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ABSTRACT. In this paper the proposed constrained gravitational search algorithm (CGSA) is extended and used to solve multi-reservoir 

operation optimization problem. Tow constrained versions of GSA named partially constrained GSA (PCGSA) and fully constrained  

GSA (FCGSA) are outlined to solve this optimization problem. In the PCGSA, the problem constraints are partially satisfied, h owever, 

in the FCGSA, all the problem constraints are implicitly satisfied by providing the search space for each agent which contains only fea-

sible solution and hence leading to smaller search space for each agent. These proposed constrained versions of GSA are very useful 

when they are applied to solve large scale multi-reservoir operation optimization problem. The constrained versions of GSA are formu- 

lated here for both possible variables of the problem means considering water release or storage volumes as the decision variables of the 

problem and therefore first and second formulations of these algorithms are proposed. The proposed algorithms are used to solve the 

well-known four and ten reservoir operation optimization problems and the results are presented and compared with those of original 

form of the GSA and any available results in the literature. The results indicate the superiority of the proposed algorithms and especially 

FCGSA over existing methods to optimally solve large scale multi-reservoir operation optimization problem.  
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1. Introduction 

A large-scale regional water supply system usually includes 

several single or multi-reservoirs. Generally, a single reservoir 

system is designed for a single purpose such as water supply, 

hydropower generation or flood control. However, a multi res-

ervoir system is designed for multiple purposes such as hydro-

power generation, flood control, navigation, fish and wildlife en- 

hancement and water supply (agricultural, municipal and indus- 
trial) (Tu et al., 2003). 

Finding optimal operation for multi-reservoir system is one 

of the most complex and challenging problems in the field of 

water resource planning and management in which it involves 

many variables, objectives and considerable risk and uncer-

tainty. Nowadays, solving the multi-reservoir operation optimi-

zation problem is important throughout the world especially 

under water scarcity condition. Generally, finding optimal solu-

tion for reservoir operation optimization problem means that 

operator decides on the amount of water should be released 

now and also be retain-ed for future uses considering the varia-

tions of the inflows and demands. An appropriate operation can 

help to make good decision at any moment by using river flow 
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range and determining reservoir characteristics. The problem of 

determining the optimal operation of a multi-reservoir system 

has been the subject of many researches in the past decades. 

However, the non-linearity and especially high-dimensionality 

of this problem make many difficulties for this optimization 

problem. Therefore, no completely satisfying solution has been 

obtained for this problem since in every research the simplified 

form of this problem has been defined and solved. 

Generally, various optimization methods were proposed to 

solve reservoir operation optimization problem in which they 

were reviewed by many researchers such as Yeh (1985), Labadie 

(2004), Rani and Moreira (2010). Reviewing these researches 

shows that comprehensive methods that deal with a variety of 

multi-reservoir operation optimization problems are now avail-

able. Generally, selecting appropriate solving methods is de-

pendent on the different elements such as operation tasks, avail-

able data, and mathematical form of objective function and con- 

straint equations. It can be seen from the literature, various re-

searchers have developed to find optimal operation of reservoir 

using different methods in which they are classified as dynamic 

programming (DP), linear programming (LP), non-linear pro-

gramming (NLP), meta heuristic algorithms (such as genetic al- 

gorithm (GA), particle swarm optimization (PSO) algorithm, 

ant colony optimization algorithm (ACOA), honeybees mating 

optimization (HBMO) algorithm, simulated annealing (SA) and 

hybrid methods. Practically, numerous classical and traditional 

methods such as LP (Kuczera, 1989; Trezos, 1991; Tu et al., 2003; 
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Reis et al., 2006; Azamathulla et al., 2008), NLP (Martin, 1983; 

Lund and Ferreira, 1996; Barros et al., 2003) and DP (Larson, 

1968; Heidari et al., 1971; Murray and Yakowitz, 1979; Yakowitz, 

1982; Perera and Conder, 1998; Kumar and Baliarsingh, 2003; 

Mousavi and Karamouz, 2003; Goor et al., 2011; Liu et al., 2011; 

Jothiprakash et al., 2011; Zhao et al., 2012) have been used to 

solve multi-reservoir operation optimization problem. During 

the past four decades, a group of approximate methods, named 

meta heuristic algorithms, has been developed that they can ex-

plore the search space of the problem effectively and efficiently 

to prevent from trapping in a confined area of the search space. 

