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ABSTRACT. Reconstructing past hydroclimatic variability using climate-sensitive paleoclimate proxies provides context to our rela- 

tively short instrumental climate records and a baseline from which to assess the impacts of human-induced climate change. However, 

many approaches to reconstructing climate are limited in their ability to address sampling variability inherent in different climate proxies. 

We iteratively optimise an ensemble of possible reconstruction data series to maximise the Gaussian kernel correlation of Rehfeld et al. 

(2011) which reconciles differences in the temporal resolution of both the target variable and proxies or covariates. The reconstruction 

method is evaluated using synthetic data with different degrees of sampling variability and noise. Two examples using paleoclimate 

proxy records and a third using instrumental rainfall data with missing values are used to demonstrate the utility of the method. While 

the Gaussian kernel correlation method is relatively computationally expensive, it is shown to be robust under a range of data characteris- 

tics and will therefore be valuable in analyses seeking to employ multiple input proxies or covariates. 
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1. Introduction 

The development of long, high-temporal resolution cli-

mate records (i.e., annual resolution spanning multiple cetu-

ries) from paleoclimate proxies is important for assessing low 

frequency variability, providing a context for recent climate ex- 

tremes, and providing a baseline from which to assess impacts 

of human-induced climate change (e.g., Cook et al., 2010; Mc-

Gregor et al., 2010; Gallant and Gergis, 2011; Ho et al., 2015b; 

Kiem et al., 2016). Paleoclimate proxies are the climate-sen-

sitive physical, biological or chemical characteristics preserved 

in many natural archives spanning the world, such as ice cores, 

tree rings, corals, and sediments (e.g., McGregor et al., 2010; 

Batehup et al., 2015). Often these proxies represent similar cli- 

mate processes or regimes, which facilitates the development 

of multiproxy reconstructions. For example, ice cores (Vance 

et al., 2013), corals (e.g., Evans et al., 2002; Cobb et al., 2003) 

and tree rings (e.g., D’Arrigo et al., 2005; Fowler et al., 2012) 

have all served as proxies of the El-Niño Southern Oscillation 

(ENSO). 
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Reconstructions based on multiple proxies are suggested 

to result in a more robust representation of target climate rela-

tive to single proxy reconstructions (e.g., Gergis and Fowler, 

2009; Batehup et al., 2015); however, they are not without is-

sues. These include the likely probability of multiple realisa-

tions of the same target climate from the different proxies e.g., 

inconsistency in the ENSO behaviour exhibited by different 

proxies (Wilson et al., 2010) and the (not unrelated) issue of 

varying sampling regimes of different proxies. We focus here 

on the latter issue as traditional linear regression-based recon-

struction methods (e.g., composite plus scale) are not equipped 

to deal with unevenly and differently sampled proxies. Both the 

multi-proxy reconstruction methods of Li et al. (2010) and Han-

hijärvi et al. (2013) allow for varying proxy resolution. How-

ever, both these methods require that the mapping of the pro-

xies onto the same time-base as the target reconstruction be 

known a priori.  

Here we present a new method for reconstructing climate 

using multiple proxy records based on the Gaussian kernel 

correlation method of Rehfeld et al. (2011). The Gaussian ker-

nel correlation method has previously been applied to paleo-

climate studies in several ways, for example, as a robust corre-

lation estimate for assessing observations and climate model 

simulations of Asian rainfall (Rehfeld and Laepple, 2016), to 



J. L. Roberts et al. / Journal of Environmental Informatics 35(2) 118-127 (2020) 

 

119 

 

 

estimate free parameters in the time-delay embedding method 

(Donges et al., 2015) and as the robust similarity estimator for 

the paleoclimate networks method of Rehfeld et al. (2013). In 

contrast, we apply an iterative optimisation technique to select 

an ensemble of possible paleoclimate reconstructions that ma-

tch the Gaussian kernel correlation between a target series and 

(potentially multiple) proxy series. The approach uses a largely 

automated method of addressing differences in temporal reso-

lution between the proxy records and the target variable as well 

as sampling irregularity within the proxy records. Robust un-

certainty estimates are also generated. The method inherently 

weights each proxy independently from the temporal resolution 

of the proxy. The resulting reconstruction is scaled to produce 

a series with the same median and inter-quartile range as the 

target series over the calibration period used. The software is 

provided freely as supplementary material.  

