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ABSTRACT. This article proposes and verifies a novel intelligence approach for modelling forest fire damglped based on a
hybrid model of Imperialist Competitive Algorithm (ICA) and Relevance Vector Machine (RVM). The hybrid model is named as ICA
RVM. They are statef-the art machine learning techniques that have not been investigated for forest diee miadeling. RVM is

used to establish a prediction model that computes probability of fire danger, whereas ICA is adopted to optimize itve prediédt

The tropical forest at Gia Lai province, Central Highland (Vietham), was used as a case stualyraplge information system (GIS)
database featuring 12 fire ignition factors has been established to train and verify the hybrid intelligence model. Atea cunde
(AUC) and statistical measures were used to assess the model performance. Tehaowsdlithat the proposed model achieves high
performances; AUC is 0.842 and 0.793 on the training dataset and the validation dataset, respectively. Compared to &vksbenchm
Random Forests and Support Vector Machine, the proposed model performs bet&for€, the propose IGRVM is a valid alternative
system for forest fire danger modeling.

Keywords:forest fire; Imperialist Competitive Algorithm; Relevance Vector Machines; GIS; Gia Lai; Vietham

1. Introduction prevention strategies and tactics (Pourghasemi et al., 2016),
quantifyeconomidosses from wildfires (Alcaser# al., 2016),
Forest fire, which is currently a global problem, is a result stydy the human influence on fire ignition (Fusco et al., 2016),
from complex interactions among vegetation fuels, weather an@y investigate the effects of climatic and local factors on fire
climate and human landuse activities (Dupire et al., 2017). Ovepccurrences (Wu et al., 2014). Furthermore, the spread of fires
the past decades, due tdn- clihfordsts ieacenipicatedl Bhenorhefidh Eobdii bythedudl hav e
creasengly become a serious natural hazard that threaten locahrea, wind speed, wirdtirection, slope, and other tacs (You
communities, destroy vast amounts of natural resources, gausiret al., 2017). These facts make spatial modeling forest fire is
soil degradation and air pollution (Conard et al., 2017; You etindeed still a challenging task.
al., 2017). In addition, change of climate i.e., prolonged dry weath Recent advancements in geographic information system

er with high temperature is expected to increase in both numbe(Gls) and remote sensif&S) technologies have facilitated
of fires and areas burned in many regions in the world (Doe"many research works on spatial modeling of forest fires
and Sant2n, 2016). Therefor@nuRo eP & 20R Duditd 203; Febdb® et 2015, ©
valuably helps to minimize losses to residents, econaotiee  T¢odoro and You et al., 2017) due to the ability to handle-large
ities, and buildings within territories vulnerable to forest fires g6 databasesith multi-layered infomation of spatial char

A forest fire danger map is able to reveal areas highlyacteristics (Tien Bui et al., 204). Various studies have em
vulnerable and affected by the hazard and therefore assists thgoyed probabilistic and physical models including Fuel Mois
development of land use planning. In addition, information onture Content (FMC) (Gard et al., 2008), Fire Area Simulator
thespath di stribution of yres (FARSITE)(Krskbl ét&20098 MakiumBrfopyi(Redait € Y r
et al., 2012), mathematical models (Grishin and Filkov, 2011),
analytic hierarchy process (G¢n
simulation (Sanjuan et al., 2016). However, due to the multi

ISSN: 17262135 print/16848799 online variate nature of the problem at hand, it is still difficult to
© 2018 ISEIS All rights reserved. doi:10.3808/201800404 predict future forest fires.
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Figure 1.An illustration of RVM classification concept.

Thereforeadvancedtatisticabndmachindearningmeth ous space (Hosseiand Al Khaled, 2014). The tropical forest
ods have drawn the attention of researchers in spatial modelingf the Gia Lai province in the Central Highland of Vietham was
of various natural hazards (Bui et al., 2016; Hoang and Tierselected as a case study to train and verify the proposed inte
Bui, 2016a; Pham et al., 2016; Tien Bui et al., 2016c; Shirzadigrated model. This province has particularly faced with the
et al., 2017). Since the problem of fire danger mapping ean bforest fire problem duringhe last ten years. Especially, this is
formulated as a pattern classification task, machine learningne of the most sensitive proviscéo El Nifo Southern
algorithms can effectively help to establish accurate predictionOscillation that caused serious droughts and forest fire in 2016
models based on GIS databases. Carvalho et al. (2006) attemgCGIAR, 2016).
ed to construct a forest fire modelling method based on fuzzy
logic and cellular automata. Koetz et al. (2008) relied or+ Sup .
port vector machine (SVM) for performing mudtburce land 2. Theoretical Background of the Methods Used

cover classification for forest fire management. Bisquert et al.2> 1. Relevance Vector Machine

