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ABSTRACT. Mining activities contribute the high level of air pollution at ground level and have significant environmental impacts. 

There is an urge to develop an integrated modeling system which helps to analyze these pollutants and their control strategies. Therefore, 

a new integrated approach is conceptualized as life cycle based air quality modeling system (LCAQMS) for the mining. This paper 

focuses on incorporating air quality modeling to understand the severity of air pollution in mining and developing an integrated system 

for mining related decision support with a field application. The system integrates inverse matrix which is used to develop air emission 

inventory; characterization method to assess the environmental implications; artificial neural network model for carbon footprint analysis; 

air dispersion modeling to predict the pollutant concentration at receptor level; and multicriteria decision analysis tool to provide air 

pollution control solutions. The developed LCAQMS method has applied to a copper mining site in the US. Inventory results reveal that 

NOX and SO2 produced more as compared to the other pollutants for this site. The study also helps to quantify the carbon credits for the 

copper mine. Prediction of the four significant pollutants (PM10, PM2.5, SO2, NOx) at ground level have been further calculated and 

validated with observed values at seven different monitoring stations. The modeling results have supported selecting the best alternative 

management technology for the air pollution control. It indicates that the developed LCAQMS can serve as a useful tool to assess, predict 

and assist in the selection of environmental mitigation options for mining sites. 
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1. Introduction 

Air quality management in the mining industry is a com- 

plex task because of a wide range of pollution sources which 

are highly variable in nature and site-specific. The concerned 

environmental challenge in the mining sector is vulnerable to 

the air quality due to the hazardous pollutants (Asif and Chen, 

2016). For instance, exceeded limits of nitrogen oxide (NOx), 

sulfur oxide (SOx), particulate matter (PM10 and PM2.5) and 

greenhouse gases (GHG) can cause serious health issues (Min-

ing Association Report, 2012). The tracking trends in air emis-

sions provided an indication that NOx and PM10 emissions 

have both increased from 2008 to 2011 in the North America 

mining and quarrying subsector (CIEEDAC, 2015). The gen-

eration of greenhouse gases is inevitable or likely due to con-

sumption of diesel fuel at a larger level. In 2011, the metal 

mining sector emitted 3500 CO2 eq. (Kt) of GHG with an 

increase of 300 Kt (8.5%) as compared to the year 2000 

(CIEEDAC, 2015). Of note, emissions increased by 15.7% 

(3800 Kt) between 2006 and 2008 before increasing again in 
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the years 2012 and 2013 (Asif and Chen, 2016). Hence, poor 

air quality in mines can lead to occupational illness and death 

of workers. Sixty-nine mine workers died from occupational 

diseases including cancer, according to claims accepted by the 

workplace safety and insurance board (WSIB) of Ontario be-

tween 2008 and 2013 (Ontario Ministry of Labor, 2013). With 

increasing environmental awareness, more and more mining 

companies are showing their interest to address the air quality 

problems and carbon credit and to identify appropriate correc-

tive measures to improve the environmental sustainability of 

their processes. 

Integrated environmental modeling (IEM) provides a sci-

ence-based structure to advance and combine the multidiscci-

plinary knowledge. It provides a platform to assess, investi-

gate, and predict the environmental system and its response to 

external inputs (Laniak et al., 2013). Because of its broad sc-

ope, it brings researchers from multiple disciplines together 

with decision makers to solve problems. For instance, two ap-

proaches have been used to analyze the air quality issue in min-

ing industries. One is life cycle assessment (LCA) approach to 

develop emission inventory and to analyze environmental im-

pact (Durucan et al., 2006; Norgate and Haque, 2010; Awuah-

Offei and Adekpedjou, 2011; Ingwersen, 2011; Norgate and 

Haque, 2012; Northey et al., 2013; Nuss and Eckelman, 2014). 

However, the past studies based on LCA modeling in the min- 
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Figure 1. Integrated framework of LCA based integrated air quality modeling system (LCAQMS). 
 

ing sector mostly focused on single variable or point sources 

such as tailing waste, mine haulage, and are mostly lacking in 

detailed representation of variables utilized in a linear or non-

linear system for flows analysis (Ingwersen, 2011; Awuah-

Offei and Adekpedjou, 2011). Another approach is mine tar-

geted air quality modeling to predict concentration of the pol-

lutants (Bhaskar et al., 1989; Reed et al., 2002; Cimorelli et al., 

2005; Bonifacio et al., 2013). Numerous air quality models 

such as box model, Gaussian model, Eulerian model, and La-

grangian model have been reported being applied for the pre-

diction of air quality for the mining industry (Reed et al., 2002). 

However, all the reported studied have some limitations such 

as most of the models are mainly centered around the parti-

culate matter and ignore other gaseous air pollutants. The ear-

lier studies also concluded that most air quality models share 

common assumptions and consequently produced results based 

on the analysis of the single source at the mining site (Badr and 

Harion, 2007) and over prediction analysis (Fishwick and Scor-

gie, 2011; Neshuku, 2012). In this research, both approaches 

mentioned above have been integrated to assess the air quality 

and to produce an inventory for the mining system. Moreover, 

artificial neural network models (ANN) have been considered 

as efficient tools for predicting the air quality and preparing the 

data in a systematic way (Gobakis et al., 2011; Cheng et al., 

2012; Chan and Jian, 2013). Thus, the present study is used to 

develop ANN model for predicting carbon footprints and inte-

grate it with other environmental models to enhance the fea-

tures of the developed system for mining. 

