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ABSTRACT. Most population distribution studies have focused on a single spatial resolution scale, thus, leading to a limited repre-

sentation of the “real-world”. The present work, instead, proposes a “zoom lens” approach to detect and remove localized variation while 

retaining the general population distribution trends at multiple resolution scales. Different “focal length optics” are able to eliminate the 

unnecessary spatial details and filter out the underlined trend at the specified resolution. As spatial resolution scale decreases, the general 

trend and local variation of population distribution can be identified from the fine resolution to the national level. On the basis of small-

scale analysis, it was shown that high-density population in China is roughly aligned with an oblique trend line along the Heihe–

Tengchong Line, which provides a mathematical foundation for it. It was also found that the positive relationship between correlates and 

population distribution became more significant at the national scale. Topographic elevation has the largest negative impact on population 

distribution at the country level, whereas water accessibility has the largest effect on population distribution at any resolution. Further-

more, by combining the “zoom lens” approach with geographic weighted regression, the population distribution correlates (main roads, 

railways, live green vegetation, elevation, relief amplitude, rivers and lakes) were studied. A significant deterioration of accessibility to 

main roads and water in certain areas was identified at the national scale, which was not detected without “zoom lens” approach. There-

fore, this study demonstrated that correlation or any other relationship may vary at different spatial scales of study. 

 

Keywords: China population distributions, correlates of population distribution, multiple geographical scales, spatial analysis, spatial 

filter

 

 
 

1. Introduction 

Accurate determination of the population distribution is 

important in human population studies – such as public health, 

urban and regional development, environmental planning, 

homeland security, and even intergeneration relationship. Both 

scientific analysis and decision making are based on accurate 

population estimation (Rogerson and Kim, 2005; Bhaduri et al., 

2007; Badescu, 2008; Huang et al., 2009; Tong et al., 2012). 

For example, Yin et al. (2005) pointed out that population dis-

tribution can serve as a good urbanization indicator. As a result, 

a number of studies have been conducted to determine the spa-

tial distribution of human population (Small and Naumann, 

2001; Yue et al., 2005; Maantay et al., 2007). 

However, representing real-world population distributions 

has always been a challenging affair (Bracken, 1993; Martin 

and Higgs, 1996; Ingram, 1998; Gaughan et al., 2015). This is 
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mainly due to estimation heterogeneities at different study re-

solution scales (Linard et al., 2012). Visualizing the population 

distribution is not only for descriptive purposes – density and 

geographic extent of population – but also for assessing poten-

tial risks and refining population policy (Gregory, 2000; Moon 

and Farmer, 2001; Poulsen and Kennedy, 2004; Sleeter, 2004; 

Maantay et al., 2007). The simplest and most intuitive way is 

the de facto standard, which is to evenly distribute the head 

count within the administrative census tracts (Lutz and Samir, 

2010). However, in reality the internal distribution of popula-

tion is spatially heterogeneous (Langford et al., 2008). Nor-

mally, residential housing is concentrated in towns and cities, 

whereas remote areas are essentially devoid of population.  

Dasymetric mapping can be adopted to avoid this problem, 

since it is “…a technique that involves estimating the distri-

bution of aggregated data within the units of analysis, by 

adding additional information that provides insights on how 

these data are potentially distributed” (Poulsen and Kennedy, 

2004). The most significant advantage of this technique is to 

maximize the faithful representation of within-zone uniformity. 

Maantay et al. (2007) tried to improve the estimation of total 

population depiction on a dasymetric map by considering the 

ancillary information, such as cadastral data, land-use filters, 
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routines, and other data. These methods can be categorized as 

surface modeling. 

Yin et al. (2005) established the relationship between built 

up area and population density pattern, and then measured the 

population distribution by using remote sensing technology. 

Luo and Wei (2006) advanced Yin et al. (2005)’s study by con-

sidering one more factor – urban land parcel – to achieve accu-

rate estimation of the population density pattern. Li and Weng 

(2005) applied stepwise regression analysis to examine factors 

extracted from remote sensing images that may be related to 

population density. This method is a possible way to identify 

suitable variables in a population estimation model. However, 

determining the structure and model coefficients prior to model 

development is not an easy task.  

With the development of remote sensing technologies, 

population density can be estimated from the remote sensing 

images. Sutton et al. (2001) tried to calculate the population 

using night time satellite images by analyzing the relationship 

among areal extent, population and light area on the images. 

Building height has also considered a population distribution 

indicator determined from the digital terrain model (DTM) and 

the digital surface model (DSM) (Ural et al., 2011). Wesolow-

ski et al. (2012) quantified the spatial variation of human 

distribution and malaria mobility using mobile phone data at 

regional spatial scales.  