In other words, to partially overcome the limitations of tradi-

tional methods such as dimensionality problem, meta heuristic 

algorithms such as GA (Esat and Hall, 1994; Fahmy et al., 1994; 

Oliveira and Loucks, 1997; Wardlaw and Sharif, 1999; Tosporn- 

sampan et al., 2005a; Reis et al., 2006; Chen and Chang, 2007; 

Azamathulla et al., 2008; Malekmohammadi et al., 2009; Dariane 

and Momtahen, 2009; Jothiprakash et al., 2011; Hincal et al., 

2011), HBMO algorithm (Bozorg Haddad et al., 2008; Afshar et 

al., 2010), PSO algorithm (Kumar and Reddy, 2007; Fallah-

Mehdipour et al., 2011; Ostadrahimi et al., 2012; Zhang et al., 

2013), ACOA (Jalali, 2005; Jalali et al., 2007; Moeini and Afshar, 

2013; Moeini, 2014), SA (Wong and Wong, 1994; Tospornsam-

pan et al., 2005b) have also been used to solve this problem. 

Proposed methods mentioned above have successfully re-

duced the complexity of multi-reservoir operation optimization 

problem such as extent dimensions or alleviate the curse of di-

mensionality. It should be noted that, in this problem, the com-

putational time cost extremely increases with increasing the 

number of reservoirs and operation time periods leading to large 

scale optimization problem. In other words, the computational 

time cost is absolutely intolerable when the scale of multi-reser- 

voir system reaches a certain large degree. Therefore, the com-

putational efficiency is a big challenge to solve multi reservoir 

operation optimization problem. Generally, different approach-

es can be proposed to improve the computational efficiency such 

as improving the mechanism of classical algorithms or propos-

ing new and effective algorithms. It is worth noting that, although 

meta heuristic algorithms have been extensively used in the field 

of finding optimal reservoir operation due to their ability, how-

ever, their application to multi-reservoir system raises a num-

ber of challenges. The high dimensionality of the decision var-

iables contributes a lot to these application challenges such as 

problem search space size, computational efficiency and so on. 

Therefore, this research focuses on the new research field for 

researcher to propose new effective methods for solving more 

complex multi-reservoir operation optimization problem. 

As mentioned above, the non-linearity and the high dimen-

sionality of the multi-reservoir systems lead to big challenges 

for this problem means the requirement of the using new heu-

ristic algorithms or reducing dimensionality by proposing effec- 

tive approaches. Therefore, a family of constrained versions for 

new meta heuristic algorithm, means gravitational search algo-

rithm (GSA), is proposed here to solve multi-reservoir operation 

optimization problems. These algorithms are extension of the al- 

gorithms proposed by Moeini et al. (2017) for single reservoir 

operation optimization problem. Therefore, two constrained ver- 

sions of the GSA are developed and used here to solve this com-

plex optimization problem using the concept already used by 

Moeini and Afshar (2013) and Afshar (2013) using ACOA and 

PSO algorithm, respectively. In the first version, named partially 

constrained gravitational search algorithm (PCGSA), the con-

straints of the problem are partially satisfied. In other words, a 

feasible search space is constructed for each agent to simultane-

ously satisfy both water release and storage volume constraints. 

This algorithm is very successful for problem constraints satis-

faction except for very rare cases. Therefore, another algorithm, 

named fully constrained gravitational search algorithm (FCG-

SA), is also proposed here. In the FCGSA, all the constraints of 

the problem are implicitly satisfied by providing a search space 

for each agent that contains only feasible solution. For this, the 

water storage volume bounds of the reservoirs are modified pri-

or to the main search such that infeasible solutions cannot con-

structed. The FCGSA leads to smaller search space for each a-

gent and therefore it is very useful when it is applied to solve 

large scale multi-reservoir operation optimization problem. The 

both constrained GSAs are formulated here for both possible var- 

iables of the problem means considering water release or stor-

age volumes as the decision variables of the problem in which 

they are denoted by suffix I and II, respectively. The proposed al- 

gorithms are used here to solve the well-known four and ten re-

servoir operation optimization problems and the results are pre-

sented and compared with those of original form of the GSA and 

any available results in the literature. The results indicate the su- 

periority of the proposed algorithm and especially FCGSA over 

existing methods to optimally solve large scale multi-reservoir 

operation optimization problem. This fact is highlighted in the 

section “Numerical experiments and results” when proposed al- 

gorithms are used to solve two benchmark test examples. 

2. Multi-Reservoir Operation Optimization Problem 

Nowadays, there are more than 45,000 large dams in the 

world in which they have been constructed to manage scarce 

water resources and mitigate devastating floods and droughts 

(Hınçal et al., 2011). Generally, dames control the surface run-

off effectively due to seasonal variation demands. Therefore, a 

small improvement in the operating policies of a reservoir can 

lead to large benefits for many users. For this purpose, a reser-

voir operation problem can be considered as a decision-making 

problem. Solving this problem specifies how water is managed 

throughout the multi-reservoir system. Optimal operating poli-

cy serves to reach maximum benefit from the multi-reservoir 

system satisfying problem constraints. However, finding op-

timal operation policy for multi-reservoir system is a complex 
problem. 