The application of IEM is expanding with the emergence 

of issues related to regional scale, local scale, impacts of air 

quality, fate and transport of pollutants, and life-cycle analysis 

(Laniak et al., 2013). However, the application of IEM in the 

field of mining especially assessing air quality and decision 

analysis has a great significant. Air quality deterioration has 

been increasingly drawing researchers’ attention over the past 

few decades due to its close relation to the health of the workers 

as well as the surrounding communities. Secondly, air is the 

only medium which can take pollutants to the specified dis-
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tance far away from the source. Therefore, it is essential to 

control the air pollution by introducing any promising tech-

nology. Thus, selecting the suitable optimal technology for a 

mine site is a critical task. Because most environmental de-

cision making (i.e., the selection process) involves multiple 

criteria and conflicting objectives (e.g., minimizing pollution 

and cost while maximizing production) (Kiker et al., 2005; 

Sadiq and Tesfamariam, 2009). Moreover, a massive database 

is required, and input information for each objective is often 

represented in qualitative or quantitative form, which is hard to 

understand and thus intensify the decision-making process 

(Tesfamariam and Sadiq, 2006). Multiple criteria decision 

anal-ysis (MCDA) methods deal with such problems whose al-

ternatives are predefined and multiple criteria based ranking to 

evaluate the alternatives (Sadiq and Tesfamariam, 2009). 

The objective of this paper is to conceptualize the life 

cycle based air quality model and decision support system and 

to implement it to the open pit copper mining site for testing 

the model. The purpose of the model is to combine mining and 

air dispersion disciplines together by integrating with the field 

database and mathematical simulations. 

2. Methodology and Specification 

The mining system is conceptualized in terms of all the 

potential air pollutants and the mining technical data including 

meteorological conditions. This conceptualization is reflected 

in the architecture of framework chosen for the models. LCA 

based air quality modeling system (LCAQMS) consists of four 

primary models. These models are comprised of mathematical 

equations and analytical solutions which help to generate in-

ventory, assess the impacts, predict the air pollutants at ground 

level, carbon footprint analysis and selection of best alterna-

tive technology. Consequently, LCAQMS includes inventory 

development model, artificial neural network model, air dis-

persion model and multicriteria decision analysis tool as shown 

in Figure 1. 

 

2.1. Modeling Approach 

Linear/nonlinear, statistical approach, analytical Gauss- 

ian based simulation and outranking method are used to de- 

velop inventory model, artificial neural network model, air 

dispersion model and multicriteria decision analysis method 

respectively. 

The study aims to develop the LCA based air quality 

modeling system (LCAQMS) model which comprises of an 

inverse matrix as a life cycle assessment (LCA) tool to gen-

erate inventory; artificial neural network model to investigate 

the carbon footprint analysis for the mine in terms of CO2 

equivalent. The mining air dispersion model (MADM) is de-

veloped to generate the predicted air pollutants concentration 

at various receptor levels while considering the deposition ef-

fect. Multicriteria decision analysis (MCDA) system is applied 

to produce weighting index and to provide the best sustainable 

alternative to control air pollution.  

In general, the model aims to provide a user-friendly inter-

face by combining the life cycle based assessment, prediction 

models, decision-making tools and a database for data storage 

and management. For verification of the developed system, it 

is employed to assess the air quality condition in the open pit 

copper mine. 

 

Available Resources 

LCAQMS for the mining is developed using the C sharp 

programming language in visual studio 2015 and integrated 

with the inverse matrix and backpropagation artificial neural 

network (BPANN) model, Gaussian algorithm and visual Pref-

erence ranking organization method for enrichment evaluation 

(PROMETHEE) tool. The original data are processed through 

the Matlab that represents the algorithms of the models, and the 

results of the models are subsequently displayed and stored in 

excel files. The algorithm of BPANN model is packaged as a 

dynamic link library (*.dll) by using the Matlab Compiler. The 

mining site data and emission inventory from the life cycle 

modeling are considered as inputs for MADM model. All the 

equations are solved in excel, and then data is imported to 

Matlab complier. The input data and all the variables repre-

senting alternatives are prepared in the matrix form, and the 

output can be directly imported to excel as CSV format. How-

ever, visual graphs prepared through this tool can be used in 

raw with little improvement. The contours are prepared using 

surfer tool. The models have a single graphical user interface 

and shared data storage as shown in Figure 2. 

 

  
 

Figure 2. Graphic user interface for the LCAQMS model. 

 

Model Users 

Integrated environmental models are usually complex and 

are often accessible only to experienced modelers. For LCA-

QMS modeling, the model aims to be easily used by the site 

and design engineers in the mining industry. The model has 

been integrated to run with various treatment options for air and 

different atmospheric conditions relevant to management ques-

tions and stakeholder concerns. Other than LCA module the 

rest of the parts such as air quality and decision analysis are not  



Z. Asif and Z. Chen / Journal of Environmental Informatics 35(2) 103-117 (2020) 

106 

 

 

 

Table 1. Input Databases for LCAQMS Simulation 

Category Data Pollutants/parameters Description 

Technical Mining activities; 

infrastructure 

Ore removal, drilling, hauling, handling, 

concentrating, smelting, refining, 

stockpiling/overburden, tailing and 

power plants 

Technical reports; websites (mine A) 

Emissions Emission data per unit 

activity (ton/hr) 

NOx, SO2, PM10, PM2.5, CO, VOCs, 

CH4, Hg, NH3 

Sampling data at source or per unit 

activity (mine A) 

Emissions National pollution 

emission inventory for 

year 2011 ~ 2014 

(ton/year) 

NOx, SO2, PM10, PM2.5, CO, VOCs USEPA, 2017a. Air emission inventories. 

(https://www.epa.gov/air-emissions-

inventories/air-pollutant-emissions-

trends-data). 

Meteorology Average daily data 

(2011 ~ 2015) 

Wind speed (m/s); temperature (°C); 

precipitation (mm/hr); frequency of 

wind direction 

NOAA (regional climate center), 2017. 

Salt Lake City Weather Forecast Office. 

(http://w2.weather.gov/climate/local_data.

php?wfo=slc) 

Land use Digital mapping Longitude and latitude; 

terrain type 

USGS, 2017. 