Recently, McKee et al. (2015) presented a spatially explic-

it population projection method. However, this method focuses 

only at a single resolution scale and relies overwhelmingly on 

the accurate determination of components that affect popula-

tion distribution. Therefore, although different surface model-

ing methods were used to improve the determination accuracy, 

it is necessary that they can be tested in different real-world sit-

uations and at different spatial resolutions. 

The spatial extent of these previous studies ranged from 

the city level (Luo and Wei, 2006) to the global level (Balk and 

Yetman, 2004), but without considering correlations between 

the different levels. Also, most traditional “multiple spatial 

scales” studies can be described as the research extents varia-

tion. In this work, a method is presented that can analyze the 

spatial population distribution at multiple resolution levels. In 

particular, while previous studies applied “prime lens” to deter-

mine population distribution, the present work adopts a “zoom 

lens” approach to study the spatial distribution of a population. 

An advantage of this approach is that a variety of population 

distribution scenarios can be estimated using different “focal 

length optics”. They are able to eliminate the unnecessary spa-

tial details and filter out the underlined trend at the specified 

resolution. 

Correlation analysis between population distribution and 

its potential factors can also benefit from the “zoom lens” ap-

proach. However, this is rarely discussed in previous studies. 

To assess the impact of its correlates on a population distri-

bution, Cohen and Small (1998) quantified the relationship be-

tween population distribution and the global elevation above 

mean sea level. Feng et al. (2008) analyzed the correlation be-

tween population distribution and relief degree of land surface. 

Cincotta et al. (2000) estimated the relationship between 

world population density and the biodiversity hotspots. Pop-

ulation density was identified as a risk factor in areas rich in 

endemic species. The correlation between human presence and 

species richness at a coarse scales has also been reported 

(Chown et al., 2003). Pautasso (2007) improved the results of 

the previous studies by determining resolution dependency on 

the relationship between population density and live green veg-

etation, but ignored the impact of other factors, such as trans-

port and water resource, that might contribute to population 

density. 

The connection between population distribution patterns 

and transport network development has also been described (Li 

et al., 2011a; Ural et al., 2011) and estimated (Li et al., 2011b; 

Linard et al., 2012). Bhaduri et al. (2007) simulated the pop-

ulation distributions at an hourly time interval by establishing 

the correlation between transport model and population data. 

Vörösmarty et al. (2000) emphasized the impacts of population 

change and the relationship between water supply and demand. 

Prior work occurred over two decades ago, when Falkenmark 

and Widstrand (1992) studied the problems between growing 

populations and limited local water resources.  

The present work considers all the above factors in a single 

model but under different spatial analysis resolution scales. 

Rationalization is based on the fact that spatial patterns and the 

relationship between population distribution and its correlates 

can change with spatial resolution variation. We start with pop-

ulation surface modelling, followed by areal interpolation of 

the population distribution correlates. It has been suggested in 

the literature that efforts to assess the correlation between hu-

man population density and environmental factors on the basis 

of geographical determinism should be encouraged (Small and 

Cohen, 2004). Yet, since factors related to population density 

were not fully discussed with consideration to scale variation, 

global scale correlates may not be applicable at the urban level. 

Regarding the outline of this paper, the introductory sec-

tion provides an overview of previous studies of population dis-

tribution. The following Section 1 discusses two different cat-

egories of determination methods, the impacts of spatial scale 

on population distribution and the potential correlates of this 

distribution. Section 2 describes in detail the study area, the 

available data sets, and the methods used in the present work. 

Section 3 discusses our results and findings regarding popu-

lation distribution at different spatial resolutions and their po-

tential correlates in the study area. Our conclusions are sum-

marized in Section 4, including a discussion of the limitations 

of the proposed analysis and future research directions. 

2. Methods 

2.1. Data Description  

The population data used in this study were obtained from 

the 5th national population census of 2000 (National Bureau of 

Statistics of China, 2000), since 2010 data required by this 

study (such as road and rail networks) are not yet available. 

Population information was aggregated at administrative bou-
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ndaries – census tracts. This means that the spatially continuous 

population distribution was discretized in terms of the admin-

istrative unit boundaries of the 3,404 counties included in the 

census, with 850 counties having no population records (Fig-

ure 1(a)). The county sizes in China range from 56 km2 (in 

Shandong province) to 270,000 km2 (in Tibet), with an aver-

age size of 2,895.22 km2. The data cluster method used to de-

termine the best population arrangement into different classes 

is Jenks natural breaks optimization. It aims to simultaneously 

reduce the variance within classes and maximize the variance 

between classes (Jenks, 1967; Campbell, 2001). 