The following sections present a discussion of the method 

and examples of its implementation using synthetic and “real-

world” climate proxy and gauged data. 

2. Method 

2.1. Method Overview 

The method presented is based on generating climate re- 

constructions that match the existing Pearson correlation be- 

tween each of the proxies and the target climate data series. A 

cost function (Equation 2), representing the mismatch between 

the actual correlation between the proxies and target climate 

and the correlation between the developed reconstruction and 

target climate, is minimised. It is assumed that the relationships 

between the target data series and the proxies are stationary, a 

necessary assumption for the development of preinstrumental 

climate reconstructions (e.g., Gallant et al., 2013). However, 

the method also allows for uncertainty in the independent vari- 

able (typically time) while optimising the reconstruction by mi- 

nimising differences in the dependent variable.  

The only knowledge about the target variable required for 

the reconstruction is its Pearson correlation with the proxies 

and quartiles for rescaling. The individual data points of the 

series are not required. For example, a reconstruction based on 

two proxies only requires knowledge of the proxies them-

selves and six additional statistics (i.e., the correlation, median 

and inter-quartile range for both proxies). The software provi-

ded here requires the target data series, but only for the calcu-

lation of these numbers using the same algorithms used to eval-

uate the potential reconstructions. 

All proxies contribute equally to the reconstruction, re-

gardless of the number of samples in the proxy. Therefore, the 

method inherently works with proxies of different temporal 

resolution. However, it should be noted that if a proxy is poorly 

correlated to the target, then its inclusion will do little to con-

strain the reconstruction. In addition, there are several con-

straints on the proxies. The proxy must be sampled at sufficient 

temporal resolution to ensure variability at the frequency of 

interest is captured by the proxies. In addition, the size of the 

data gaps in the proxies and the frequency content of the pro- 

xies will determine which features can be successfully recon- 

structed. For example, attempting to reconstruct a monthly 

varying, strongly seasonal signal, across a data gap of several 

years will not successfully reproduce an annual cycle, let alone 

a seasonal cycle. 

The Pearson method is linear, but it is possible to trans-

form the proxies to linearise the relationship between the target 

and the proxy. The simplest such modification is a continuous 

piecewise linear transform. We provide separate code to help 

in the selection of suitable piecewise linear transformations. 

Further information about the methods is provided in Section 

2.2 below. 

 

2.2. Gaussian Kernel Pearson Correlation 

The Gaussian kernel Pearson correlation (CGK) between 

unevenly and differently sampled target series (ti) and proxy 

series (pj), of lengths nt and np respectively, are calculated using 

the Gaussian kernel Pearson correlation slotting method of 

Rehfeld et al. (2011): 
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where,t andp are the average of the two series ti (target) and 

pj (proxy), respectively, and dt and dp are the independent 

variables (typically time for proxy based reconstructions) for t 

and p respectively, and may differ from each other. Unlike 

Rehfeld et al. (2011) who normalise the signals to have zero 

mean and unit variance, we follow the method of Roberts et al. 

(2017), as this produces more robust estimates of the Pearson 

correlation. Specifically, we use the original signals ti and pj 

and correct for the mean and estimate the standard deviations 

(σt and σp) using the weighted summation Gaussian kernel 

(K(d)) from Equation 1. The Gaussian kernel correlation proc-

ess inherently acts as a low pass smoothing filter, so the method 

is relatively insensitive to high frequency noise, with some in-

crease in the uncertainty (see Figure 1). Not only can the dis-

tribution of samples differ, but the number of points (and the 

distribution of those points) for the reconstructed series (ng) 

may be different from both nt and np. The Gaussian kernel K(d) 

= exp(-d²/2h²)/(2πh)0.5 uses a width parameter (h). The selection 

of h influences somewhat the behaviour of the method, with 

larger values including more data at the expense of broadening 

the locality sampled. Unlike Rehfeld et al. (2011) and Roberts 

et al. (2017) who use a value of one quarter of the larger of the 

average spacing of the two data series for h, we use a value that 

is proportional (scaling constant hs) to the maximum spacing 

between the data for either the target or proxy. This larger value 

of h ensures that the method is sensitive to points in data sparse 

regions and produces more robust solutions with smaller uncer-

tainties. The choice of hs is discussed more in Section 5.1, but 

in general is in the order of 0.25, and the method is robust to 

values of hs near the optimum. 