(https://viewer.nationalmap.gov/basic/?ba

semap=b1&category=ned,nedsrc&title=3

DEP%20View) 

Air monitoring Average daily  

(2011 ~ 2015) 

NOx (ppb) based on 1 hr average, SO2 

(ppb) based on 1 hr average, PM10 and 

PM2.5 (µg/m3) based on 24 hrs average 

Utah air monitoring programs, 2017. 

(http://www.airmonitoring.utah.gov/netw

ork/Counties.htm) 

Greenhouse data Greenhouse gases 

facility data Average 

monthly (2011 ~ 2015) 

CO2, CH4, N2O (CO2 eq. metric tones) USEPA, 2017b. Greenhouse gases data at 

facility level. 

(https://ghgdata.epa.gov/ghgp/main.do) 

 

Table 2. Identification of Alternatives to Minimize Air Pollution 

Treatment methods Removal efficiencies References 

Category 1: Air pollution control alternatives 

Bag house 99% of captured pollutants (Driussi and Jansz, 2006)  

Hood over the conveyor belt  99 ~ 100% (Cecala et al., 2012)  

Capping of tailing waste by vegetation 75% (Sheoran et al., 2013) 

Chemical stabilizer for haul roads  85% (Dwayne and Regensburg, 2001)  

Water spraying 50 ~ 75% (Prostański, 2013)  

Category 2: Reduction in fuel consumption to reduce greenhouse gases 

Biodiesel (blended form) 98 ± 11% of CO  (Bugarski et al., 2014)  

Idling reduction using routing systems and real 

time GPS 

15% reduction in GHGs (total) (Vivaldini et al., 2012)  

Concentrated solar thermal technologies (CST) 15% reduction in GHGs (overall mine) (Eglinton et al., 2013)  

Electric drilling as existing system 42% reduction of fuel from stationary fuel 

combustion 

(Mine A, USA) 

 

sourced dependent and could be used separately to analyze any 

kind of local point source air pollution. Model output is then 

analyzed to provide scientific and visual interpretations for 

stakeholders, including regional environmental managers. 

 

Spatial and Temporal Scales 

Features of LCAQMS includes all the technical data from 

the mining site and real time atmospheric conditions other than 

emission data per unit mining activities. The three-dimensional 

values could be produced by considering x, y, and z directions. 

Three dimensions LCAQMS model also implies variable grid 

cells depending on the boundary conditions at the inventory 

development stage. Moreover, values can be predicted at dif-  

ferent distances from x = 0 to 30 km depending upon the avail-

ability of stability conditions. For vertical height, modeling va-

lues can be generated at various points until concentration get 

sufficiently dispersed or not changed. Usually, the coupling of 

all the four models increases the computational demand. How-

ever, in the inventory model, the input variables are fixed, and 

other unnecessary parameters are eliminated using cut-off cri-

teria rules in LCA. For carbon footprint analysis, scales require 

integration with time steps on the order of 8 days for more 

accurate results. For air dispersion model, daily average data is 

used along with the local weather station data. Precisely, real-

time meteorological data is critical to be used to get the pre-

dicted modeled value on the specific day of the month or year. 

 

2.2. Identify Model Structure and Input Values 

The parameters and variables are selected from the fields, 

literature studies, technical reports and mining companies. In 
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the case of open pit metal mining, variables defining the con-

tribution of pollutants are determined by mining corporations 

and government database. ISO 14040:2006 describes the prin-

ciples and framework for life cycle assessment (LCA) includ-

ing life cycle inventory analysis (LCI) phase and life cycle 

impact assessment (LCIA) phase (Finkbeiner et al., 2006). For 

this study, the technology matrix for inventory development 

includs ten variables divided as processing flows [feed (ton/hr), 

quantity produced (ton/hr) and waste produced (ton/hr)]; tech-

nical flows [Area (m2), capacity of unit (Mt), frequency of 

activity per shift (number), truck trips per shift (number) and 

operating hours per shift (hr)] and energy flows [fuel consump-

tion (L/hr) and energy consumption (kwh /t). The environmen-

tal flows comprise of potential pollutants produced and may 

vary from mine to mine and then compiled in matrix forms (see 

Appendix Tables A1 ~ A2).  

Calculations based on underlying environmental indica-

tors for impact assessment. For example, characterization fac-

tors when linked with emission loads (inventory), give results 

in terms of impact. This relationship is used to determine the 

midpoint impact analysis in the first module of the model. 

Because of inherent variability and nature of the processes, 

only greenhouse gases are used to calculate the carbon credit 

for the mine using artificial neural network algorithm.  

In the proposed mining air dispersion modeling (MADM) 

approach, there are three components of input database includ-

ing geographic, meteorological and air emission inventory 

from the LCA output as shown in Figure 1. The geographic da-

tabase included digital maps, land usage data, elevation data-

set, surface roughness length and processed into gridded sur-

face within the modeling domain. Whereas, meteorological 

data included the wind speed, direction of the wind, ambient 

temperature, precipitation rate, stability class, etc. The added 

parameters are emission rate from the sampling points, stack 

height, stack diameter, exhaust temperature, exhaust exit ve-

locity and plume rise. These data sets are spatially allocated and 

stored in the database of MADM in the corresponding com-

partment and saved as Excel spreadsheet. MADM has been 

embedded in a Matlab edition 2014a for linear regression. 

Visual graphs for other results are then plotted in Excel/Sigma 

plot, and golden software surfer V13 is used to produce contour 

mapping. Following Table 1 shows different sources of data-

base and their categories used in this study. 