Spatial infrastructure data (such as main roads and rail-

ways) and the main rivers and lakes were derived from the 

China paper maps at the 1:4,000,000 scale (Wang and Feng, 

2000). This small scaled dataset keeps the key information, and 

will avoid the “salt and pepper” effect during the analysis under 

coarser study resolution. Due to the large area to be covered by 

these data, only the main roads and railways, and the major riv-

ers and lakes were considered in the present analysis. The res-

olution of the digital elevation model (DEM) used in this study 

is ~97 m (Figure 1(b)). Both elevation and relief amplitude 

information were used in this study. Relief amplitude infor-

mation was derived from DEM using ArcGIS Desktop (ESRI, 

2015). Its resolution is the same as in DEM (Figure 1(c)). The 

normalized difference vegetation index (NDVI) data were de-

rived from satellite images with ~1 km resolution (Figure 1 (d)) 

(Wang and Feng, 2000). Consistent with the publica-tion date 

of the national population census, all datasets used in this work 

were published in 2000. 

 

2.2. Rushton Circles 

Using census population data aggregated within the ad-

ministrative boundary ignores the local-spatial autocorrelation 

structure of population distribution and may exaggerate the 

boundary effects (a phenomenon known as the “modifiable 

areal unit problem” (Luo and Wei, 2006). Although the popu-

lation within an administrative boundary is normally consid-

 

Figure 1. (a) China population distribution in the Census 2000 data at the county level (National Bureau of Statistics of 

China, 2000); (b) The geographic distribution of topographic elevation in China; (c) The geographic distribution the relief 

amplitude in China; (d) The geographic distribution of live green vegetation in China in 1999. 

 

(a) (b) 

(d) (c) 
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ered as evenly distributed, the actual population distribution is 

much more heterogeneous. This is especially valid for popu-

lations near the administrative boundaries and neighboring 

counties (Wu et al., 2005; Maantay et al., 2007). 

To reduce boundary effects, Rushton circles (Rushton and 

Lolonis, 1996) were used in this study. First, 2,577 points were 

evenly sampled over the entire China, with south-north spacing 

of ~72 kilometers and east-west spacing of ~57 kilometers 

(Figure 2). The spacing distance of sampling points was deter-

mined by the range in empirical semivariogram model. Empir-

ical semivariogram model represents the relationship between 

the averaged semivariogram values and the distance between 

two points. The distance where the model first levels out is the 

range. Point locations closer than the range are spatially auto-

correlated, while point locations separated by distances larger 

than the range are not. This study shows that ranges along the 

south-north and east-west directions are ~72 kilometers and 

~57 kilometers, respectively.  

These sampling points are the center points of the Rushton 

circles, the radius of the Rushton circles being 50 kilometers, 

which means that the population totals of the sampling points 

were recalculated by averaging the population totals of the 

neighbor counties within a 50 kilometers distance (Figures 3 

and 4). This radius length guaranteed that each circle includes 

enough neighboring information while maintaining relative 

independence. Finally, the involvement of Rushton circle can 

eliminate side effects due to inconsistent county sizes through-

out the study area, when the “zoom lens” approach is applied. 

 

2.3. The “Zoom Lens” Approach of Population Distribution 

Being methodologically different from the traditional 

“multiple spatial scales” analysis, the proposed population dis-

tribution approach adopts a perspective involving the simul-

taneous operation of multiple-lens covering the entire study 

area. The “unnecessary” information (linked to certain scales; 

working like noises in an image) is ignored by applying these 

multiple-lens. As demonstrated by Jentsch et al. (2002), spatial 

patterns can only emerge and be identified at certain spatial 

scale. The patterns could be either diffuse (noise) at large spa-

tial scale, or not differentiating at small spatial scale. For ex-

ample, at certain large spatial scale, variability could be noise 

to forest dynamic analysis. 

In this way, the approach focuses on the general trend at a 

scale specified according to the study objectives. The motiva-

tion underlying this approach is the concept of “wavelets” 

(Mallat, 1989). Although a number of image processing studies 

have been conducted using wavelets, there is no previous work 

on a combined wavelet-population distribution analysis. In this 

work, it is assumed that the population distribution is composed 

of two parts: a general distribution (Vj) component and a de-

tailed local variation (Wj), component, so that:  

 

1j j jV V W+ =    (1) 

 

where Vj ⊂ Vj + 1, and the index j ∈ Z 

+, denotes the time of initial 

measure resolution. Z and Z 

+ represent the sets of integers and 

positive integers, respectively. The larger the j, the more infor-

 
Figure 2. Sampling points distributed in China. 