J. L. Roberts et al. / Journal of Environmental Informatics 35(2) 118-127 (2020) 

120 

 

 

2.2.1. Correlation Matching the Target 

From a randomly generated initial guess (gk), of length ng, 

as a possible reconstruction, we iteratively minimise the cost 

function (Equation 2): 
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for the N proxies pi. 

The iterative optimisation is down gradient, where the 

gradient is estimated separately for each of the ng points in g 

using the complex step method of Martins (2003). A down-

slope correction is applied (with a new gradient calculated 

every iteration), until successively smaller corrections fail to 

improve the solution. 

The variant of gk, which produces the minimum cost func-

tion, produces a realisation of a reconstruction that is consistent 

with the target given its Pearson correlations with the proxies. 

 

2.2.2. Reconstruction and Uncertainty 

To produce a robust estimate of both the reconstruction 

and its uncertainty, an ensemble of 2000 solutions is used. Each 

solution is initialised to a randomly selected state (using a uni-

formly distributed random number sequence) and optimised to 

minimise the cost function. Each optimised ensemble member 

is offset and rescaled (neither altering the Pearson correlations 

with the proxies) to match the target series median and inter-

quartile range respectively over the calibration period.  

The reported reconstruction is the median of the 2000 

ensemble members, again offset and rescaled to ensure match-

ing of the target series over the calibration period. For robust-

ness, the uncertainty (1 standard deviation) is calculated on a 

per-sample point basis as 1.483 times the inter-quartile range 

(Wilcox, 2010), where the factor compensates for the diver-

gence in data coverage between the inter-quartile range and ±1 

standard deviation. 

 

2.2.3. Implementation 

The calculation of a robust estimation of the reconstruc-

tion, and associated uncertainties is computationally expensive. 

A naive implementation of Equation 1 would require, for each 

iteration of each ensemble member, the complex exponential 

to be calculated ng
2npN times. Thus, for I iterations and 2000 

en-semble members, a total of 2000 INng
2np complex exponent- 

tial evaluations are calculated. 

Several strategies are adopted to reduce this cost. Firstly, 

the proxies are invariant during calculation, and the indepen-

dent variable (typically time) of the reconstructed series is also 

invariant. Therefore, we can precalculate all the exponential 

values once and store, and also precalculate all sums involving 

the proxies. Secondly, we optimise the maximum number of 

iterations (I), by testing the first eight ensemble members, 

successively doubling the number of iterations until conver-

gence. We select the maximum number of iterations required 

for these subsets of 8 ensemble members, applying an upper 

limit of 12800 iterations. Finally, we implement parallel com-

putation using OPENMP code directives in the Fortran code to 

calculate multiple ensemble members concurrently. Together 

these strategies reduce the computational cost by several orders 

of magnitude, although remaining computational cost is not 

trivial. For example, the reconstruction described in Section 

4.3, with 5 proxy records of millennial length and annual to 

sub-annual resolution being used to reconstruct a 1000-year 

annual resolved rain fall record, requires around 45 minutes on 

a quad core Intel i7 2.3 GHz laptop. 

We provide a windows executable version of the code and 

source code for Fortran90, MATLAB, and Python in the sup-

plementary information. We also provide code using the same 

Gaussian kernel algorithms to evaluate linearising the response 

of proxies via piecewise linear transformations (see Section 3.3 

for more details). 

3. Validation of Methods: Synthetic Examples 

We use several synthetic datasets to evaluate the perfor-

mance of both the method and the software implementation 

presented herein. Throughout these examples we use 2000 

ensemble members (noting that small improvements in both the 

reconstruction and uncertainty are obtainable with an increased 

number of ensemble members, but the improvements are small 

compared to additional computational cost). We also limit the 

maximum number of iterations of the down slope solver to 

12800, although only several hundred iterations are typically 

required. 

 

3.1. Noise 

Firstly, we investigate the performance when the target 

series has been contaminated with independent and identically 

distributed (IID) noise (η) uniformly distributed in the range 

[˗1, 1]. In particular we consider the target as ti = sin(di/10) + 

0.4 sin(di/3) for various noise levels (ε). The two proxies used 

are sin(di/10) and sin(di/3), and we use hs = 0.25. 

The accuracy of the zero-noise case (Figure 1a) is only 

limited by the maximum number of iterations (12800) for the 

down gradient solver. Increasing this upper limit reduces the 

errors, but at significant additional computational cost. 

