f
CR CR




 (14) 

 

where CRGroup1 and CRGroup2 denote classification rates (CR) of 

the two groups of interest. CR is computed using Equation 9. 

 

4.3. Training and Validating the ICA-RVM Model 

Since the objective function has been defined, the ICA opt-
imization was carried out in the training process. We select a 

stopping criterion was 1000 iteration (Hosseini-Moghari et al., 

2015). At the first iteration, the RBF basis width of RVM is 

generated randomly within the range of 0 and 1. During the 

searching process, ICA gradually recognized suitable values of 

the tuning parameter and discard inappropriate ones, and when 
the stopping criterion was reached, the ICA optimization was 

stopped and the most desirable RBF basis width has been iden-

tified. In the next step, the optimized ICA-RVM model is re-

trained with the whole training dataset to get the final ICA-

RVM model and the prediction of outcome on the validation 

dataset was obtained.  

Once the ICA-RVM model is successfully trained and 

validated, the final model is used to calculate the forest fire 

danger indices for all the pixels in the study area. These indi-
ces were converted to the rater format using the geospatial tool 

developed by the authors mentioned above, and then, open the 

result in ArcGIS software. 

 

4.4. Software and Data Availability 

It is noted that the integrated ICA-RVM model operates in 

Matlab environment. The machine learning model RVM is pro-
vided in the Sparse Bayesian Models toolbox of Tipping (2009). 

Meanwhile, the source code of ICA metaheuristic has been 

adopted and modified from Yarpiz (2016). The overall model 

has been programmed by the authors.  

5. Results and Discussion 

5.1. Feature Selection 

In forest fire modeling, the performance of the prediction 

model could be degraded if noisy features exist in the training 

dataset; therefore, feature selection should be carried out (Tien 

Bui et al., 2017b). In this study, two feature selection tech-

niques, Information Gain Ratio (IGR) and Pearson correlation 

(Tien Bui et al., 2016e) were used to detect potential noisy fea-

tures to ensure the objective of selected features. Accordingly, 

predictive ability of the twelve ignition factors were quantified 

and evaluated, and factors with null-predictive value were con-

sidered irrelevant and being eliminated.  

Since both IGR and Pearson correlation measure the cor-

relation of each factor with the forest fire, they provide no in-

formation on if some factors may have their co-effects on the 

forest fire modeling. To assess the merit of the factors including 

their co-effects on the forest fire modeling, the wrapper eva- 

luation method (Vafaei et al., 2018) combined with Random 

Forests (RF) classifier (Breiman, 2001) was further used. Ac-
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cordingly, the RF with 500 trees as suggested by Stevens et al. 

(2015) and the classification rate (CR) as a statistical measure 

were used to assess the merit of each ignition factors. 

The feature selection result is shown in Table 2. The result 

showed that NDVI has the highest predictive ability values 

(0.217 for IGR and 0.357 for Pearson correlation), followed by 

NDWI (0.100 for IGR and 0.32 for Pearson correlation), NDMI 

(0.069 for IGR and 0.278 for Pearson correlation), humidity 

(0.023 for IGR and 0.082 for Pearson correlation), wind speed 

(0.021 for IGR and 0.15 for Pearson correlation). In contrast, 

aspect and elevation has the lowest predictive ability (IGR is 

0.0005 and Pearson correlation is 0.006). The predictive merit 

of the factors including their co-effects shows that NDVI has 

the highest predictive merit (0.238) whereas aspect and eleva-

tion have the lowest one (Table 1). 

The finding is in agreement with Tien Bui et al. (2017b); 

(2016a) and is reasonable since NDVI is related to tree covers 

that affect the variability of fuel load, a main factor controlling 

the fire mechanism (Holsinger et al., 2016). NDWI estimates 

the leaf water content at canopy level and NDMI captures the 

variations of moisture in vegetated areas, therefore, it is under-

standable that they are among the most predictive factors for 

forest fires. Since no factor reveals non-predictive value, all the 

factors are considered as relevant factors for the modelling process. 
 

Table 1. Predictive Ability of the Fire Ignition Factors Using 

Information Gain Ratio and Pearson Correlation with a 10-fold 
Cross Validation 

No. 
Forest fire 

ignition factor 

Predictive ability 
Predictive 

merit Information 

Gain Ratio 

Pearson 

correlation 

1 NDVI 0.217 0.357 0.238 

2 NDWI 0.100 0.32 0.155 

3 NDMI 0.069 0.278 0.156 

4 Humidity (%) 0.023 0.082 0.063 

5 Wind speed (m/s) 0.021 0.150 0.080 

6 Temperature (o) 0.016 0.083 0.074 

7 Slope (o) 0.012 0.117 0.062 

8 Rainfall (mm) 0.011 0.049 0.068 

9 Land use 0.009 0.022 0.060 

10 Curvature 0.005 0.015 0.048 

11 Aspect 0.001 0.016 0.019 

12 Elevation (m) 0.0005 0.006 0.019 

 