For multicriteria decision analysis, all the outputs from 

MADM and BPANN are carefully evaluated to find the po-

tential air pollution issue in the mine which helps to find the 

best possible control solutions. Two different groups have been 

analyzed for ranking to minimize the air contaminants and 

greenhouse gases (see Table 2). Criteria to evaluate each alter-

native are identified to ensure the objective of the decision 

analysis method. The data for each criterion is obtained from 

literature studies and different mining reports by experts. Exist- 

ing methods of the mine site A is also included for comparison 

purpose. The chosen criteria for decision system are: minimize 

the air pollution, minimize the cost, maximize the extraction 

rate or efficiency, maximize the sustainable performance, mini- 

mize the risk associated with the pollutants, minimize the quan- 

tity required for chemicals and application rate in context of 

dust suppressants, maximize the future use and minimize the 

energy/fuel consumption. 

 

Inventory Development Model 

This phase of the LCAQMS comprises of two principal 

activities i.e., identification and quantification by performing 

inverse matrix method. The life cycle inventory is developed 

using matrix method by utilizing a system of linear equations. 

The scope is to include all activities from the stage of the ore 

extraction to the waste handling. In the first module, all the 

technical and air emission data are used as input of technology 

matrix which is used to compute the scalar vector. Consequent-

ly, emission load matrix is constructed based on the estimated 

emissions. The scalar matrix and emission load matrix is mul-

tiplied to produce air pollution inventory. In the second module 

of the model, back propagation algorithm is used in ANN 

modeling to stimulate CO2 eq. by utilizing greenhouse emis-

sion data (CO2, CH4, and N2O). For assessing other mid-point 

impacts five environmental indicators are used depending up-

on the type of potential pollutant produced. Mainly climate 

change, acidification, photochemical oxidant formation and 

particulate matter formation are used for characterization of 

data by using TRACI (tool for reduction and assessment of 

chemicals and other environmental impacts) method (USEPA, 

2017c). Every method has its impact category and character-

istics factor which seeks to establish a linkage between a sys-

tem and potential impacts. Many characterization factors are 

established based on the studies conducted in Europe, and only 

a few are based on worldwide studies such as CML, Recipe, 

and TRACI. Therefore, selection of method depends upon the 

relevancy of characterization factors to the site-specific case 

studies. 

The technical, processing and energy flows per unit ac-

tivity are together considered as an economical flow which is 

arranged in the technology matrix “A” and the environmental 

flows in the environmental intervention matrix “B”. In both 

matrices “A” and “B”, columns represented the processes and 

rows are the flows. Each process in the matrix is represented 

by demand vector “p” and boundary conditions for the eco-

nomic flows at the system boundary are expressed by the 

scaling vector “α”. Thus, the scaling vector “α” can be derived 

as (Guinee et al., 2010): 

 

A p  (1) 

 
1

1 111 1
1

2 2

1

.

technology matrix. demand vector = scaling vector

=
n

m mn m m

p aa a

A p p a

a a p a







    
    

      
     
     

L

M O M

L
 (2) 

 

A represents a square matrix, and A-1 is the inverse matrix 

of A. Items in the system boundary vector α are the absolute 

values of the economic flows, which cross the system bound-

ary. Each item in the demand vector p is the scaling factor 
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corresponding to the unit process. Then, the final environment-

tal load vector β can be obtained by using the environmental 

intervention matrix “B” as (Cooper, 2003): 

 
1. or .( )B B A p      (3) 

 

The process activities used in the construction of the com-

putational structure of matrix based inventory are divided into 

ten groups with each 10 × 10 matrix based on their function and 

availability of data. 

 

Artificial Neural Network Model 

Artificial neural networking is a mathematical algorithm 

that emulates the processes to aid in recognizing pattern and 

predictions based upon past database. The advantage to using 

ANN lies in their capacity to solve linear and nonlinear prob-

lems. For this study, the dataset has been divided as training 

dataset (70%), testing dataset (15%) and validation dataset 

(15%). Back-propagation artificial neural network (BPANN) is 

selected for carbon footprint modeling. Each layer has several 

neurons which are equal to the number of the inputs and out-

puts of the system. The architecture of a neural network has 

layers between the input and the output layers. These layers are 

considered as hidden layers which allow the network to iden-

tify the relevant patterns in the data and to carry out the com-

plex nonlinear mapping between the input and the output va-

riables. The input data, during the training of a network, are 

propagated in a feed-forward manner to produce output, based 

on the weights and predefined transfer function. The predic-

tion error is then calculated from the difference between the 

rendered output and the actual output. The weights of the links 

could be adjusted to minimize the prediction errors. The net-

work reflects well trained when the sum of all the errors in the 

system reaches minimum based on trial and error method. Hy-

perbolic tangent is used as a transfer function of the hidden and 

output layer neurons. For this study, the architecture mainly 

consists of four input variables (x) such as fuel consumption 

(x1), CO2 (x2), N2O (x3), CH4 (x4) and operating hours of equip-

ment (x5) depending upon the site conditions and database and 

one output i.e., CO2 equivalent kg. As shown in Figure 3, the 

input variables are multiplied by the connection weights (wij) 

between the input and hidden layer. The weighted signals and 

bias from the input neurons are summed by the hidden neurons 

and then projected through a transfer function fh. The results of 

the function fh are weighted by the connection weights (wji) be-

tween the neurons and sent to the output nodes. transfer func-

tion fo is then projected by the output neurons. The output of 

this neuron is the predicted response ŷ (Dieterle, 2003). 

 

Air Dispersion Model 

The dispersion of pollutants from various point sources in 

the mining sector can be determined using simple advection-

diffusion equation. A Cartesian coordinate system is used to 

represent x, y, and z-axis in the direction of the wind (constant), 

along with the crosswind direction and in the vertical direction 

respectively. The governing equation for the pollutant transport 

is expressed as follows (Essa et al., 2014): 

 

c c c c 
+u +v + w

t x y z

 c  c  c 
= (k )+ (k  )+ (k )+ R+ Sx y z

x x y y z z

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

 (4) 

 

whereas C is the pollutant concentration (g/m3) at any time t (s) 

and at any location (x, y, and z); k is the eddy diffusivity 

coefficient in x (kx), y (ky) and z (kz) direction (m2/s); u, v, and 

w are the average wind speed component (m/s); R is the term 

used for sinks (g/m3.s) and S used for the sources (g/m3.s). 