 

3.2. Missing Data 

Next, we investigate the performance with missing data in 

the proxy data sets. We use the same target and proxies as in 

the noise test above, although with a larger value of h = 0.5 to 

reduce high frequency noise in the reconstructions (see Section 

5.1 for more information). We consider three cases: where the 

lower frequency proxy is sampled at only 1/3 the rate of the 

other proxy (Figure 2b) and with 20% (Figure 2c) and 40% 

(Figure 2d) of the data is randomly and independently removed 

from both proxies. Finally, we consider the case of 20% miss-

ing data and ε = 0.4 noise (Figure 2e).  
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Figure 1. Target (red) and reconstruction (black) and 1 standard deviation range (gray bands) for the test signal ti = sin(di/10) + 

0.4sin(di/3) + εη for various noise levels, (a) ε = 0, (b) ε = 0.1, (c) ε = 0.2, (d) ε = 0.4, and (e) ε = 1.0. 

 

 
 

Figure 2. Target (red) and reconstruction (black) and 1 standard deviation range (gray bands) for the test signal ti = sin(di/10) + 

0.4sin(di/3) + εη for various missing data rates (data presence, but not value, indicated by gray squares at bottom of plot, lighter 

gray for lower frequency proxy), (a) no missing data, (b) sin(di/10) proxy sampled at 1/3 rate of other proxy, (c) 20% of data 

randomly and independently removed for each proxy, (d) 40% of data randomly and independently removed for each proxy, and (e) 

20% missing data and ε = 0.4 noise. 
 

 
 

Figure 3. Target (red) and reconstruction (black) and 1 standard deviation range (gray bands). Upper row using original proxies 

and bottow row transformed proxies to enhance the Pearson correlation. (a) and (d) Unresolved target component of sin(di/20), (b) 

and (e) non-linear target ti = sin(di/10) + 0.4sin2(di/3), and (c) and (f) non-linear target ti = sin2(di/10) + 0.4sin(di/3). 

 

3.3. Non-Linearity and Unresolved Components 

Finally, we consider the cases of unresolved low frequen- 

cy proxies and non-linearities, again defaulting to a value of hs 

= 0.25. Performance with unresolved proxies is evaluated by 

the addition of a term sin(di/20) to the target without a cor- 

responding proxy (Figures 3a and d). Performance in the pre- 

sence of non-linearity is investigated using the same proxies 

but two revised targets of ti = sin(di/10) + 0.4sin2(di/3) (Figures 

3b and e), and ti = sin2 (di/10) + 0.4sin(di/3) (Figures 3c and f). 

Performance in the presence of non-linearities can be im-

proved by transforming the proxies to improve linearity. We 

include code to help with the selection of one possible trans-

formation. In particular, we consider a continuous piecewise 

linear transformation (PLT), allowing up to a maximum of five 

points to define the remapping of the proxy. We optimise the 

PLT by maximising the quantity  ˆ, ,GKC t p where p̂ is the PLT 

proxy, and the factor α compensates for the extra degrees of 

freedom associated with the number of points used to define 
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Figure 4. Reconstruction of the Interdecadal Pacific Oscillation (IPO) from Law Dome, East Antarctica, ice-core proxies. Median 

(gray line) and 1 standard deviation (gray bands) for 2000 ensemble members. (a) using unaltered proxies and (b) PLT proxies. Also 

shown are the two non-linear reconstructions of Vance et al. (2015), using a decision-tree (blue) and piece-wise linear (red) models. 

For direct comparison with Vance et al. (2015), we also show our reconstruction smoothed (black) with a Gaussian low-pass filter 

(equivalent half power width of 13 years). 
 

the PLT. Specifically, similar to the generalised cross valida- 

tion of Friedman (1991), we define α = (1 - 2NPLT - 2/np), where 

NPLT is the number of points defining the PLT. Again, the opti- 

misation is via a down gradient scheme based on the complex 

step method (Martins, 2003). 

If a meaningful improvement in Pearson correlation can 

be achieved by PLT compared to the original data series, then 

the quality of the regression can be significantly improved 

(compare Figures 3b and e, and c and f). Conversely, the indis- 

criminate application of the PLT, in cases where no significant 

improvement in the correlation is achieved, can degrade the 

quality of the reconstruction (compare Figures 3a and d). 