This problem involves many decision variables, constraints 

and multiple objectives in which they are naturally highly non- 

linear and non-convex. Therefore, multi-reservoir operation  

problem can be properly solved using meta heuristic algorithms. 

Generally, a multi-reservoir system contains both parallel and 

series dam connections. In this system the outflow of up-stream 

reservoirs serves as the inflow of downstream reservoirs and 
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therefore this condition adds the problem complexity. 

Multi-reservoir operation optimization problem is charac-

terized by various goals and constraints. Here, the goal of the 

problem is to maximize benefits from the multi-reservoir sys-

tem over the operation time period that can be formulated as 

follows:  

 

1 1

( ) ( )
K T

k k

k t

F b t r t
 

    (1) 

 

where F = the benefit (objective) function; K = the total num-

ber of reservoirs; T = the total number of operation time peri-

ods; bk(t) = the benefit function of reservoir k at operation time 

period t; and rk(t) = the release from reservoir k at operation 

time period t. 

Generally, this problem has some fundamental constraints. 

For example, upper and lower bounds for releases and storages 

over each operating time period t should be considered. Anoth-

er constraint of the problem is continuity equation in which it 

should be satisfied throughout the whole system. These con-

straints can be defined as follows: 

 

( 1) ( ) ( ) ( )k k k kS t S t I t r t       (2) 

 

min max( )k k kS S t S     (3) 

 

min max( )k k kr r t r     (4) 

 

where Sk(t) = the storage at operation time period t of reservoir 

k; Ik(t) = the inflows at operation time period t to reservoir k; 

rk(t) = the release at operation time period t from reservoir k; 

Smin
k

 = the minimum storage of reservoir k; Smax
k

 = the maximum 

storage of reservoir k; rmin
k

 = the minimum release from reser-

voir k; and rmax
k

 = the maximum release from reservoir k. 

3. Proposed Methods to Solve Multi-Reservoir 
Operation Optimization Problem 

In this paper, two constrained versions of GSA are pro-

posed to solve multi-reservoir operation optimization problem. 

In addition, standard form of GSA is also used here to solve the 

problem for comparison purpose. It is worth noting that, at first, 

Rashedi et al. (2009) proposed GSA to solve some benchmark 

mathematical function optimization problems. This algorithm 

was fully described in Rashedi’s paper and therefore its theory 

is not presented here. Here, GSA is used and improved to solve 

multi-reservoir operation optimization problem. Basically, two 

different set of decision variables of water release or storage 

volumes can be taken for reservoir operation problem. There-

fore, in this paper, two formulations are proposed for each pro-

posed algorithm denoted by suffix I and II considering water 

releases or storage volumes at each operation time period as de-

cision variable of the problem, respectively. Proposed methods 

are briefly described as follows. 

3.1. Unconstrained GSA 

In the unconstrained GSA (UGSA), the standard and usual 

form of the GSA is used to solve reservoir operation problem. 

Two formulations are also proposed here for unconstrained GSA 

in which they are named UGSAI and UGSAII considering water 

releases or storage volumes at each operation time period as de-

cision variable of the problem, respectively. Here an assump-

tion is considered that the initial storage volume of all reser-
voirs is known. 

In this algorithm, each operation time period of each res-

ervoir is considered as each dimension of the trial agent leading 

to a total number of K × T dimensions and therefore a mapping 

of the type i (i = Map(k, t)) is assumed for graphical represent-

tation of each dimension. 

Here, the value of each agent dimension presents the water 

release from reservoir/end of water storage volume at each op-

eration time period for UGSAI/UGSAII which is created in the 

range [rmin
k , rmax

k ]/[Smin
k

, Smax
k

] and therefore the agent position 

can be defined. By defining all agent positions using proposed 

mechanism, the agent positions are updated based on the GSA 

methodology. This mechanism is continued until the stop crite-

ria are reached. It is worth noting that, based on this mechan-

ism, the water release from reservoir/water storage volume at 

each operation time period constraint is easily satisfied using 

UGSAI/UGSAII. In addition, in this proposed algorithm, the a-

gent positions are updated independently. In other words, pro-

posed mapping can be arbitrary and therefore the ith dimension 

of each agent can be arbitrarily associated to each operation time 
period of each reservoir (tth

 operation time period of kth
 reservoir). 