(2012) applied artiycial neurglB!WBihgiboo) Hefvince vBcfbfmadnifed ' St
regression I(R) to predict forest fire danger. Pourtagkli et al. (RVMP is apBayeyianp?nngnce r?wlethod which can be applied .
(20 1. 5.) emp | o ye d Shannonoés N tprob%llﬁligtic éat?ern ?e(?oanﬁién.r The flunctibn@! "o df b
susceptibility maps in Iran. Pierce et al. (2012) and PourtagthM is similar to that of the SVM proposed by Vapnik (1998).

il Adapti i inf Soreover, RVM is capablef yielding probabilistic classi
susceptibility mas. Adaptive neurtuzzy inference systems  4iinn - pifferent from SVM, expectation maximizatibased

have been employed Tien Bui etal. (2BLAcommon finding nethoq is employed to establish the RMV prediction model.

of these studies is that machine learning provides an effectivgis a1gorithm also relies on a kernel function to deal with data
solution for analyzing largecale data sets and deriving highly nonlinearity. RVM first maps the inpalata from the original

accurate prediction mets for forest fire mapping. Therefore, ghace 10 a high dimensional feature space where the data can
exploration of new machine learning algorithms for forest fire o linearly separated (see Figure 1).

modeling is highly necessary. The following section briefly describes the Rvibased

In this study, we aim at extending the body of knowledge ¢|5ssification model. For more detail of this algorithm as well
by proposing a new alternative for the problem of forest fire 55 jis implemetation, readers are guided to previous works of

danger modeling. The proppsed approach is a n_oyel integrati_on]—ipping (2000) and Tipping (2009). Given a training data con
of Relevance Vector Machine (RVM), the Imperialist Competi sisting of a set of fire ignition factops:{xi}N L With corre

tive Algorithm (ICA), and a GIS database. RVM, which Was gonding target classes={G}’__, the task at hand ts construct
proposed by Tipping (2000), is a Bayesian inference approach cjassification boundary that separates the input viciato

for probabilistic clasification. Since forest fire evaluation is ihe two classification regions. In the current research context,
undoubtedly a complicated and uncertain problem (Brunette eforest modeling is considered to be a binary classification prob
al., 2017; Tien Bui et al., 2017b) and it is very desirable for the|em’ the target outputs has two possible cis labels, 0 for the
decisionmakers to obtain a prediction model that can exhibit honforest fire class and 1 for the forest fire class. Given the
the uncertainties asciated with the estimations, probabilistic input vector, the conditional distribution of the class label is

models for forest fire susceptibility mapping is a practical need-provided as follows (Bishop and Tipping, 2000):
Furthermore, the model construction of RVM requires an ap

propriate setting of its tuning parameter, so ICA is integrated

with RVM to assist themodel establishment. ICA has been P(GX:Ws(Y) @)
demonstrated in the previous studies to be an effective- meta

heuristic approach for solving optimization method in continu where s(y) =1/(1 +ev) denotes a logistic sigmoid function;
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yis a linearlyweighted sum o fixed basis functiop (x): m=$'BC and S Hj 'Bj A)* )

yixw) =g wi () w, w; whereB = diag (b, b,  By) with B = &{y(x)}. [1 7 G{y()}].

e ? ) Notably, when the optimization process ends, an-inter
i =@, G ) i) esting outcome is that many elements of the hppeameter
vectorUapproach infinity; thus, the weight vector w only has
a few nonzero elements which are considered as relevant
vectors (Tipping, 2000). After the training process, the vector
of model weightav is then used to predict the posterior of the
class labet; given an input vectox using Equationl.

wherew denotes a vector of the model weighis;represents
a vector of basis function. The basis function that is often em
ployed is the Gaussian radial basis function (Samui, 2012):