4. Validation of Methods: Climate Variable 
Reconstruction 

Here we present three examples of applications of the 

Gaussian kernel correlation method. An experimental recon-

struction of the Interdecadal Pacific Oscillation (IPO) is made 

using three ice core-based proxy records, similar to Vance et 

al. (2015), to assess potential improvements in reconstruction 

skill. A second example is applied to infilling missing rainfall 

data for a gauge in the Lockyer Valley, QLD, using five other 

gauges located in the same basin. The third example is a dem-

onstration of how precipitation in the eastern Murray Darling 

Basin (MDB) could be reconstructed using different paleo-

climate proxy records. 

 

4.1. Reconstruction of the Interdecadal Pacific Oscillation 

The Interdecadal Pacific Oscillation is a multi-decadal pat-

tern of sea surface temperature (SST) variability in the Pacific 

Ocean. Two complete positive (∼1924 to 1943 and ∼1979 to 

1997) and one negative IPO phase (∼1946 to 1976) have oc- 

curred in the instrumental period (Power et al., 1999; Verdon 

et al., 2004) and since the late-1990s the IPO is thought to be 

in its negative phase (Meehl et al., 2015). The positive IPO 

phase is associated with warming of the tropical Pacific and 

cooling of the north and south Pacific with the opposite SST 

patterns occurring during the negative phase (Power et al., 

1999). IPO’s impact on Australia’s rainfall variability is 

through the modulation of both the magnitude and frequency 

of ENSO impacts (Kiem et al., 2003; Kiem and Franks, 2004; 

Verdon et al., 2004; Power et al., 2006). Drought (flood) risk 

in eastern Australia is increased during IPO positive (negative) 

phases (Kiem et al., 2003; Kiem and Franks, 2004; Kiem and 

VerdonKidd, 2013) and therefore it is important to reconstruct 

past IPO conditions. This problem is challenging because it is 

both non-linear (Vance et al., 2015) and relatively large (nt and 

np > 1000). Vance et al. (2015) reconstructed the IPO index of 

Parker et al. (2007) using three remote ice core proxies from 

Law Dome, East Antarctica: (i) annual snowfall, (ii) warm 

(DJF-MAM), and (iii) cold (JJA-SON) season sea salts. Vance 

et al. (2015) used two independent multivariate regression tech- 

niques, i.e., piecewise linear fit and decision tree, to reconstruct 

the IPO. 

We use the method presented here to assess whether im-

provements to the reconstruction can be made and also as an 

independent verification of the reconstruction presented in 

Vance et al. (2015) (see Figure 4a for a reconstruction using the 

unaltered proxies and Figure 4b for the corresponding case 

using PLT proxies). We use a default value for hs = 0.25 al-
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though we obtain very similar results (percentage of explained 

variance for 13-year smoothed PLT case of 62.9 ~ 64.5%) for 

a range of hs = 0.01 ~ 2.0. 

To account for the non-linear response, we use the code 

we provide to evaluate possible piece-wise linear breakpoints 

in both the sea-salt based and snow accumulation rate proxies. 

The transformation of both proxies was optimal using a 5-point 

PLT, and increased the correlations with the instrumental IPO 

from 0.524 and 0.291 to 0.779 and 0.415 for the sea-salt and 

accumulation proxies respectively. 

The relationship between the IPO and the proxies is known 

to be non-linear (Vance et al., 2015), so it is not surprising that 

the PLT proxies produce a higher quality reconstruction (62.9% 

explained variance for the instrumental IPO compared to 

42.8% using the unaltered proxies). This is confirmed by the 

better agreement between the PLT reconstruction and the re- 

constructions of Vance et al. (2015) in Figure 4b. We observe 

all of the same key features in the IPO reconstruction as Vance 

et al. (2015), importantly including the sustained positive pe-

riod in the 12th century corresponding to an epoch of excep-

tionally arid conditions in eastern Australia (Vance et al., 

2015). 

 

4.2. Infilling of Missing Rainfall Data 

This example shows the use of the method to infill missing 

data, common in both proxy and gauged climate data. Six 

rainfall gauges (Table 1) were selected in the Lockyer Valley 

catchment in Queensland, Australia (Figure 5). The region 

receives the majority of its annual rainfall in the austral summer 

(December ~ February) months of the year. 

 

 
 

Figure 5. Location of Lockyer Valley catchment (yellow) in 

southeast Queensland. 
 