The graphical representation (search space) of the problem 

defined for the application of UGSAs is shown in Figure 1. Here, 

di represents the ith
 dimension of the trial agent (i = 1, …, K × T), 

the horizontal small lines represent the agent position bounds 

(water release/end of storage volumes), bold horizontal small 

lines represent obtained values for each agent dimension and 
solid lines represent a trial solution created by UGSAs.  

It should be noted that UGSAs may create infeasible so-

lutions. Therefore, here, to discourage the agents to select water 

releases/storage volumes, which may constitute an infeasible 

solution, a lower benefit is associated to the infeasible solutions 
using penalty method: 
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  (5) 

 

where Fp = the penalized objective function; F = the original ob- 

jective function (Equation (1)); CSVs
k
(t) = the water storage vol- 

ume constraint violation at operation time period t of the reser-
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servoir k; CSVr
k
(t) = the water resale volume constraint viola-

tion at operation time period t of the reservoir k and αp = the pen- 

alty constant which is obtained via a trial and error process. It 

should be noted that only the positive values of the term in the 

parenthesis of CSVs
k
(t) and CSVr

k
(t) are used for constraints vio- 

lations calculation because of the reason discussed ahead. The 

negative or zero value of each term in the parenthesis means that 

the corresponding constraint is satisfied and therefore it is not 

used for calculation of constraints violations. 

 

 
 

Figure 1. Search space of UGSA considering release/storage 

volume as decision variable for reservoir k. 

 

3.2. Partially Constrained GSA (PCGSA) 

Here, the GSA is equipped with an effective mechanism to 

solve optimization problems with constraints of sequential na-

ture such as reservoir operation optimization problem propos-

ing two constrained versions of GSA named partially and fully 

constrained GSA (PCGSA & FCGSA). Based on this mechan-

ism, a component by component approach is used to create a 

trail solution incrementally and therefore each dimension of the 

agent is updated in turn using same dimension information. 

Among this process, the explicit nature of reservoir operation 

problem constraints can be easily enforced limiting the agent 

positions. Therefore, each agent is forced to move to the feasi-

ble search space. This mechanism leads to smaller search space 

and therefore better solution especially for solving large scale 

optimization problem. In addition, the limitations of penalty 

method are extremely reduced. This mechanism equipped with 

GSA has already been used to solve single reservoir operation 

optimization problem by Moeini et al. (2017) which is now ex-

tended to solve multi-reservoir operation. It should be noted that 

the release (storage) volume constraints of the downstream res-

ervoirs are affected not only by their operation but also by the 

upstream reservoirs’ operation and therefore the constraints of 

the multi-reservoir operation optimization problem are more 

complex than the single reservoir operation problem. Here, con- 

strained GSA is developed to satisfy the problem constraints as 

much as possible in order to overcome this complexity. 

Here, in the PCGSA, the local operation of each reservoir 

is determined such that the corresponding constraints are satis-

fied. Two formulations are also proposed for PCGSA in which 

they are named PCGSAI and PCGSAII considering water re-

leases or storage volumes at each operation time period as deci-

sion variable of the problem, respectively. An assumption is con- 

sidered here that the initial storage volumes of all reservoirs are 

known. Here, an arbitrary dimension of an agent (i dimension, 

corresponding to operation time period t of the kth
 reservoir) with 

a known value for the corresponding water release/storage vol-

ume is considered. In order to calculate a new set of bounds for 

water release/storage volume of the (i + 1)th dimension (corre-

sponding to the operation time period t + 1 of reservoir k), in 

PCGSAI/PCGSAII respectively, the continuity equation can be 

used such that the remaining constraints are fully satisfied by 

the resulting values. These new bounds are used to obtain (i + 

1)th dimension of an agent containing only feasible position. In 

other words, the (i + 1)th dimension of the agent is obtained by 

calculating new bound for water release/storage volumes and 

selecting the position from this new bound. Proposed algo-

rithms can be briefly described as follows. 

In PCGSAI, a known value for Sk(t) is assumed and the con- 
tinuity equation can be used to substitute Sk(t + 1) into storage vol- 
ume constraint rewritten for operation time period t + 1. There-
fore, the following constraint can be obtained for the water re-
lease from the reservoir k at operation time period t: 

 

max min( ) ( ) ( ) ( ) ( )k k k k k k kS t I t S r t S t I t S         (6) 

 

This equation should be combined with the original water 

release volume constraint and therefore the following constraint 

can be obtained for water release from the reservoir k at opera-
tion time period t in which the resulting Sk(t + 1) is feasible: 

 

min max

max min

( , ( ) ( ) ) ( )

( , ( ) ( ) )

k k k k k

k k k k

Max r S t I t S r t

Min r S t I t S

  
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   (7) 

 

However, in PCGSAII, a known value for Sk(t) is assumed 

and the continuity equation can be used to substitute rk(t) into 

water release constraint rewritten for operation time period t. 