If

I m(X) :EXP(_”XT;(m) (3) 2.2. Imperialist Competitive Algorithm

Imperialist Competitive Algorithm (ICA), proposed by

wherer represents the width of the radial basis function. It isAtashpazGar gari and Lucas (2007),
proper to note that thEarameter affects the smoothnesstbe of human social evolution. This algorithm belongs to the group
classification boundary, and therefore, this parameter sheuld ©f Swarm intelligence which can effectively deal with contin

appropriately selected for the training process of the RvMUOUS optimization problems (Hosseini and Al Khaled, 2014).
model. However, exploration of ICA for forest fire modeling has not

The likelihood function for all data points is given in the been carried out.

form of a Bernoulli dstribution (Tipping, 2000) as follows: . Basically, as other metaheuristics, ICA is specificaltty
signed for solving optimization problem in which no exact

N algorithm can be applied in polynomial time, also called-Non
P(Clw)=0s (¥ )*.(L - s(y )Y 4) deterministic Polynomial time (NPyard problem (Marandi et
= al., 2014). The task of finding an optimal value for a machine
learning malel can be classified as a MBrd problem since

!n addmon,_a Sparse weight prior distribution can be e interaction between the model structure and the training
obtained by assigning a different variance parameter for eachj i, is highly complex and there is an infinite number of pos

weight (Tipping, 2001). Hence, the prior distribution w86 gjpe values of the tuning parameter. Since successful-appli

given in the following manner (Tipping and Faul, 2003): cations of ICA have beewidely observed (Hosseini and Al
Khaled, 2014; Sadowski and Nikoo, 2014), this algorithm can
be helpful to assist the training phase of RVM by selecting an
optimal width of the radial basis function.

B w¥ a, w2 ®) In essence, ICA is a populatitntased stochastic search
=(2p) Ql @ exn( —2) inspired by imperialistic competition. This algorithm attempts
™ to mimic the social policy of imperialism in the real world.
whereN(zZu, S is a multivariate Gaussian distribution ozer ~When an empire raises, it dominates more colonies and take
with meanu and covarianc&; U= ((, U, €l is a vector ~ advantage of thesources; if one empire falls, other empires
of independent hypgrarameters; each eleméhof the vector ~ Will compete to take its possession. In ICA, individuals within
controls the strength of the prior over its associated weight ~ the population represent countries and they interact with each

Given initial values of the hypgrarametet, it is noted other to form empires that possess colonies.

P -1
p(w|a)= 0 N(w, [0.4})

that p(w|C.a)” p(C|w) p(w|g and the most probable _ IC_A begins_ with an initia_l population and a pxpecifie_d _
weight p can be found by maximizing the penalized negative objective function (see Section 4.2). Based on the objective
log-likelihood function ovemw (Tipping and Faul, 2003): function value, the most powerful countries are chosen as im

perialists and the others are colonies of them. The algorithm
then simulateshe competition among imperialists in order to
acquire more colonies. The best imperialist typically has more
chance to occupy more colonies. A population of ICA is4llus
trated in Figure 2.

U After colonies have been assigned to each imperialist,

whereA = diag (U, U, € Uh). these cabnies move towards their corresponding imperialists.
The iteratively reweighted least squares algorithm {Nab These movements of colonies are demonstrated in Figure 3. In

ney 1999) and the Laplace approximation procedure are thenhis figure, it is noted thallrepresents a uniformly distributed

applied to solve the above optimization problem; the mostrandom number, generated as follows:

probable weightt and its covarianc& are found as follows

(Tipping, 2000; Tipping and Faul, 2003): a: U(0,¢ 9 (8)

log(P(C|w)p(wla ))

N 6
=a(alogy 1 €)logd y)) 0.5v" Aw ©)
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whered denotes a constant variable; typicadlys greater than
1 (e.g., 1.5) (Atashpa@argari and Lucas, 2007% is the
distance between the colony and the imperialist.

During the competition process, the weakest empiretgrad2 Exch h . fcol dthe i ialist based
ually loses their colonies arather powerful empires attempt < =X¢ ange the position ofalony and the imperialist base
on the objective function value.

to obtain them. Moreover, if the colonies demonstrate more o _ .
power than its relevant imperialist, they will exchange their 3-Calculate the objective function of empires.
pOSitionS (Kaveh and Talatahari, 2010) The empire that has nQ_Assign the weakest C0|Ony to one of the most powerful
colonies will collapse and eventually timest powerful empire  empires.
will dominate all other empires and represent the final optimal .
. S Delete the powerless empires.
solution for the optimization problem at hand. The overall-algo o i )
rithm of ICA is demonstrated iAlgorithm 1. If there is just one empire, stop; otherwise tgd

Begin algorithm

initial empires.
For each iteratiormo
1-Move the colonies toward their possessed imperialist.