5.2. Model Performance and Evaluation 

Using the training dataset, the ICA-RVM model was suc-

cessfully trained and the result is shown in Table 2 and Figure 

7. The result shows that the ICA-RVM model has high good-

ness-of-fit with the training dataset. The classification rate is 

76.82% indicating a good classification result, whereas AUC is 

0.842 indicating that the global fit is 84.2%. Sensitivity is 

73.83% indicating that 73.83% of the forest fires are correctly 

classified whereas specificity is 80.67% indicating that 80.67% 

of the non-forest fires are correctly classified. Kappa index is 

0.536 indicating a moderate agreement between the training 

dataset and the estimated forest fires of the model. 

The ICA-RVM model was validated using the validation. 

The result (Table 3 and Figure 7) shows that AUC is 0.793 in-

dicating that the prediction capability of the model is 79.3%.  

The classification rate is 74.51% indicating an acceptable re-

sult, whereas Kappa index is 0.490 indicating a moderate agree-

ment between the validation dataset and the predicted outcome 

of the model. Sensitivity and specificity are 70.78 and 79.88% 

indicating that the model correctly classifies 70.78% the forest 

fires and 79.88% the non-forest fire, respectively. 
 

Table 2. Performance of the Proposed ICA-RVM Model, the 
SVM Model, and the RF Model Using the Training Dataset 

No Statistical measure ICA-RVM SVM RF 

1 True positive 1760 1822 1748 

2 True negative 1494 1372 1432 

3 False positive 358 296 370 

4 False negative 624 746 686 

5 Sensitivity (%) 73.83 70.95 71.82 

6 Specificity (%) 80.67 82.25 79.47 

7 CR (%) 76.82 75.40 75.07 

8 AUC 0.842 0.813 0.830 

9 Kappa statistic 0.536 0.508 0.501 

 

 
 

 
 

Figure 7. ROC curve and AUC of the ICA-RVM model using 

(a) the training dataset and (b) the validation dataset.  
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Figure 8. Forest fire danger map for the study area using the ICA-RVM model. 

 
Table 3. Performance of the Proposed ICA-RVM Model, the 

SVM Model, the RF Model Using the Validation Dataset 

No Statistical measure ICA-RVM SVM RF 

1 True positive 344 359 340 

2 True negative 270 252 259 

3 False positive 68 53 72 

4 False negative 142 160 153 

5 Sensitivity (%) 70.78 69.17 68.97 

6 Specificity (%) 79.88 82.62 78.25 

7 CR (%) 74.51 74.15 72.69 

8 AUC 0.793 0.786 0.790 

9 Kappa statistic 0.490 0.483 0.454 

 

5.3. Model Comparison 

Because this is the first time the ICA-RVM model is 

proposed for the forest fire danger modelling, therefore, the 

validity of the model should be assessed and compared with 

benchmarks. For this purpose, we selected SVM and RF as two 

benchmarks because the first one has been recognized as an 

efficient method for modelling of complex real-world problems 

(Tien Bui et al., 2016b), whereas the second one is considered 

as a state-of-the art method for classification (Oliveira et al., 

2012; Belgiu and Drăguţ, 2016). 

For forest fire danger with SVM in this research, Radial 

Basic Function (RBF) kernel was used as suggested in Hoang 

and Tien Bui (2016a). Accordingly, the two turning parameters 

of SVM, the regularization and the RBF kernel width were de-

rived using the grid-search method as in Tien Bui et al. (2016e). 

Consequently, the regularization equals 10 and the RBF kernel 

width equals 0.065 were found the best for the data at hand. 

The training and validation results of SVM and RF in this 

study are shown in Tables 2 and 3. It could be seen that classi-

fication rate of the SVM model is 75.40% in the training dataset 

and 74.15% in the validation dataset, whereas classification 

rate of the RF model is 75.07% with the training dataset and is 

72.69% in the validation dataset. These classification rates are 

lower than those of the ICA-RVM model. In addition, AUC of 

the ICA-RVM model is slightly better than the two benchmark 

models in the training dataset. Furthermore, Sensitivity of the 

SVM model and the RF model is slightly lower than that of the 

ICA-RVM model in both the training dataset and the validation 

dataset. The other parameters are in the Tables 2 and 3. Overall, 

based on the above analysis, it could be concluded that the ICA-

RVM model performed best with the forest fire data in this 

study. It is noted that compared to the SVM and RF models, the 
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proposed ICA-RVM has achieved improvements of 0.36 and 

1.82% in terms of classification rate. Forest fire is complex 

phenomenon; thus, even a small improvement in the prediction 

accuracy can result in a significantly better forest fire hazard 

management and prevention in a regional scale. 