Therefore, the following constraint can be obtained for the wa-
ter storage volume of the reservoir k at end of operation time 

period t (start of operation time period t + 1): 

 

max min( ) ( ) ( 1) ( ) ( )k k k k k k kS t I t r S t S t I t r          (8) 

 

This equation should be combined with the original stor-

age volume constraint and therefore the following constraint 

can be obtained for water storage volume of the reservoir k at 
end of operation time period t (start of operation time period t 

+ 1) in which the resulting Sk(t + 1) is feasible: 

 

min max

max min

( , ( ) ( ) ) ( 1)

( , ( ) ( ) )

k k k k k

k k k k

Max S S t I t r S t

Min S S t I t r

   
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   (9) 

 

This procedure is repeated in turn for the next decision point 

until a complete solution is created. It should be noted that the 

created solutions automatically satisfy water release and storage 

volume constraints except for some rare cases. The graphical re- 

presentation (search space) of the problem defined for the appli- 

cation of PCGSAs is shown in Figure 2. Here, di represents the 

ith dimension of the trial agent (i = 1, …, K × T), the horizontal 

 

d1 

ksr min)(  

k)sr( max  

..d
..ddi d1 

ksr max)(  ksr max)(  .
max)( ksr  ksr max)(  

ksr min)(  
ksr min)(  ksr min)(  

ksr min)(  



R. Moeini and M. Soltani-nezhad / Journal of Environmental Informatics 36(2) 70-81 (2020) 

74 

 

small lines represent the agent position original bounds (water 

release/end of storage volumes), the triangles represent the new 

agent position bounds (water release/end of storage volumes) 

calculated using Equation (7) / Euqation (9), the bold horizontal 

small lines represent obtained values for each agent dimension 

and solid lines represent a trial solution is created by PCGSAs. 

Comparison of the Figures 1 and 2 indicates that the obtained 

search space is feasible in most cases and therefore it is much 

smaller than the original search space. Therefore, it is expected 

that the proposed new algorithm (PCGSA) will perform better 

than the original form of the algorithm (UGSA). 

 

 
 

Figure 2. Search space of PCGSA considering release/storage 

volume as decision variable for reservoir k. 

 

3.3. Fully Constrained GSA (FCGSA) 

It is worth noting that sometimes PCGSA fails to produce 

a feasible solution. Generally, occurring this condition depends 

on the created solution and more importantly the magnitude of 

the Ik(t). In other words, this condition is occur when the new 

range defined for water release/storage volumes using Equa-

tion (7) / Equation (9) is empty. Here, this problem is resolved 

by present-ing the agent with a single option, means upper or 

lower bound of the water release or storage volumes for PCGSAI 

or PCGSAII, to choose a value which will constitute an infeasi-

ble solution. This mechanism is schematically presented in Fig-

ure 3. This problem can be resolved here proposing a simple 

and effective modification for PCGSA. This modification leads 

to an algorithm named fully constrained GSA (FCGSA) which 

will never produce an infeasible operation policy. In the FCGSA, 

infeasible regions of the problem are theoretically estimated and 

removed from the original search space before starting the proc- 

ess so that agents are not allowed to create infeasible solutions 

at all. In other words, a new manner is used to modify the bounds 

of the storage volume constraint before applying the concept of 

PCGSA. In this new manner, the operation time periods are 

swept in reverse order and a set of new bounds are calculated 

for storage volumes constraint at the beginning of the operation 

time period. Here, two formulations are also proposed for 

FCGSA in which they are named FCGSAI and FCGSAII con-

sidering water releases or storage volumes at each operation 

time period as decision variable of the problem, respectively. 

In FCGSA, by starting from the last operation time period 

and considering the storage volume constraint for reservoir k at 

a period t + 1 as follows: 

 

min max( 1)k k kS S t S      (10) 

The Sk(t + 1) is substituted from continuity equation into 

Equation (10) leading to the following new constraint for the 

storage volume at the beginning of the operation time period t, 

Sk(t), as follows: 

 

min max( ) ( ) ( ) ( ) ( )k k k k k k kr t I t S S t r t I t S         (11) 

 

This constraint should be valid for any value of water re-

lease in the defined range [rmin
k , rmax

k ] and therefore the follow-

ing equation should be considered: 

 

min min max max( ) ( ) ( )k k k k k k kr I t S S t r I t S         (12) 

 