If the current iteration exceeds its maximum value, stop, if not
goto 1.

End for
End algorithm

Select population size, maximum iterationd atefine objeet
tive function

Initialization of the algorithm
// Generate some random solution in the search space and create Algorithm 1. The ICA optimization process

(a) ~ " e @ Imperialist 1 (b) Imperialist
.,,A;) Lo
- O ° .. B Imperialist 2 New colony
u . u  Imperialist 3
LS e U |o Colony of imperialist 1 o S
~ ° ° . L Colony
o ~ m | ™ Colonyofimperialist 2
o ¢ & Colony of imperialist 3

Figure 2. (a) An initial population of the Imperialist Competitive Algorithmda(iy) Movements of colonies.
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2.3. Performance Evaluation Metrics province.

To evaluatehe goodnessf-fit and prediction power of Climate of the study area is cheterized by a tropical
the forest fire susceptibility models are evaluated based omonsoon and plateau climate (Van et al., 2014) with twe sea
statistical measures (Tien Bui et al., 2016a) such as classificasons: a rainy season from June to October and a dry season
tion rate (CR), specificity, sensitivity were computed as follows: from November to May. The average annual temperature is 18
~ 20 € for areas with elevation is above 600 m, wherdae
CR= TP+TN © average temperature is around 25 € for the other areas. The
TP+TN +FP FN average annual rainfall is 1634 mm, the average annual hum
idity is 80%, and the number of hours of sunshine is about 2757
hours (GSO, 2015).

Sensitivity= TP+FN (10) According to the land use statistics (CGIAR18), forest

and perennial crop lands cover approximately 64.5% of the

total study area. The production forest land and the protection

true negative, false positive, and false negative, respectively. forest land account for 33.4% and 9.7% of the total study area,
respectively. Due to climate changes such as prolonged dr

CRis the number of forest fires and rfire points that =\ eather in recent years (Van et al., 2014), the forest fire prob
are correctly classified divided to the total points. Sensitivity is lem at the province seems to be severe i.e. a huge forest fire
the percentage of correct forest fire points whereas specificityy ., req in December 2013 at the protected pine forest at Bac
is the percentage of correct Rfre points in the training or  gjen g areas destroyed around 250 ha; a huge forest fire also

validation datasets. In addition, specificity provides a measure,. . rred on March 2015 at the tourist spot of Ham Rong moun

of the proportion of nofire samples that are accurately catego iy destroyed more than 3 ha pine forests: therefore, study of

rized as such. . forest fire for this province is an urgent task.
Moreover, the global performance of the forest fire models
is evaluated using the receiver operating charadte(ROC)

curve that is constructed based on sensitivity (true positivity3-2. Forest Fire

rate) and specificity (false negative rate) (Tien Bui et al., Historical fires, their locations, and their influencing-fac
2017a). To quantify the global performance, area under theorsare a main key for modelling forest fires (Massada et al.,
curve (AUC) that varies between 0.5 and 1 is also used. AUG(011). Therefore, an inventory map with a total of 2530 his
values of 0.5~ 0.6 indicate insufficient whereas values of 0.6 torical fire location for the study area was prepared first. These
~ 0.7 indicate poor performance. Models with AUC values of fires that occurred during the last 10 years (20Q016) were

0.7 ~ 0.8 denote moderate performance while models withprovided by the Department of Forest Protection of Vietnam
AUC values 0.7 0.8 denote good performance. Models with (Ministry of Agriculture and Rural Development of Vietnam,
AUC values of 0.8- 0.9 will indicate very good performance 2016). This is the official forest fire database in Vietnam, and
(Peterson et al., 2008). is now available at http://www.kiemlam.org.vn/firewatchvn/.

whereTP, TN, FP, andFN denote the values of true positive,

Temporal analysis of the forest fires (Figure 4) shows that
3.The Study Area and GIS Database 88.8% of the total fires occurred in the dry season, from-Janu
- ary to May, in which the forest fires are at the peak on March
3.1. Description of the Study Area (39.4%). I)r/1 contrast, few forest fires occurred ir? the rainy sea