 

Figure 3. Rushton circles on each sampling points. 

 

Figure 4. Detailed view of the Rushton circles. 
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mation is contained in the space Vj. Let (x, y) be the spatial co-

ordinates of a sampling point. The {φjk (x) = 2j/2φ (2jx − k)}k.∈.Z is 

the standard orthogonal basis in the general space {Vj}j ∈ Z, and 

{ψjk (x) = 2j/2ψ(2jx − k)}k ∈ Z is the standard orthogonal basis in the 

details space {Wj}j ∈ Z. k defines the shift along different direc-

tions. The coefficients Dj = {dj, k)}k ∈ Z indicate the detailed local 

variations, while Cj = {cj, k}k ∈ Z represent the general trend of pop-

ulation distribution with evaluation resolution times j. Giv-en 

that the population distribution is a function of (x, y), the corre-

sponding basis ψjk(x) constraints include the following: 1) the 

function must have a zero mean, and 2) it has to be localized in 

both two dimensional geographical space and frequency space 

(Farge, 1992).  

In view of the above considerations, the population distri-

bution takes the form: 

 

1, 1, 1, 1,( , ) ( , ) ( , )j j k j k j k j kk Z k Z
f x y c x y d x y − − − − 

= +    (2) 

 

where k ∈ Z 

+ indicates the length of displacement, cj − 1, k = { fj,   

φj − 1, k } and dj − 1, k = { fj, ψj − 1, k }, and:  
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x y x y
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x y x y
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=

=

=

=

  (3) 

 

These four functions define the filters used to detect the 

general structure and the detailed local variations of the pop-

ulation distribution along three directions in the study area: 

east-west, south-north, and northeast-southwest. 

The variation of index j indicates the size change of the 

spatial filter used to detect the general trend and the detailed lo-

cal variations of the population distribution. Relatively smaller 

spatial filters detect and remove high frequency spatial var-

iations. The representation of the general population trend in-

creases with filter size. Therefore, compared with the tradi-

tional global regression fitting methods, the above method re-

veals the spatial trend by locally removing unnecessary details. 

In this work, only the general structure analysis was consid-

ered, characterizing the overall trend of China population dis-

tribution at multiple geographical resolutions. 

 
2.4. Correlates of Population Distribution 

A number of studies have been conducted to evaluate the 

impacts of key factors on population distribution (Vörösmarty 

et al., 2000; Chown et al., 2003; Langford et al., 2008; Linard 

et al., 2012). Accordingly, the present work improves the anal-

ysis of the earlier studies by evaluating the impacts of these fac-

tors on population distribution at multiple spatial resolutions. 

As indicated by Small and Cohen (2004), within the category 

of natural environment factors, the physiographic factors have 

a more significant impact on population distribution than the 

climatic ones. Hence, our analysis focused only on physiogra-

phic factors, such as water resources, live green vegetation, to-

pographic elevation and its variation. 

Moreover, in this work linear regression was used to ex-

amine the impacts of potential correlates on the general trend 

of population distribution under different resolutions. Six cor-

relates were considered, namely, shortest distance to railway 

(RWj(x, y)), shortest distance to main roads (MRj(x, y)), shortest 

distance to rivers and lakes (RLj(x, y)), indicator of live green 

vegetation indicator (NDVIj(x, y)), digital elevation model 

(DEMj(x, y)) and Relief amplitude (RAj(x, y)). These correlates 

were classified into two categories: built contexts and natural 

environment (Figure 5). The flowchart in Figure 6 displays the 

two main steps of population distribution correlate identifica-

tion at different analysis resolutions. 

The global linear regression model is able to evaluate re-

gional impacts based on the administrative boundary, whereas 

the Geographic Weighted Regression (GWR) (Fotheringham et 

al., 2003) model can also evaluate the localized impacts of 

different correlates. It determines the spatially varying inde-

pendent variables, and local models instead of a global one are 

generated (Seppänen and Virrantaus, 2010; Lieske and Bender, 

Built contexts 

Railway Main roads
Rivers and 

lakes
Elevation

Live green 

vegetation

Original population 

distribution

Resolution (72*57)km
2
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2
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Figure 5. Conceptual framework of the regression analysis of 

population distribution correlates at different resolution scales. 
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Figure 6. Flowchart of population distribution identification  

at different resolutions and correlate evaluation. 
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2011). GWR involves a more adaptive bandwidth or study ex-

tent to assess the spatial impacts on population distribution 

(Huang et al., 2010; Harris et al., 2011). Note that the correlate 

weights of the GWR model are functions of distance. Normally, 

the correlate weight (or influence) on a population distribution 

gets smaller as distance increases.  