 

5.4. Generation of A Forest Fire Danger Map 

Since the proposed ICA-RVM model was successfully 

trained and validated, the model was then used to compute 

forest fire danger indices for all the pixels of the study area. It 

is noted that the ICA-RVM model estimated two probability of 

fire danger for each pixel that are probabilities belongs to the 

forest fire class and the non-forest fire class. We used the pro-

bability of pixel belongs to the forest fire class for the forest 

fire danger index. These fire danger indices were then con-

verted to a raster format using the geospatial tool mentioned in 

Section 4 and developed by the authors to open in ArcGIS 10.4. 

The forest fire danger map (Figure 8) was cartographically 

visualized by means of six classes (Tien Bui et al., 2017b): 

extremely high (10%, 1551.5 km2), very high (10%, 1551.5 

km2), high (10%, 1551.5 km2), moderate (15%, 2326.9 km2), 

low (15%, 2327.1 km2), and no-forest fire (40%, 6204.2 km2). 

These thresholds for these classes were determined based on a 

graphic curve (Tien Bui et al., 2017b) that was constructed us-

ing percentage of the forest fires versus percentage of the forest 

fire danger map (Figure 9). 
 

 
 

Figure 9. Forest fire danger map for the study area using the 

ICA-RVM model. 

6. Concluding Remarks 

In this research, a new hybrid intelligence system ap-
proach based on RVM and ICA for modeling and predicting 

tropical forest fire danger is proposed and verified with a case 

study at the tropical forest of the Gia Lai province in the Cen-

tral Highland (Vietnam). According to current literature, RVM 

and ICA are state-of the art soft computing techniques that have 

not been explored for modeling forest fire danger, a typical 
non-linear and complex real world problem. The advantage of 

the RVM model is that this technique uses Bayesian framework 

to infer probability of forest fire danger, therefore we used the 

inferred probabilities as fire danger indices and compiled the 

forest fire danger map. Since the RVM model is influenced by 

the RBF band width, the ICA is utilized to search the most de-

sirable RBF basis width in the optimization process. 

Using the forest fire database of the study area, the ICA- 

RVM model was successfully trained and validated. Experi-

mental results demonstrated that the behavior of the RVM mo-

del is strongly dependent on the RBF band width. The perfor-

mance of the ICA-RVM model on both the training dataset and 

the validation dataset indicating that ICA is a good algorithm 

should be considered for optimizing the RVM model’ parame-

ters. The performance of the ICA-RVM model is further com-

pared to those produced from two benchmarks, the SVM model 

and the RF model, using the same data. Since the ICA-RVM 

model performed better, it could be concluded that the pro-

posed ICA-RVM model is a valid tool that should be consi-

dered for modeling of forest fire danger. 

Because performance of forest fire danger models is influ-

enced not only by the method used but also by the selection of 

ignition factors. Therefore, selection of ignition factors is an 

interested issue, particularly. In this study, twelve ignition fac-

tors were selected based on analyses of the historical forest 

fires in the study areas, and in addition, these are popular ig-

nition factors in literature. All of these factors revealed the pre-

dictive ability objectively and good performance of the ICA-

RVM model demonstrating that these factors were selected, 

processed, and coded successfully. In addition, the historical 

forest fires were temporally separated with the training dataset 

consists of these forest fires 2007 ~ 2015, whereas the vali- 

dation dataset contains these forest fires occurred in 2016 only. 

Consequently, the good prediction outcome of the ICA-RVM 

model on the fires occurred in 2016 indicate that the ICA-RVM 

model is efficient and possess a good predictive capability. 

Aerial interpretation of the resulting map (Figure 8) shows that 

areas in Chu Pah, La Grai, Duc Co, and Ia Pa have high proba-

bility of forest fire danger. Therefore, these areas should be crit-

ically considered for developing prevention measures. Where-

as, areas at Chu Se and Kong Chro have lower probabilities of 

forest fires due to low forest canopy in these areas. 

The limitation of this work is that only the metaheuristic 

of ICA was explored and investigated for optimization of the 

RVM model, therefore, the performance of the model may be 

enhanced by employing other alternative metaheuristic algo-

rithms. In addition, only 12 ignition factors were used. There-
fore, further factors should be considered to improve the pre-

diction performance of the model. Despite such limitation, the 

result obtained from this works has been demonstrated to be 

useful for forest management and planning in forest fire danger 

areas. Future extensions of the current study may include 

applying the proposed ICA-RVM for constructing forest fire 
susceptibility map in other regions, investigating other ad-

vanced machine learning solution for forest fire pattern re-

cognition, as well as integrating novel feature selection meth-

ods for potentially ameliorating the model predictive accuracy. 
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