The study area is the Gia Lai province that is located at theon. Many forest fires occurred in years 2015 (33.9%), 2016
Central Highlands region in Vietnam (Figure 3.), between lon (16.3%), 2010 (19%), and 2013 (13.2%), whereas, few forest
gitudes 102 6 6 0 0 60 & 1M 6HEZ and b gdsweeuRréd fol tielothet yiéatse Surprisingly, no fire occurred
125860000 N5am@06dM. |t cover s nE011.3tls emphagié thal Pseribof idodKocurred in 2011
The elevation is from 80 m to 1740 m above the sea Ievel, Wltr‘('nen Bui et aL, 2016a) whereas pro|0nged dry weather with
the mean is 522.3 m and the standard deviation is 278.2 m. worst droughts occurred years of 2010, 2013, 2015, and 2016

The province is inhabited by nearly 1.4 million people due to El Nifd Southern Oscillation (CGIAR, 2016).
with the average population density of 90 person$ikra015
and around 70% of the settlements are-mdyan areas (GSO,
2015). Due to its special location, Gia Lai is crucial for socio
economic connectiowith the Southern Central coast of Viet Occurrence of forest fires is influenced by interactions of
nam and is the center of the VietnduimosCambodia triangle  various factes such as topography, fuels, and climate patterns
development zone. The overall poverty rate in the province igCary et al., 2009); therefore, determination of fire ignition
11.36%, and the annual GDP per capita is about 1100 USHactors is a crucial task in forest fire modeling. In this study, a
(GSO0, 2015). The economy of the prme is mainly based on total of 12 ignition factors were considered (Tien Bui et al.,
agriculture with 500 thousand hectares of annual crops and pe2017b), slpe (), aspect, elevation (m), curvature, NDVI (Nor
ennial trees). The industry is agfarestry processing and hy malized Difference Vegetation Index), NDWI (Normalized
droelectric power with 82 hydroelectric projects in the whole Difference Water Index), NDMI (Normalized Difference

3.3. Ignition Factor
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Figure 4. Temporal analysis of the forest fires occurrence for the study area.
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Figure 5. Forest fire ignition factors used in this study: (a) Slope map; (b) Aspect map; (c) Elevation map; (d) Curvature map; (e)
Landuse map; (f) NDVI map.
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Moisture Index), land use, temperatuile ind speed (m/s), with five classes was generated, whereas for the NDWI map
relative humidity (%), and rainfall (mm). (Figure 5f)and the NDMI map (Figure 5g), seven classes were
Slope and aspect should be selected because slope infligonsidered. .Thes.e classes were determined using the natural
ences fire spread rate, whereas aspect is related to wind spee8é€aks algorithm in ArcGIS 10.4 as mentioned above. For land
amajor factor affecting fires propagation (Pimont et al., 2012). Use, this factor should be used for the forest fire modeling be
Elevation influences vegetation distribution, fuel moisture, andcause it relates to &wopogenic activities, an important igni
air humidity that indirectly relate to forest fires (Verde and tion sources for fire occurrence (Huesca et al., 2009). In this
Z&ere, 2010). Curvature is used for the forest fire modeling Study, the land use map (Figure 5h) with eleven groups at a
because lower local curvature has proven to spread fires fastetc@le of 1:50,000, which was provided by the authority of the
than those with higher local curvature (Hilton et al., 2017), Gia Lai Province, was usedhis map was produced in the
therefore it may influence behaviors of forest fires. In this National project on land use inventory carried out in 2013 by
study, the slope map (Figure 5a), the aspect map (Figure 5b9eneral Department of Land Administration of Vietnam.
and theelevation map (Figure 5c) were generated with 9 Regarding weather, this is considered as one of the largest
classes, whereas the curvature map was compiled with-7 catelriven factor to burned areas (Abatzoglou and Kold913),
gories (Figure 5d). These classes and categories were deteaind in most cases, forest fire happened based on intersections
mined based on histogram distribution analysis of the dateof ignition sources, fuel, and dry weather (Jolly et al., 2015).
values of these maps using the natural breaks algorithm witfTherefore, climatic factors should be used. Specifically, four
the Jenks optimization algorithm (Jenks, 1977) in ArcGIS 10.4.factors (temperature, wind speed, relative humidity, \aare
Accordingly, the data in the four maps were analyzed to exploitselected for this study because these factors have proven
natural eakpoints in which the interariance of the homoge influencing both spread rates and intensities of fires other
nous classes is maximized and the ivimsiance of the ho  researches (Jolly et al., 2015). In this analysis, climatic data for
mogenous classes is minimized. the period 2007 ~ 2014 provided by CFSR (Climate Forecast