This equation combines with the original constraint of wa-

ter storage volumes leading to the new constraint for the stor-

age volume at the beginning of the period as follows: 

 

min max

min min min min

max max max max

( ) ( ) ( )

with,

( ) ( , ( ) )

( ) ( , ( ) )

k k k

k k k k k

k k k k k

S t S t S t

S t Max S r I t S

S t Min S r I t S

 

  

  

   (13) 

 

where, S̅min

k
, S̅max

k
 = the new bounds calculated for the water stor-

age volume of reservoir k at operation time period t. It should be 

noted that these calculated bounds are different from the origin-

nal water storage bounds and they are used in Equation (3) in-

stead of original Smin
k

 and Smax
k

. These bounds are calculated only 

once at the beginning of the calculation and they are different 

from one period to another one. These new bounds are then 

used in the search process of PCGSA defined before leading an 

algorithm which will not create any infeasible solution during 

the search process. 
 

 
 

Figure 3. Schematically explanation of occurring invalid in-
feasible solution for PCGSA considering release/storage vol-

ume as decision variable for reservoir k. 

 

The graphical representation (search space) of the problem 

defined for the application of FCGSAII is shown in Figure 4. 

Here, di represents the ith dimension of the trial agent (i = 1, …, 

K × T), the horizontal small lines represent the agent position 
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original bounds (water release/end of storage volumes), the 

squares represent new bounds calculated for water storage vol-

ume at each operation time period using Equations (13), the tri-

angles represent the new agent position bounds (end of storage 

volumes) calculated using Equation (9), the bold horizontal 

small lines represent obtained values for each agent dimension 

and solid lines represent a trial solution created by FCGSAII. It 

should be noted that this procedure is also used when the water 

release volumes are taken as decision variables of the problem 

proposing FCGSAI. In addition, the modification of storage vol- 

umes bounds (Equation (13)) cannot be directly used for down-

stream reservoirs since the values of inflow to these reservoirs 

are not known before the operation policies of all upstream res-

ervoirs are calculated. This face should be attended for consi-

dering the sequence of the dimensions applied for defining the 

multi-reservoir operation search space. Comparison of the Fig-

ures 1, 2, and 4 indicates that the obtained search space is al-

ways feasible and it is much smaller than the original search 

space. Therefore, it is expected that the proposed FCGSA will 

perform better than proposed PCGSA and especially the orig-

inal UGSA. 

4. Numerical Experiments and Results 

In order to verify the efficiency of the proposed algorithms, 

here, the well-known four and ten reservoir operation problems 

are solved using proposed algorithms. Chow and Cortes-Rivera 

(1974), at first, introduced the hypothetical four reservoir system 

as shown in Figure 5. There are inflows to the only first and sec-

ond reservoirs of four reservoir system at all operation time pe-

riods. The initial and target storages at the end of the operation 

time period are considered for all reservoirs. The values for the 

water storage and release bounds are presented as follows: Smin
1

, 

Smin
2

, Smin
3

, and Smin
4

 = 1; rmin
1 , rmin

2 , rmin
3 , and rmin

4
 = 0.005; rmax

1
 = 

4, rmax
2 , and rmax

3
 = 4.5; rmax

4
 = 8. Other parameters such as 

initial storages, bk(t), Smax
k

, and Ik(t) are presented in Table 1. In 

addition, Murray and Yakowitz (1979), at first, introduced the 

hypothetical ten- reservoir system as shown in Figure 6. There 

are inflows to the only upstream reservoirs of ten reservoir 

system (reservoir 1, 2, 3, 5, 6 and 8) in all operation time 

periods. The initial and target storages at the end of the 

operation time period are considered for all reservoirs. The 

values for water storage and release bounds are presented as 

follows: 

 
1 2 4 5 6 7 8 10

min min min min min min min min

3 9

min min

1 2 3 4 5 6

min min min min min min

7 10 8 9

min min min min

1 2 3 4

max max max max

1,

0.3,  0.5,

0.005,  0.006,

0.01,  0.008,

4,  4.5,  2.12,  7,  

s s s s s s s s

s s

r r r r r r

r r r r

r r r r r

       

 

     

   

    5

max

6 7 8 9 10

max max max max max

6.43,

4.21,  17.1,  3.1,  4.2,  18. .9r r r r r



    

  

 

Other parameters such as initial storages, bk(t), Smax
k

, and 

Ik(t) are presented in Table 2. 