As noted earlier, in this work the GWR model was applied 

to evaluate the correlate impacts on both (a) the original popu-

lation distribution of interest and (b) the distribution under the 

specified zoom lens (72 × 57 × 162 km2). Linear regression at 

multiple resolutions enabled the investigation of population 

distribution correlates at different resolutions, whereas GWR 

advanced the analysis of the previous studies by refining the 

analysis extent. Therefore, this work studies the population dis-

tribution at multiple geographical scales, in terms of both reso-

lution and extent.  

3. Results and Discussions 

3.1. China Population Distributions at Different “Focal 

Lengths” 

Previous studies of population distribution were mainly 

conducted using the “prime lens” approach. Therefore, the re-

sults of estimation of one area always turn out to be almost 

identical and without successive spatial variations. In the pres-

ent work, the successive variations of the population trends at 

 

 

Figure 7. General trend of population distribution at resolution scales: (a) 72 × 57 × 22, (b) 72 × 57 × 42, (c) 72 × 57 × 82, (d) 72 

× 57 × 162 (km2). 

 

(c) (d) 

(a) (b) 

  

  

(~72×57×22 km2) (~72×57×42 km2) 

(~72×57×82 km2) 

(~72×57×162 km2) 
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different spatial scales were identified. 

By way of illustration, Figures 7(a) ~ (d) show maps of the 

China population distribution at different resolutions, ranging 

from ~72 × 57 × 22 to ~72 × 57 × 162 km. Note that the “focal 

lengths” become smaller as the resolution increases. Also, high 

frequency local variations were identified and removed (fil-

tered) from the city to the national level, which allowed a re-

alistic representation of the general population trend at these 

levels. Before the “zoom lens” was applied, population distri-

bution comprises spatial variations at different spatial scales. 

By applying “zoom lens”, distribution patterns at different “fo-

cal lengths” can be differentiated. 

Figures 7(a) and (b) illustrate the regional hotspots of pop-

ulation (North East of China, Beijing-Tianjin, Middle East of 

China, Sichuan province, Guangdong Province), whereas the 

distribution of hotspots in Figure 7(b) is more continuous. In 

contrast, Figure 7(d) presents the national population distribu-

tion trend, and the distribution in Figure 7(c) works as the in-

termediate state between the discovered phenomenon in Fig-

ures 7(b) and (d). Figure 7(d) shows that the high-density pop-

ulation in China is roughly aligned with an oblique trend line 

along the Heihe–Tengchong Line, which is also known as “Hu 

line”. This “geo-demographic demarcation line” was imagined 

by Chinese population geographer Hu Huanyong in 1935 (Yue 

et al., 2003). The southeastern side of the Heihe–Tengchong 

Line occupied 36% of the total area of China, however, it had 

96% of the total population of China in 1935 (Yue et al., 2003). 

The result from this study directly and quantitatively supports 

the rationale of Heihe–Tengchong Line and provides a math-

ematical foundation for it. This trend shown in Figure 7(d) is 

also roughly aligned with the general distribution of China el-

evation. People concentrate in low areas, whereas smaller pop-

ulations live at high altitudes. Further quantitative analysis will 

be presented in a subsequent section. 

In light of the above considerations, the geographical 

“zoom lens” approach used in the present work constitutes 

progress over earlier studies based on the composite study of 

global population trend and spatial variations. They are con-

trolled by the time of initial measure resolution j and the length 

of the displacement k, respectively. The j controls the variation 

of spatial analysis resolution, while the k provides sufficient 

support for the identification of local variations. 

 

3.2. Relationship between Population Distributions and 

Their Correlates at Different “Focal Lengths” 

It is generally recognized that in order to understand the 

spatial distribution of a population, it is necessary to quantify 

the relationship between it and its potential correlates (Small 

and Cohen, 2004). A gradation in population trend was iden-

tified from the eastern to the western and middle region, which 

is determined mainly by transportation infrastructure and en-

vironmental factors, such as net primary productivity and to-

pographic elevation (Yue et al., 2005). However, this conclu-

sion was drawn without considering the varying impacts of 

these factors at different study resolutions. 

Previous studies have argued that there are a large number 

of urban developments in water areas, such as rivers, lakes, and 

sea coastal zones, and at lower elevations. This is due to coastal 

and marine food sources (Sachs, 1997) as well as to the eco-

nomic and strategic advantages offered by coastlines (Turner, 

1990). The present work is in agreement with the findings of 

previous studies and traditional understanding concerning the 

water’s impact on population distribution. Furthermore, such 

an impact becomes significantly high at the national scale (Ta-

ble 1), being much stronger than the impact of other potential 

correlates. On the other hand, water resources accessibility is 

not a serious problem, especially at the national scale, assuming 

that the current network of rivers and lakes in China does not 

dry up. 