The rainfall at the Australian Bureau of Meteorology 

(BOM) high quality rainfall station (40082) is reconstructed 

using the remaining five rainfall records, all of which have 

periods of missing data. The reconstruction is for the period 

1916 ~ 2015 with 10% and 50% of the calibration target data 

removed. The 40082 rainfall record is successfully recon-

structed in both cases (Figure 6), with little loss in fidelity 

(reduction of error RE > 0.92). Even with 50% of the data 

removed, a correlation with the original target data is r = 0.96 

in both cases (i.e., more than 92% explained variance). This 

result is obtained using a value of hs of 0.03, but is robust to a 

range of hs, with in excess of 90% explained variance for hs in 

the range 0.01 ~ 0.12. The robustness of the reconstruction is 

evident by the agreement between the two reconstructions with 

10 and 50% missing data, with a Pearson correlation of r = 

0.989. 

The scaling of the reconstructions is designed to reproduce 

the median and inter-quartile range of the target. However, 

other linear scalings of the data are possible, and such linear 

scalings will not change the correlations (see Section 5.2 for a 

more detailed discussion). For the two reconstructions, the 

median absolute deviation in monthly rainfall is 7.8 (6.5) and 

10.8 (8.0) mm month-1 for 10 and 50% data removal respecti-

vely, where the values in parenthese represent a linear rescaling 

to optimise with respect to median absolute deviation. Simi-

liarly, the root mean square errors (RMSE) are 18.0 (17.6) and 

22.1 (20.3) mm/month. 

 

Table 1. Details of the Lockyer Valley Rainfall Gauges 

Site # Site name 
Epoch 

(AD) 

Latitude 

(° S) 

Longitude 

(° E) 

Elevation 

(m) 

40056 Coominya Post Office 1916– 27.39 152.50 81 

40079 Forest Hill 1894– 27.58 152.38 112 

40082 Gatton 1897– 27.54 152.34 89 

40083 Gatton Allan St 1894– 27.54 152.28 114 

40095 Hattonvale Oshea Rd 1908– 27.57 152.47 118 

40424 West Haldon 1915– 27.76 152.08 336 

 

4.3. Multiproxy Reconstruction of Rainfall in the Murray-

Darling Basin 

Here we use the method with two proxies with differing 

sampling regimes and temporal resolutions to reconstruct rain- 

fall from a case study location in the Murray-Darling Basin. 

Specifically, we use the speleothem chemistry results from 

McDonald (2005) and McDonald et al. (2009) from Wombe- 

yan Caves and the summer sea-salt record from Law Dome, 

East Antarctica of Vance et al. (2013) to reconstruct the BOM 

rain gauge record from Taralga Post Office (70080) for the 

instru-mental period and last millennium. Taralga is located on 

the eastern border of the Murray-Darling Basin and precipita- 

tion near this station contributes to streamflow in the Lachlan 

River catchment. The region is largely dependent on dryland 

farming with minimal irrigation infrastructure. As a result, 

significant decreases in precipitation would likely adversely 

impact the regional economy, which is largely dependent on 

agriculture, and would likely damage regional wetlands and 

associated ecosystems.  

For the calibration epoch (1884 ~ 2002, excluding years 

1893 ~ 1894, which are missing from the rainfall record), the 

speleothem chemistry records for phosphorus (P), strontium 

(Sr), barium (Ba), and yttrium (Y) have Pearson correlations 
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with the gauged rainfall of −0.27, 0.36, 0.39, and −0.28 res-

pectively and are all significant at the 95% level (calculated 

using the method of Roberts et al. (2017)). It is noted that these 

correlations are opposite to the expected relationship between 

moisture and each of these species (Ho et al., 2015b). This 

could relate to the use of different calibration periods (and 

hence potential non-stationarity in the moisture-geochemistry 

relationship), lags in signal or assumptions in processing, but 

further evaluation of the geochemistry is beyond the scope of 

this paper. The Law Dome summer sea-salt record is correlated 

with the rainfall record at 0.23 and again is significant at the 

95% level. The resulting reconstruction including the Law 

Dome data has a Pearson correlation of 0.48 (23% explained 

variance) compared to a best result of 0.36 (13% explained 

variance) excluding the Law Dome summer sea-salt record. 