 

 
 

Figure 3. Architecture of feedforward back propagation ANN 

for carbon footprint prediction for metal mining. 

 

Equation (1) can be solved by considering some assump-

tions such as (i) neglecting the sources and sinks for the current 

situation thus, S = 0, R = 0; (ii) at steady state 0;c t    (iii) 

the wind is blowing in x direction only so v = w = 0; (iv) 

transport of contamination in x direction is outweighed due to 

the wind as compared to eddy flux in the same direction, 

 u c x >>∂ ∂    .x k c xx∂ ∂ ∂ ∂  Hence, Equation (4) is 

reduced to the fol-lowing expression: 

 

( ) ( ) 
c  c  c 

u = k + ky z
x y y z z

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
 (5) 

 

Assuming when the plume is released from the source 

considering the same coordinates system, then coefficients of 

eddy diffusivity can be calculated by using standard deviation 

as follows (Rao, 2007): 

 

; ;2 2 2 σ x=2tk σ y=2tk σ z=2tk  x y z  (6) 

 

In order to observe the contamination at the receptor site, 

downwind distance x is considered, and eddy diffusivity can be 

written as: 

 

ok  = Ku xz  (7) 
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whereas K is von Karman constant with a constant value of 0.4; 

uo is the frictional velocity (m/s; mostly taken as 0.1 of wind 

speed).  

Following expression is used to predict air quality at 

receptor level including dry deposition (Vd m/s) based on the 

separable variable K-theory Gaussian algorithm to get the final 

analytical solution for mining activities. 

 

(

( )

( )

                    { ( )}

1

2

o

2

d d

E yiC(x,y,z,t)= expn=i 4tky
uh 4πtk )y

v vZ H
exp

ku x 2u





 

 (8) 

 

where H is the plume rise (m), and Z is the mixing height (m). 

E is the emission rate per unit mining activity “i” (g/s). 

 

Multi-Criteria Decision Analysis System 

Preference ranking organization method for enrichment 

evaluation (PROMETHEE) method comprises of partial rank-

ing and complete ranking. The PROMETHEE II complete 

ranking is based on a calculation of net outranking flow value 

(Phi) that represents the balance between the positive (Phi+) 

and negative (Phi-) outranking flows. The higher the net flow, 

the better the alternative (Huang et al., 2011; Yang et al., 2012). 

Whereas, PROMETHEE I provide a partial ranking of the 

alternatives. The selected approach consists of four primary 

stages: 1) identification of alternative methods considered as 

actions in the context of objective of the study at the data 

gathering stage; 2) defining the criteria and assigning values 

which assist in evaluating the options; 3) analysis of data by 

determining the preference functions and parameters. After 

this, with the help of visual PROMETHEE tool, the partial 

ranking with PROMETHEE I and the complete ranking with 

PROMETHEE II along with GAIA (geometrical analysis for 

interactive decision aid) plane is determined to find the best 

alternative methods for mining to reduce the impact of air 

pollution; 4) Finally, the decision-making stage in which the 

best mining method is selected based on rankings of alter-

natives. Multicriteria preference index (Π) is expressed as 

weighted average of the preferred function p(xi, xk) (Yang et al., 

2012): 

 

1

. ( , )
( , )

k
j i k

i k
jj

w P x x
x x

w
=



   (9) 

 

where Wj represents weights of criterion which are determined 

by analytical hierarchy process (AHP) method using pairwise 

comparison of each criteria. The method is computed by using 

super decision tool (https://www.superdecisions.com/). 

Π(xi, xk) represents the degree of preference (P) of the 

decision making of alternative xi over alternative xk. The value 

of preference index is between 0 and 1: 

Π(xi, xk) ≈ 0 indicates a weak preference of xi over alter-

native xk for all the criteria, 

Π(xi, xk) ≈ 1 denotes a strong preference of xi over alter-

native xk for all the criteria 

The PROMETHEE method is based on the calculation of 

positive flow (Phi+) and negative flow (Phi−) for each alter-

native according to the given weight for each criterion. The 

higher the positive flow (Phi+ → 1), the better the alternative. 

The negative outranking flow expresses how much each alter-

native is outranked by all the others. The smaller the negative 

flow (Phi− → 0), the better the alternative. The positive and ne-

gative flows are expressed as follows: 

 

/

=1

Π( )

m

i k

k

Phi x , x    (10) 

 

Each criterion is rated based on the scale of 1 to 9, using 

knowledge of environmental and technical evaluation. Each 

option based on the preference that has low cost rated as 9 and 

the high cost rated as 1. For less magnitude of the pollutants 

emitted rated as 9, otherwise scored 1. The risk is associated 

with the pathway of the pollutant or the resultant pollutant 

produced during removal of the target pollutant, may pose a 

threat to surrounding ecosystem. If this is the case, that alter-

native would be rated as 1; otherwise rated the higher value up 

to 9. For long-term performance, an alternative that is more 

efficient for a long duration is rated as 9, and an alternative that 

would not be much suitable for the same period is scored as 1. 

An alternative that has an excellent removal efficiency is rated 

as 9; otherwise, it is scored less value. If an alternative required 

less energy to remove pollutant is rated as 9; otherwise, it is 

rated at a lesser value. An alternative that would increase future 

use and aesthetic of the site is rated as 9, and vice versa. (See 

Appendix Table A3 illustrates these criteria and their scoring 

scale accordingly). 

 

2.3. Selection of Performance Criteria 

Performance criteria for such type of environmental mod-

els must reflect the overall scope and specific objectives of the 

modeling activity (Jakeman et al., 2006). There are two impor-

tant purposes of this proposed integrated system. One is to de-

velop an air quality management tool for mining system which 

can help to generate mine specific inventory, assess and predict 

air quality issues which is used to select best treatment method. 