Pautasso (2007) has pointed out that correlation between 

population density and live green vegetation is inverse at very 

fine resolution (large spatial scale), and becomes positive as the 

spatial scale decreases (> 10,000 km2). The present work par-

tially confirms Pautasso’s findings at small resolutions from a 

different viewpoint, and it also improves these findings by ac-

counting for variations in live green vegetation impacts at 

multiple resolutions (> 10,000 km2). The significant positive 

Table 1. Impacts of Correlates on the Spatial Population Distribution at Different “Focal Lengths” Levels 

 Overall test Relative coefficients and significance  

Resolutions 

(km2) 

Adjusted R2 and  

significance 
Railway 

Main 

roads 

Rivers and  

lakes 

Live green 

vegetation 
Elevation 

Relief 

amplitude 
Constant 

Original .13* .03* .02 .08* .03* -.04* .07* .07* 

72×57×22 

(16,416) 
.32* .20* –.06 .50* .14* –.31* –.23* .44* 

72×57×42 

(65,664) 
.39* .18* –.06 .58* .10* –.42* –.21* .53* 

72×57×82 

(262,656) 
.66* .30* –.22* .72* –.02 –.50* –.10* .58* 

72×57×162 

(1,050,624) 
.68* .43* –.36* .96* –.13* –.66* .05* .71* 

*Significant at 0.05. 
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correlation drops to a non-significant one as the analysis scale 

reaches to ~260,000 km2; and it changes to a negative corre-

lation at fine resolution. Yet, compared with other correlates, 

the influence of live green vegetation is much less significant. 

Furthermore, this work confirmed Cohen and Small (1998) 

conclusions, and it is in agreement with common sense that 

smaller populations live at high altitudes. Another finding of 

this work was that the negative correlation does not change 

significantly between the spatial resolution scales of ~65,000 

and ~260,000 (km2). Among the correlates evaluated in this 

work, topographic elevation was the second most important 

factor that had an impact on population distribution. Yu et al. 

(2013) have pointed out the negative relationship between pop-

ulation density and relief amplitude. The present work extends 

this observation by considering the study resolution. Specifi-

cally, we found that the observed negative relationship is more 

significant at a larger study resolution. The China population 

distribution trend is not significantly aligned with relief am-

plitude distribution. This happens because in China the relief 

amplitude distribution is not like the distribution of the topo-

graphic elevation distribution that has clear-boundaries of 1st-, 

2nd- and 3rd-step geomorphic variations (according to popula-

tion distribution nation-wide). 

Compared to the natural environment, the relationship be-

tween population distribution and built context is more com-

plicated and interactive. Built context has an impact on pop-

ulation distribution, whereas, in turn, population distribution 

influences the built context. In this work, it was found that the 

positive correlation between railway and population distribu-

tion increases, and becomes significant as the study resolution 

decrease. However, the relationship between main roads and 

population distribution only becomes significant negative when 

the study resolution is smaller than ~260,000 km2. A possible 

reason for this phenomenon is the unbalanced accessi-bility to 

main roads at national level, and the accessibility at local or 

regional level is still acceptable. The “zoom lens” at smallest 

focal length (small scale view) identifies the general trend of 

population distribution, and the global regression determines 

the mismatch between population distribution and main roads 

construction at national level. Relationship may vary as study 

scale changes.   

The consideration of the built context in quantitative anal-

ysis should also account for transportation accessibility at dif-

ferent resolutions of geographical scale. Compared to main 

roads development, it was found that railway construction took 

into consideration transportation accessibility to a satisfactory 

degree, especially at the national scale (with positive correla-

tion coefficient 0.43). In contrast, main road accessibility is ei-

ther non-significant or negative at different study resolutions. 

This indicates an uneven national distribution of main roads 

accessibility in 2000. This work provided useful indicators for 

future improvements of main road networks. For example, the 

higher-level road network should be aligned with the general 

population distribution shown in Figure 7(d), whereas the 

lower-level road network could be built in the hot spots neigh-

borhoods shown in Figure 7(c). This has been supported by the 

fast road network development in these areas between 2000 and 

2010 (Li and Fang, 2014). Accordingly, this work offered a new 

way to maximize the marginal benefit of built context improve-

ment.  