This is obtained for hs = 0.09 although again the result is robust 

to a range of hs with more than 19% explained variance for h 

in the range 0.06 ~ 0.25. 

 

 
 

Figure 6. Rainfall reconstruction for the high-quality rainfall 

station 40082 for the period 1916 ~ 2015. Shown are the comp-

lete gauge rainfall record (gray), the reconstruction with 10% 

of the target data missing (red), and with 50% of the target data 

missing (black). Note that in many places it is hard to dis-

tinguish between the datasets due to the fidelity of the recons-

truction. 

The reconstruction for the last millennium is shown in 

Figure 7 and shows several interesting features, including a re- 

latively wet epoch during the 20th century (when most of the 

instrumental records are available), and a very dry epoch du-

ring the 12th and early 13th centuries. This latter result is consis-

tent with the south-east Queensland reconstruction of Vance et 

al. (2015). The high rainfall in the 20th century is consistent wi-

th the instrumental record (see Figure 8), and the reconstruction 

is robust to the removal of 50% of the calibration data (Figure 

9). 

 

 
 

Figure 7. Rainfall reconstruction for Taralga Post Office ba-

sed on Wombeyan Care speleothem chemistry and Law Dome 

summer sea-salt data. 

 

 
 

Figure 8. Rainfall reconstruction (black) and instrumenttal 

rainfall record for Taralga Post Office (gray). Note that in many 

places it is hard to distinguish between the datasets due to the 

fidelity of the reconstruction (r2 = 0.23). 

 

 
 

Figure 9. Rainfall reconstruction for Taralga Post Office using 

the entire calibration dataset (red) and with 50% of the calibra- 

tion data removed (black). 

 

The reconstruction here suggests that the long term cli-

mate is significantly drier than the 20th century, which raises 

questions about how representative the instrumental record is 

of longer term hydro-climate in this region, with obvious 
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Figure 10. Target (red) and reconstruction (black) and 1 standard deviation range (gray bands) for the test signal ti = sin(di/10) + 

0.4sin(di/3) + εη with ε = 0.4 noise and 20% missing data (data presence, but not value, indicated by gray squares at bot- tom of plot, 

lighter gray for lower frequency proxy. A range of hs is used for the reconstructions, (a) hs = 0.1, (b) hs = 0.25, (c) hs = 0.5, (d) hs = 

0.75, and (e) hs = 1. 
 

consequences for water security policy based on assumptions 

of the representativeness of the instrumental record. However, 

this reconstruction is based on two proxies, one regional proxy 

with uncertainties in dating and magnitude of proxy response 

over time and another based on long-distance teleconnections. 

There is therefore a need to verify the demonstrated rainfall 

reconstruction presented here through the addition of other 

regional proxies that may capture different aspects of spatial 

and temporal rainfall variability (Ho et al., 2014). The future 

occurrence of extended periods of decreased precipitation in 

the region, as suggested by the reconstructed rainfall, would 

require advanced regional preparation and policies to ensure 

resilience or a strategy to evolve economic activities to adapt 

to a drier climate. 

5. Discussion and Conclusions 

The use of the Gaussian kernel Pearson correlation 

(Equation 1) allows for the accurate calculation of correlation 

coefficients for pairs of data series with different sampling 

frequencies, uneven and different sampling, missing data and 

different number of samples. These properties are inherited by 

the reconstruction method. In addition, the Gaussian kernel 

introduces some high frequency smoothing into the process, 

with the amount of smoothing increasing directly with the 

width parameter (hs). Therefore, the method is relatively in-

sensitive to high frequency noise, but also may not effectively 

capture genuine high frequency signals. The selection of hs can 

have a significant impact on the quality of the reconstruction. 

This is discussed in more detail below (Section 5.1). 

The Pearson correlation assumes a linear relationship be-

tween the two data series. However, the reconstruction method 

can be made more general by transforming the proxies to in-

crease how close to linear the relationship between the proxies 

and the target is. Such a transformation should only be used if 

it results in a meaningful increase in linearity, otherwise the 

quality of the reconstruction may suffer. Therefore, we have 

chosen not to apply such a transform automatically, but instead 

provide users with a separate tool to calculate a potential trans-

formation. The users should then apply domain specific expert 

knowledge to assess the suitability of using the transformed 

proxy. 