The second purpose is to analyze new approaches, algorithm 

and analytical solutions and tested at the mine site for the first 

time. The simulation modeling results have been compared 

with the field observations at every stage. Therefore, an agree-

ment between their values and regression analysis is considered 

as the performance criterion. 

3. Case Study 

Mine site A is an open pit copper mine located in the Utah 

county, USA comprises of approximately 900 ha area. Process- 

ing facilities included a concentrator, a 175-megawatt (MW) 

coal-fired power plant, a copper smelter, and a copper refinery.  
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Figure 4. Location of mine and monitoring station. 

 

The operation produced approximately 300,000 tons of refined 

copper per year plus significant quantities of other metals such 

as gold. For this study air emissions during copper production 

is considered. Five years’ average daily data from the year 2011 

to 2015 is collected. For validation seven monitoring stations 

(S1 to S7) has been examined as shown in Figure 4. The aver-

age maximum ambient temperature is 17 oC. Whereas, average 

monthly precipitation is 1.54 inches. The mean wind speed is 

3.8 m/s. Thus, for each monitoring station, the weather data is 

separately collected through NOAA regional climate center. 

 

 
 

Figure 5. Evaluation of inventory with field values. 

 

3.1. Implementation of LCAQMS Model 

Emission Inventory 

Air emission inventory were generated by using inverse 

matrix method. Table 3 shows the analysis results of quan-

titative inventory obtained through LCA modeling for the year 

2011 ~ 2013, illustrating that mine site A contributed a maxi-

mum amount of NOx (39.6% mostly NO2) and SO2 (25.8%). 

Thus, the rest of the environmental load was because of CO 

(17%), PM10 (10.7%), PM2.5 (3.6%), VOCs (2.3%), NH3 

(0.63%), CH4 (0.16%) and Hg (.001%). Diesel fuel combustion 

is one of the major sources of NOx production. Moreover, 

oxides of nitrogen can also be generated during smelting and 

refining processes. Coal power plant is the primary source of 

SO2 emissions at the mine site. Most the particulate matter is 

generated from natural activities at a mining site such as heavy 

machinery, bulldozing, blasting, and hauling of trucks on 

unpaved roads. Moreover, PM10 is also emitted when the wind 

blows over different types of stockpiles. PM10 and PM2.5 are 

produced mainly from mobile equipment and vehicle exhausts. 

Whereas, CO is produced due to heavy equipment usage during 

processing of ore and incomplete combustions. During data 

collection, it was found that landfill methane gas is being 

utilized for the refinery process from an adjacent municipal 

waste dump to replace natural gas used to heat the electrolyte. 

CH4 is also considered as a greenhouse gas which may produce 

because of fuel consumption such as diesel, gasoline, and 

propane. Though, it is not directly generated due to the mining 

activities. Usually, the presence of VOCs is more profound 

during smelting processes of metals. Figure 5 depicts a compar-

ison between modeled values and the observed values gath-

ered through the national monitoring database. For NOx, there 

is 11% difference because the obtained values also included the 
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Figure 6. Midpoint impact assessment using TRACI (a) Climate change, (b) Acidification, (c) Particulate matter formation, (d) 

Photochemical oxidant formation. 

 

power consumption by the laboratory facilities which was not 

considered during the case study. Same is true for CO. Where-

as, for SO2 modeled value is 7.6% more than observed. The 

reason behind this is that inlet temperature for concentrator 

varies which give rise to SO2 generation. At the time of data 

collection, a high temperature is considered which ultimately 

produced the greater amount of SO2 as compared to the 

reported observed value which is based on average tempera- 

ture. 

 

Table 3. LCA Modeling Results of Emission Inventory for 

Mine site A 

Pollutants Inventory(tons/year) 

PM10 1238.4 

PM2.5 420.5 

SO2 2968.9 

NOx 4551.2 

CO 1954.8 

CH4 18.6 

Hg 1.49 

NH3 72.8 

VOCs 258.5 

Impact Category Assessment 

 

Using TRACI method, the impacts of the same mine were 

calculated, based on the four selected environmental indicators 

which are climate change, acidification, particulate matter for- 

mation and photochemical oxidant formation. The results im- 

ply that it is possible to attribute the calculated environmental 

impact to each mining activity included within the boundary 

conditions and trace it back to the unit process(es) that gene- 

rated them (see Figure 6). Furthermore, the results were norma- 

lized to the midpoint level based on background concentration 

database available at the Utah monitoring program. 

 

 
 

Figure 7. Carbon footprints for mine site A and field compa- 

rison.  
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Figure 8. Contour mapping of air quality pollutant concentrations for mine A based on daily average from 2011 to 2015 for (a) 

PM10; (b) PM2.5; (c) NOx; (d) SO2. 

 

Carbon Footprint Analysis 

Three greenhouse gases (CO2, CH4, N2O) were considered 

depending upon the availability of data (2011 ~ 2015) and 

which might directly subsidize to the carbon credit. The input 

variables subsequently included the stationary fuel combustion 

sources, coal power plant and adjacent waste landfill site to 

collect data for CH4. Different combinations based on various 

nodes was performed through BPANN model for each scena-

rio. Figure 7 represents the comparison between modeling va-

lues of carbon credit for each year with the monitoring values. 

The trend sharply increased for the year 2013 but then grad-

ually lower for 2014 and 2015. 