Generally, the impacts (positive or negative) of potential 

correlates became larger and more significant as the study reso-

lution scale decreases. Also, the confidence of the overall anal-

ysis improved when the local variations were removed and only 

the general population trend was observed. Since original pop-

ulation distribution comprises many localized variations at dif-

ferent spatial scales, it is not easy to use a global regression to 

completely explain it and therefore a low R2 value (0.13) was 

obtained. However, as unnecessary information was removed 

(filtered) at lower “focal lengths”, distribution pattern can be 

easily and better explained (with R2 value at about 0.67), even 

by a simple global regression. To better understand the rela-

tionship between original population distribution and its poten-

tial correlates, a further localized analysis is needed. 

 

3.3. Localized Analysis of Population Distribution Correlates 

The global investigation of correlates impact presented in 

the previous section may ignore the spatial heterogeneity of the 

relationships. In this section, therefore, population distribution 

correlates at different study resolutions were further investi-

gated by means of localized analysis (Figures 8 and 9). Spe-

cifically, the analysis showed that these correlates can have a 

considerable impact on population distribution only in certain 

local areas. So, a correlate that has a non-significant impact at 

the global scale can have a significant impact at local scales. 

The localized analysis further improved the “zoom lens” ap-

proach by allowing for spatial variations. Furthermore, the lo-

calized relationship between correlates and population distri-

bution changed after the “zoom lens” approach was implement-

ed. A comparison between Figures 8 and 9 shows the variation.  

Based on Table 1, positive correlations between transpor-

tation accessibility and the original population distribution 

were observed, whereas localized analysis further improved 

our findings by localizing these positive correlations. Previous 

studies have concluded that people are more likely to be con-

centrated to areas with better accessibility to transportation 

services (Liao et al., 2010). Strong positive relationships be-

tween railways and population distribution were identified only 

in the eastern part of China (Figure 8(a)), whereas the main 

roads networks have a significant positive influence in the 

middle-eastern and southern regions of China (Figure 8(b)). 

A positive relationship between live green vegetation and 

population distribution was also revealed along the Jing-Hang 

canal and the southern part of China (Figure 8(c)), where suf-

ficient river systems and lakes exist now and in the past. On the 

other hand, people in this area are not expected to have trouble 

accessing water, provided the rivers and lakes of the area do not 

dry up. Significant correlations, positive (east of China) and ne-

gative (part of Yunnan and Tibet), were identified between pop-

ulation distribution and live green vegetation (Figure 8(d)). The 

negative impact of elevation was spatially refined in the middle   
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Figure 8. Localized analysis results of original population distribution correlates in China: (a) Railway, (b) Main roads,            

(c) Rivers and lakes, (d) Live green vegetation, (e) Elevation, (f) Relief amplitude. 
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of China, especially in areas around Shanghai city where low 

elevation areas with high density of population exist (Figure 

8(e)). A significant high-high and low-low relationships be-

tween population density and relief amplitude were determined 

in the north of China (Figure 8(f)). This indicates that the 

population distribution in most areas of northern China exhibits 

a higher correlation with local topographic variability than in 

other regions of the country. 

After the “zoom lens” approach (global view) was applied 

in the study of population distribution in this work, more in-

sightful relationships were revealed by localized analysis. This 

implied that the spatial scale used in the study of correlations 

could change in terms of both resolution and extent. Further-

more, more complex and diversified relationships were iden-

tified for certain correlates, like transportation and water ac-

cessibility. For example, the center of Hubei province (which 

is the traditional traffic gateway in central China) displays a 

slight disadvantage concerning railway accessibility (Figure 

9(a)). 

A significant negative correlation between population dis-

tribution and main road accessibility was found after “zoom 

lens” was applied. Localized analysis furthered this finding by 

identifying areas lacking main road accessibility (coastal areas 

between Beijing and Shanghai) and, at the same time, pointing-

out the nation-wide unevenness concerning main road acces-

sibility. A plausible suggestion is that, a maximum marginal 

benefit could be achieved by building main roads along these 

areas (Figure 9(b)).  

The proposed approach (based on the combination of 

“zoom lens” and localized analysis) revealed that the popula-

tion in the He’nan and south of Shanxi provinces were lacking 

access to water (Figure 9(c)). This is caused mainly by the high-

density population and the relatively smaller river network and 

number of lakes in the area. At the nation-wide scale, areas 

exhibiting strong correlations with topographic variability be-

come smaller and less significant (Figure 9(d)). In contrast, a 

negative relationship was identified in eastern China, where 

large populations live in conditions of low relief amplitude. 