While this method has several strengths (e.g., the ability to 

generate multi proxy reconstructions from unevenly and dif-

ferently sampled data), it has several limitations. Even after ex-

tensive optimisation of the computer code, it is relatively com-

putationally expensive, with several of the examples shown 

here taking of order 10 minutes to complete on a quad core Intel 

i7 2.3 GHz laptop. Climate processes are often non-linear and 

while the method can produce non-linear reconstructions, this 

is achieved through transforming the proxies. A genuine non-

linear method may produce a higher quality reconstruction. As 

with any method dealing with time-series data, the sampling 

must be at high enough frequency to resolve the modes of 

interest. In general, this involves several samples per mode, and 

this requirement will increase due to uneven sampling and the 

smoothing introduced by the Gaussian kernel. Missing data 

will typically increase the uncertainty of the estimate, while 

having a much smaller impact on the median estimate. Finally, 

as with any reconstruction method, the method assumes sta-

tionarity between the proxy and target climate variables. We 

suggest that users of this method (and indeed any recons-

truction method) investigate the stationarity of the relationship 

between the proxy and target climate, which may include an 

assessment of the circulation processes linking the regions of 

interest (e.g., Gallant et al. 2013). 

 

5.1. Influence of Gaussian Correlation Width Parameter 

The parameter hs influences the quality of the solution, al-

though the optimal solution is obtained for a moderately broad 

range of hs, so it is not necessary to overly refine the solution 

based on hs. 

Small values of hs tend to make the reconstruction more 

reliant on local features of the proxy data. This may lead to the 

presence of high frequency noise in the reconstruction, and 

sensitivity to missing data. Alternatively, large values of hs tend 

to overly smooth the reconstruction and lose fine scale features. 

For example, the 20% missing data case of Figure 2c shows 

high frequency noise and excessive sensitivity to missing data 

for small hs (Figure 10). 

While automation in the selection of hs is possible, we feel 

that this is inappropriate. The selection of hs should be actively 

undertaken by the user, to understand how sensitive (or insen-

sitive) the reconstruction is to the selected value of hs. How-

ever, we can provide some guidance. Typical values of hs re-

sulting in good reconstructions are of order 0.25, and the range 

0.01 ~ 2 would be a good starting point. One useful strategy is 

to slowly increase hs until the correlations between the target 



J. L. Roberts et al. / Journal of Environmental Informatics 35(2) 118-127 (2020) 

126 

 

 

and proxy data sets (reported by the computer code provided) 

start to decrease. 

We have chosen to use a single value of hs for all proxy 

datasets in a multi-proxy reconstruction, and normalise by the 

length of the largest gap between data. It would be easy to 

modify the code to use a different hs for each dataset. 

 

5.2. Linear Scaling of the Reconstruction 

The Pearson correlation is invariant to both the addition of 

constant offset or the multiplication by a constant scaling fac-

tor. Therefore, the reconstructions can be linearly rescaled as 

required. 

We have chosen to scale the reconstructions to have the 

same median and inter-quartile range as the target dataset over 

the calibration epoch. Linear scaling to minimise the median 

absolute difference or RMSE is possible, with the latter being 

more akin to a least squared solution. However, both of these 

scalings (or any alternative reconstruction method where the 

primary cost function is the minimisation of either of these 

quantities) will produce a reconstruction with greatly reduced 

variability, as indicated in Figure 11. While it is still possible 

to get insights into the frequency and duration of wet/dry 

epochs (Kiem and Franks, 2004; Tozer et al., 2016) and relative 

dif-ferences in large scale spatial climate variability (Ho et al., 

2017) using these scalings, they are not suitable for studies 

reliant on reconstructions with realistic variability. These in-

clude studies aiming to quantify hydrological risk and how it 

varies over time or the assessment of changes in magnitudes of 

annual extremes over time (e.g., Kiem et al., 2016; Johnson et 

al., 2016), which are important in water resources management 

(Ho et al., 2016). The reconstruction (and associated scaling) 

method presented here hence may prove useful in water re-

sources management and planning where there is a clear need 

to incorporate paleoclimate information (Tozer et al., 2016). 

 

 
 

Figure 11. Linear rescaled reconstructions of rainfall for Taral-

ga Post Office showing observed rainfall (gray), default (me-

dian and inter-quartile range) reconstruction (black), median 

absolute deviation rescaled (red) and RMSE (blue). Note the 

lack of variability compared to the observed rainfall in the later 

two rescaled reconstructions. 
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