 

Prediction of Pollutant at Receptor Level 

The predicted concentrations at ground level were deter-

mined using the MADM algorithm while considering the dry 

deposition effect due to gravitational settling. Figure 8 shows 

the contour map representing elevation values at y-axis and 

distances interval at x-axis. Maximum values for PM2.5 and 

PM10 were observed at the mining site. The predicted con-

centration gradually reduced as traveled as a plume away from 

the source. For SO2 maximum concentrations were predicted 

around the smelter and refinery area of mine site A other than 

mine pit. The main reason behind this is that the energy source 

of these units is coal power plant. Moreover, it is interesting to 

observe that NOx was found from 44 to 60 ppb not only around 

and at the mining site but also near the mine pit. It is noticeable 

that NOx is high in this area due to transportation activities 

during hauling and other mobility of the equipment and other 

incomplete combustion of engines. Thus, all the values met the 

national ambient air quality standards (NAAQS).  
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Table 4. Regression Analysis for Pollutants (2011-2015) at Different Monitoring Stations 

Station Id R2 for PM2.5 R2 for PM10 

2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 

S1 0.779 0.92 0.93 0.93 0.82 -- 0.722 -- -- -- 

S2 0.68 0.74 -- -- 0.89 0.78 0.70 -- -- 0.83 

S3 -- 0.71 0.642 0.775 0.72 0.71 0.74 0.79 -- 0.72 

S4 -- -- -- -- -- 0.94 0.72 0.87 0.77 0.75 

S5 -- -- -- -- -- -- -- -- -- -- 

S6 -- -- -- -- -- 0.90 0.91 0.75 0.81 -- 

S7 -- -- -- -- -- 0.79 0.82 0.88 0.91 -- 

 R2 for SO2 R2 for NO2 

 2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 

S1 0.96 0.95 0.84 -- -- -- -- -- -- -- 

S2 -- -- -- -- -- 0.81 0.74 0.79 0.87 -- 

S3 0.84 0.70 0.71 0.69 0.72 0.74 0.69 0.88 0.71 0.74 

S4 -- -- -- -- -- -- -- -- -- -- 

S5 0.69 0.72 0.70 -- 0.84 -- -- -- -- -- 

S6 -- -- -- -- -- -- -- -- -- -- 

S7 -- -- -- -- -- -- -- -- -- -- 

 

 
 

Figure 9. Results of alternatives network analysis using visual 

PROMETHEE. 

 

Decision Analysis 

Figure 9 illustrates the networking of alternatives based on 

positive and negative flows for mine site A regardless of three 

different groups. If all the options are considered as one group 

to fulfil the objectives of this study then in this situation, cap-

ping of vegetation along with the combination of idling re-

duction and CST program are dominated alternatives. Whereas, 

biodiesel method for the reduction of greenhouse gases is 

considered as a last preferable option as compared to other op-

tions. One can also interpret the results as a set of combination 

of different alternatives as one option. For instance; option 1 is 

to apply the combination of idling reduction, CST program, 

capping, hood over the conveyor, bag house and water spraying 

which could be efficiently used for the removal of pollutants 

based on the evaluation of seven criteria mentioned in method-

ology section. This combination of alternatives represented all 

the two groups and considered as most preferable cost effective 

option on ranking basis. This option not only controls the dust 

problem but also reduce the fuel consumption and contribute 

towards the reduction of carbon footprints. The option 2 is 

baghouse, water spraying, chemical stabilizer, electrical drill-

ing, and biodiesel. This option is the second preferable com-

bination of different alternatives. In conclusion, the good net-

working also assists in selecting suitable technologies as a 

common set to implement a plan to control the air pollution at 

the mine site effectively. 

 

3.2. Validation of Air Quality Model 

The MADM simulation is examined and validated by 

comparing the modeling results with the observations values of 

monitoring stations (S1 to S7) under the same environmental 

conditions using the average daily data for from the January 

2011 to December 2015. Results for PM2.5, PM10, SO2 and NOx 

were considered for regression analysis. Since the field values 

for heavy metals were not available, they were not considered 

in the model validation. Figure 10 illustrates the comparison of 

all the observed and modeled values at the monitoring station 

S1 for the available pollutants as an example. Similar testing 

was performed for each monitoring station. Table 4 represents 

the coefficient of determination (R2) for all the four pollutants 

at different monitoring stations. This results indicate that the 

MADM model can satisfactorily reproduce the variations of 

particulate matter and gaseous particles (SO2 and NOx). More-

over, the correlation value shows that model could generate 

predicted results using selected input parameter at various loca-

tions. 
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Table 5. Statistical Evaluation and Comparison among Three Different Air Dispersion Models 

Models MADM model Ermak model Gaussian plume model 

NMSE COR NMSE COR NMSE COR 

 Indicator for good performance* 

Pollutants ≅ zero ≅ one ≅ zero ≅ one ≅ zero ≅ one 

PM2.5 0.009 0.95 1.5 0.88 1.9 0.50 

PM10 0.001 0.99 0.005 0.95 1.6 0.65 

SO2 0.0007 0.92 0.006 0.98 1.2 0.74 

NOx 0.0005 0.88 0.09 0.80 0.005 0.79 

*(Essa et al., 2014) 

 

 
 

Figure 10. Correlation between modeling and monitoring data for (a) PM2.5 at S1 in 2011, (b) PM2.5 at S1 in 2012, (c) PM2.5 at S1 in 

2013, (d) PM2.5 at S1 in 2014, (e) PM2.5 at S1 in 2015, (f) PM10 at S1 in 2012, (g) SO2at S1 in 2011, (h) SO2 at S1 in 2012, (i) SO2 at S1 

in 2013. 
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3.3. Quantification of Uncertainty 

The sources of uncertainty in LCAQMS model can be 

input data, sampling errors, boundary conditions, and missing 

data.  

 Uncertainty in the selection of which variables to 

include and which to eliminate. The variables in-

cluded at the stage of inventory development were 

chosen based on careful analysis and understanding 

of the mining activities and limited by the availability 

of input data. Thus, other irrelevant variables were 

eliminated using cut-off criteria rule in LCA.  

 During carbon footprint analysis, a lot of processes, 

directly and indirectly, contributed towards carbon 

credits. Artificial neural network algorithm is se- 

lected to avoid any uncertainty because of missing 

values and nonlinear relationships. 