Topography influences fire behavior because it affects theSydem Reanalysis, available at https://www.ncdc. noaa.gov/)
local climate, wind direction, and vegetation coveli@ra et ~ that consist of average maximum monthly terrgtere,
al., 2012); therefore, it was considered for analyzing forest firedverage monthly wind speed, average monthly relative
occurrence in this study. For this purpose, a Digital Elevationhumidity, and average monthly total sum of precipitation were
Model (DEM) of the study area was generated using nationaHsed. The temperature mapgie 5i) was constructed with
digital topographic maps at a scale of 1:50,000 usiraz/S nine classes, whereas six classes were considered for the wind
10.4 software. Based on the DEM, slope, aspect, elevation, angpeed map (Figure 5j). For the relative humidity map, nine
curvature were generated. classes were adopted, and for the case of the rainfall map

NDVI is considered as a proxy for vegetation health status(':igure 5k), eight classes were employed dstermined these

that related to the flammability and quantity of surface fuel classes using th? natural breaks algorithm ('_I'len Bui et al.,
(zylstra et al., 2016), whereas, behasiof forest fires are also 2017b) available in ArcGIS 10.4 that was mentioned above.
influenced by vegetation water content (Maki et al., 2004) and

live fuel moisture (Dennison et al., 2005). Therefore, these4. Proposed ICARVM for Modelling and Predicting
factors should be considered in forest fire modeling. For this Tropical Forest Fire DangerUsing GIS

research, reflectance (Vlassova and R@&mbello, 2016) in

Landsat8 Operational Land Imagery spectral bands (30 m _ The overall structure of theroposed ICARVM model
resolution) and available at http://earthexplorer.usgs.gov) wad'hich is a combination of RVM and ICA algorithms is shown
used to compute the three indices, i.e., NDVI using Equationi” Figure 6. ICARVM used a pattern recognition approach to
11 (DeFries and Townshend, 1994). The vegetation waterdistinguish the p|xels in the study area into t_r_le forest f_|re class
content was derived using the Normalized Difference Water@"d the norforest fire class. As result, prdaiaty of a pixel
Index (NDWI) in Equation 2 (Gao, 1996), whereas the live _belongs to the forest fire class was used as forest fire danger
fuel moisture was estimated through Normalized Differenceindex.

Moisture Index (NDMI) in Equation3(Xu, 2006) as follows: It is worth to notice that these data were acquired,-proc
essed, and integrated using ArcGIS 10.4 and IDRISI Selva 16
NDVI = (Band 51 Band4)/(Band 5 + Band 4) 1) packages. The relevance vector machine (RVMyadlable at
http://www.miketipping.com/sparsebayes.htm, while the pro
NDVI = (Band 3i Band 5)/(Band 3 + Band 5) (12) posed ICARMV model was developed by the authors in Mat
lab. In addition, a geospatial tool developed in C++ also by the
NDVI = (Band 5i Band 6)/(Band 5 + Band 6) (13) authors was used to transform forest fire danger indices into a

) ) rater format for implementation in ArcGIS package.
where Band 3 is the Green band (0i53.59 pym); Band 4 is

the Red band (0.64 0.67 um); Band 5 is the Neanfrared
band (0.85- 0.88 um); and Band 6 is the Shastave Infrared 4.1. GIS Database, Training Dataset and Validation Dataset

(SWIR) band (1.57 1.65 m). In order to construct a machine learning based model for
For the forest file modeling, the NDVI map (Figure 5e) predicting tropical forest fire danger, it is necessary to establish
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Figure 5. (continue); (g) NDWI map; (h) NDMI map; (g) NDWI map; (h) NDMI map; i) Temperature map; (j) Wind speed map;
(k) Relative humidity map; and (I) Rainfall.

Figure 6. The proposed ICARVM model for the forest fire modeling in this study.
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