It should be noted that the search space of four and ten res-

ervoir operation problems can be defined using the detail of these 

two problems and corresponding equations for all proposed al-

gorithms (such as UGSA, PCGSA, FCGSA). Here, only the 

graph (search space) of FCGSAII is presented for first reservoir 

(reservoir 1) of four reservoir operation problem in Figure 7. The 

graphs (search spaces) of all reservoirs of both four and ten res-

ervoir operation problems using both proposed formulations (I 

and II) of UGSA, PCGSA, FCGSA can be easily defined such as 

Figure 7; however, these figures are not presented here to avoid 

lengthy paper. 
 

 
 

Figure 4. Search space of FCGSA considering storage volume 
as decision variable for reservoir k. 

 

 
 

Figure 5. Four-reservoir system. 

 

 
 

Figure 6. Ten-reservoir system. 
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Figure 7. Graph (search space) of FCGSAII for reservoir one of four-reservoir operation problem. 

 
 Table 1. Parameter Values of Reservoirs at Operation Time Periods for Four-Reservoir System 

Parameters values Reservoir 
Operation time period 

1 2 3 4 5 6 7 8 9 10 11 12 

 

Maximum water 

storage 

1 6 12 10 9 8 8 9 10 10 12 12 12 

2 6 15 15 12 12 12 15 17 18 18 18 15 

3 6 8 8 8 8 8 8 8 8 8 8 8 

4 8 15 15 15 15 15 15 15 15 15 15 15 

              

 

 

Benefit function 

1 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 

2 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 

3 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 

4 2.6 2.9 3.6 4.4 4.2 4 3.8 4.1 3.6 3.1 2.7 2.5 

              
 

 

Inflow 

1 0.5 1 2 3 3.5 2.5 2 1.25 1.25 0.75 1.75 1 

2 0.4 0.7 2 2 4 3.5 3 2.5 1.3 1.2 1 0.7 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

A set of preliminary runs are done here to find the proper 

values of GSA parameters as shown in Table 3 for four and ten 

reservoir system operation problems. However, details of sen-

sitivity analysis for finding best values of all parameters are not 

presented here to avoid lengthy paper. Table 4 shows the results 

of 10 runs carried out for the four and ten reservoir system op-

eration problems using first (I) and second (II) formulations of 

all proposed algorithms. It is clearly seen that all the results, 

including minimum, maximum and average objective function 

values, scaled standard deviation obtained with both proposed 

formulations of FCGSA for four and ten reservoir system oper-

ation problems are better than those produced by UGSA and 

PCGSA. The superiority of the results obtained by the FCGSA 

is more evident for the ten-reservoir system illustrating the ef-

ficiency of the FCGSA to solve large scale optimization prob-

lems due to special characteristics of FCGSA in which all the 

obtained solutions of FCGAS are always feasible leading to 

smaller search space size. In addition, the scattering of the ob-

tained solutions decreases as one move from UGSA to PCGSA 

and from PCGSA to FCGSA. It is worth noting that the per-

formance of constrained versions of GSA with water release 

volumes are taken as decision variables (formulation I) is better 

than those when water storage volumes are taken as decision 

variables (formulation II) which can be attributed to the fact 

that the search space size of the problem is greater in second 

formulation.  
 

 
 

Figure 8. Maximum benefit values versus iterations for four- 

reservoir system operation problem using UGSAI, PCGSAI and 
FCGSAI. 

 

Here, two convergence curves are presented as Figures 8 

and 9 to indicate this fact that the search space created by 

FCGSA is totally feasible. These figures present maximum 
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benefit value obtained for the four and ten reservoir system op-

eration problems, respectively, when water releases are taken 

as decision variable (formulation I). It is clearly seen from these 

figures that the initial population of FCGSA has maximum ben-

efit value way over that of PCGSA and UGSA due to the fact 

that all the solutions created by FCGSA are always feasible. Fi-

nally, Figures 10 and 11 are presented to indicate better perfor-

mance of first formulation (I) than second ones (II) due to the 

reason of smaller search space size (Moeini and Afshar, 2009; 

Afshar, 2013). This can be easily seen by a comparison be-

tween allowable range of water release volumes considering as 

decision variable in formulation I and water storage volumes 

considering as decision variable in formulation II presented in 

this section and Tables 1 and 2. Based on these values, the space 

size of formulation II is more than twice or triples of formula-

tion I. In other words, the allowable range of water release vol-

umes are smaller than water storage volumes range leading to 

smaller search space size and therefore better solution with mi-

nor commotional cost. These figures present maximum benefit 

value obtained for the four and ten reservoir system operation  

 

problems, respectively, using first and second formulations of 

FCGSA (FCGSAI and FCGSAII). 

 

 
 

Figure 9. Maximum benefit values versus iterations for ten- 
reservoir system operation problem using UGSAI, PCGSAI 

and FCGSAI. 