 Uncertainty in boundary conditions may affect the 

analytical solutions. However, for K-theory Gaussian 

algorithm boundary conditions, assumptions are 

made based on the past air dispersion models and 

literature studies. 

 The ranking of alternatives is highly influenced by the 

allocation of weights to criteria as well as alternatives 

which may contribute to uncertainties. This issue is 

overcome through calibrating net flow of alternatives 

by conducting the sensitivity analysis using walking 

weights as a unique feature in the visual PRO-

METHEE tool. 

4. Discussion 

The LCAQMS framework offers a flexible way to store a 

large quantity of data (e.g., physical environmental and tech-

nical data) while preserving their dependability with their 

corresponding operational processes in the mining system. The 

model allows the calculation of site-specific LCA impacts 

based on a real case study and provides a realistic way to allo-

cate environmental burdens as inputs per unit process. It pro-

vides the level of details, essential to facilitate the LCA for 

midpoint impact categories.  

LCAQMS application reveals that by developing inven-

tory, assessing midpoint impact and analyzing carbon foot-

print, it could be useful as an assessment tool based on life 

cycle approach for further investigation of air pollution. Also, 

this framework helps in a feasibility study of the mining proj-

ect to find out potential air pollutants and carbon credit. The 

main aim that motivated the development of MADM method is 

to provide a reliable yet simple air quality model that would 

provide predicted concentration profiles for pollutants through 

the advanced Gaussian algorithm which can be easily applied 

to the mining sites. It extended the tradition Gaussian model to 

consider point sources, line sources and fugitive emissions with 

mining emission rate calculations in one model. This approach 

explicitly shows understanding of the mining system, while 

successfully involve all the related atmospheric parameters. It 

allows understanding the effect of physical removal mechan-

ism on the pollutant’s load. It is anticipated that the results 

provided by the MADM help to gain further insight into air 

quality at mining industry. 

The statistical indices of Table 5 point out that a satis-

factory agreement was achieved for the MADM method by 

comparing it with simple Gaussian plume model and Ermak 

model (Ermak, 1977) using the normalized mean square error 

(NMSE) and correlation coefficient (COR) (see Appendix 

Equations A1 ~ A2). Whereas, Ermak model based on the tech-

nique of concentration gradient, did not produce the good per-

formance at the downwind distance for PM2.5. The NMSE 

value greater than 1 indicated the over prediction of the PM2.5. 

However, it is noticed that for PM10, SO2 and NOx, Ermak 

model simulates better in contrast to PM2.5 modeling. For 

Gaussian plume model, statistical analysis results show that the 

modeling results tend to deviate from the actual observed 

values (NMSE = 1.9 for PM2.5; 1.6 for PM10). To encapsulate, 

overall MADM produced statistically agreeable results in the 

case of all the four target pollutants.  

Furthermore, a multi-criteria decision analysis module in 

the framework helps to get more quantitative and endpoint 

modeling results. The model can be used for adaptation of 

alternative technologies and air pollution control remedies at 

the mining site which would help in environmental man-

agement. Particularly coupling of models within an integrated 

environment is also a significant contribution to the limited 

literature available on the integrated environmental modeling 

system for the mining industry. Although the scope of the 

present study is limited to the air pollutants for the open pit 

mining process, the developed approach can be applied to study 

other mining processes such as underground mining. The cus- 

tomizations just need to be made by including different mining 

activities during the development of inventory model. For an 

example, considering the ventilation process as a variable in 

technical matrix. One of the major limitations of LCAQMS is 

that it requires a lot of inputs as the requirement of the model. 

5. Conclusions 

This study is conducted to explore the new integrated life 

cycle assessment based air quality modeling system (LCAQMS) 

for the mining sector. The important modules of the model are 

inventory development, carbon footprint analysis, air quality 

modeling and decision analysis for effective pollution control. 

Modeling tools were applied in an open pit copper mine 

through LCAQMS framework. Based on the inventory results 

of air emissions developed in the study, it was observed that 

NOx and SO2 were major contributors towards the environmen-

tal load. The profound midpoint modeling impacts of copper 

mines site A were determined using TRACI method. Whereas, 

BPANN simulation technique was used for carbon footprint 

analysis of the mine site A. The study confirms that ANN can 

predict the future concentration based on the past data. Con-

clusively, this mine was responsible for producing average 0.7 

× 106 metric tons of CO2 eq. from the year 2011 to 2015 be-

cause of greenhouse gases emissions and fuel consumption 

during the mining activities. Thus, it is expected that different 
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mines would show different results, due to different operating 

conditions and emission rates. Mining air dispersion model 

(MADM) has been developed for the modeling of air emissions 

by considering various mining activities, emission rates, par-

ticle settling, and deposition. The MADM was applied for the 

continuous point sources emission in the mining sector under 

the neutral conditions. The solution algorithm has been derived 

by considering the eddy diffusivity depends on the vertical 

height and as a function of downwind distance. It allows the 

spatial analyst on local scales by incorporating sampling data 

collected from the field observation. Air quality profiles of 

PM2.5, PM10, SO2 and NOx are presented as a contour mapping 

for a mine site A. The predicted concentrations have been 

found in good agreement with the field observations to validate 

the developed MADM approach. For selecting the best tech- 

nology based on various selection criteria, PROMETHEE me- 

thod was used as a multicriteria decision making tool. Hence, 

showing idling reduction, CST program, capping, hood over 

the conveyor, bag house and water spraying as the most 

promising combination of effective treatment methods for the 

mine site A. The model can be used for the environmental 

assessment by generating its air pollution inventory, prediction 

of air quality at receptor level based on different mining activi- 

ties and atmospheric conditions and management scenarios. 

Thus, the LCAQMS can serve as a mine targeted air pollution 

model which helps to assess and predict the air quality with the 

selection of cost effective solution for air pollution. 
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