Overall, the implementation of the “zoom lens” approach leads 

to a definite change of emphasis concerning the relationship 

between population distribution and its correlates by focusing 

more on the nation-wide study of this relationship (larger sig-

nificant areas were presented for most correlates nation-wide). 

4. Conclusions 

Methodologically, this work presented a new way of view-

ing geographical distributions of phenomena occurring on the 

earth’s surface. It proposed a decomposition of a 2D distributed 

population into component trends at distinct geographical 

scales, and, at the same time, it retained localities at different 

decomposition levels. The present work also improved the re-

sults of previous studies concerning the evaluation of correlates 

using a refined spatial study extent and an arbitrary spatial 

study resolution.  

In this work, four different general population trends were 

identified at different spatial resolution scales. Underlying the 

proposed method is the same mechanism as that used by “zoom 

lens”. The method removed unnecessary details at multiple 

spatial resolutions with different “focal length optics”. Based 

on small resolution scale analysis, an oblique trend line of pop-

ulation distribution was determined roughly along the Heihe–

Tengchong Line, which directly and quantitatively support the 

rationale of Heihe–Tengchong Line and provides a mathemat-

ical foundation for it.  

The correlates were categorized into two different groups: 

built context and natural environment. From a global analysis 

viewpoint, railway construction is considered well-developed 

at any spatial resolution scale, in terms of population accessi-

bility. It is noteworthy that the road construction problem was 

concealed in the traditional viewpoint, where a positive cor-

relation between population distribution and main road acces-

sibility was observed. However, the “zoom lens” approach used 

in this work identified a significant negative relationship at the 

national scale. Therefore, the results of this study demonstrated 

that correlation or any other relationship may vary at different 

spatial scales of study. The localized analysis with different 

“focal length optics” further proves this statement. 

Furthermore, localized analysis showed that people in 

most areas of eastern China and in the middle-eastern and the 

southern China had good accessibility to railways and main 

roads, respectively. However, when the combined “zoom lens-

localized analysis” was used, the unevenness of main roads and 

railways accessibility was identified nation-wide. Also, it was 

suggested that the maximum marginal benefit could be a-

chieved in the future if transportation infrastructure was de-

veloped in the deterioration areas.     

The accurate assessment of the links between population 

distribution and natural environment, such as population along 

the rivers, lakes and live green vegetation, would have a signi-

ficant impact on coastal planning and policy-making in terms 

of coastal hazard, water pollution and disease control. From a 

global analysis perspective, it was found that the two most im-

portant factors that influence population distribution were to-

pographic elevation and water (river, lake) accessibility, char-

acterized by negative and positive correlations, respectively. 

These correlations became more significant as the study scale 

decrease.  

From a localized analysis perspective, water was shown to 

be a significant population distribution factor in eastern and 

southern China. Although currently people in China have good 

water accessibility, assuming that the existing lakes and rivers 

do not dry up, the combined spatial “zoom lens-localized anal-

ysis” identified certain water accessibility problems for the 

populations in the He’nan and south of Shanxi regions, to 

which more attention should be paid in the future. 

The negative correlation of topographic elevation and pop-

ulation is significant in most areas of China. This will not vary 

by changing the study resolution scale. However, the variation 

of study resolution scale does have an impact on the relation-

ship between topographic variation and population distribu-

tion. From global view, a negative impact of topographic varia- 
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Figure 9. Localized analysis results of the “zoom lens (national scale)” population distribution correlates in China: (a) 

Railway, (b) Main roads, (c) Rivers and lakes, (d) Live green vegetation, (e) Elevation, (f) Relief amplitude. 
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tion can be identified in the coastal areas of eastern China char-

acterized by high population density and small topographic var-

iation. 

The live green vegetation impact on population distribu-

tion is complex. It changes from slight positive to slight nega-

tive as the study resolution downscales from city to national 

level. On the basis of localized analysis, it was found that live 

green vegetation was a positive factor in eastern China, but it 

showed a negative impact around the Yunnan province. 

Generally, the “zoom lens” approach implemented in this 

work illustrated the significance of the impact of certain cor-

relates on population distribution based on both the global and 

local perspectives. Some areas that had been previously char-

acterized as satisfactory with respect to transportation infra-

structure and natural resource accessibilities were found to be 

defective under the light of the proposed combined “zoom lens-

localized analysis”. 

Lastly, using the proposed method, it would be interesting 

to investigate the Chinese population distribution and its cor-

relates when the more recent dataset become available. Then, 

more informative results could be derived by comparing the 

temporal variation at different resolutions, and obtain some 

valuable insight concerning population migration trend. In the 

same context, this work’s conclusions could be further eval-

uated by investigating the world population distribution when 

the relevant data become available. 
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