Table 2. Parameter Values of Reservoirs at Operation Time Periods for Ten-Reservoir System 

Parameters values Reservoir 
Operation time period 

1 2 3 4 5 6 7 8 9 10 11 12 

Maximum water storage 

1 6 12 12 10 9 8 8 9 10 10 12 12 

2 6 17 15 15 15 12 12 15 17 18 18 18 

3 3 6 6 6 6 6 6 6 6 6 6 6 

4 8 19 18 17 16 15 14 14 15 16 17 18 

5 8 19.1 18.1 17.1 16.1 15.2 14.1 14.2 15.3 16.1 17.2 18.3 

6 7 14 13 12 11 10 8.5 9.6 10.7 11.8 12.9 14 

7 15 30 30 30 30 30 30 30 30 30 30 30 

8 6 13.16 12.23 11.37 10.2 9.6 9 9.6 10.2 11.58 12.96 1318 

9 5 7.9 7.3 6.8 6.4 6.2 6.1 6.4 6.7 7 7.4 8 

10 15 30 30 30 30 30 30 30 30 30 30 30 

              

Benefit function 

1 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 

2 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 

3 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 

4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 

5 1 1.1 1.2 1.3 1.4 1.5 1.67 1.56 1.45 1.34 1.25 1.14 

6 1.4 1.1 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 

7 2.7 2.9 3.6 4.4 4.2 4 3.8 4.1 3.6 3.1 2.7 2.5 

8 1 1.1 1.2 1.3 1.4 1.5 1.67 1.56 1.45 1.34 1.25 1.14 

9 1 1 1.2 1.8 2.5 2.2 2 1.8 2.2 1.8 1.4 1.1 

10 2.7 3 2.8 3.2 2.9 3.9 4 3.6 3.7 2.8 3.5 2.1 

              

Inflow 

1 0.5 1 2 3 3.5 2.5 2 1.25 1.25 0.75 1.75 1 

2 0.4 0.7 2 2 4 3.5 3 2.5 1.3 1.2 1 0.7 

3 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 1.5 2 2.5 2.5 3 3.5 3.5 3 2.5 2.5 2 1.5 

6 0.32 0.81 1.53 2.16 2.31 4.32 4.81 2.24 1.63 1.91 0.8 0.46 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0.71 0.83 1 1.25 1.67 2.5 2.8 1.87 1.45 1.2 0.93 0.81 

9 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 
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  Table 3. Values of GSA Parameters for Four- and Ten-Reservoir Systems 

Problem Decision Variable Iteration Population α G0 Rpower 

 

Four-reservoir system 
Water release (I) 1000 100 1 100 1 

Water storage (II) 1000 100 1 100 0.8 

       
 

Ten-reservoir system 
Water release (I) 1000 100 1 300 1 

Water storage (II) 1000 100 1 100 1 

 

 Table 4. Obtained Results over 10 Runs for Four- and Ten-Reservoir Operation Problems using all Proposed Algorithms 

Problem 

 

Decision 

Variable 
Algorithm 

Benefit values Scaled 

standard 

deviation 

No. of runs with 

final feasible 

solution 

Number of 

function 

evaluation 
Maximum Minimum Average 

 

 

Four- 

reservoir 

system 

 

Water 

release 

UGSAI 260.216 254.188 256.329 0.0079 10 99800 

PCGSAI 307.741 305.344 306.48 0.0024 10 98100 

FCGSAI 308.238 307.322 307.744 0.0007 10 97900 

        

Water 

storage 

UGSAII 301.360 297.558 300.215 0.0039 10 99100 

PCGSAII 306.910 303.065 304 0.0034 10 93700 

FCGSAII 307.735 306.646 307.264 0.0011 10 95100 

         

 

 

Ten- 

reservoir 

system 

 

 

Water 

release 

UGSAI infeasible infeasible infeasible - 0 - 

PCGSAI 1188.782 1182.279 1185.829 0.002 10 99900 

FCGSAI 1192.259 1191.357 1191.802 0.0002 10 99100 

        

Water 

storage 

UGSAII 1162.09 1138.61 1152.72 0.0059 10 97600 

PCGSAII 1180.156 1151.635 1170.355 0.0039 10 91700 

FCGSAII 1190.659 1185.792 1188.086 0.0012 10 89900 

 
 Table 5. Comparison the Results Obtained with Different Methods for Four- and Ten-Reservoir Operation Problem 

Four-reservoir system (methods, number of function evaluation) 

FCGSAI 

(present work) 

FCPSO 

(Afshar, 2013) 

MMAS  

(Moeini, 2014) 

Improved ACO with DR 

(Jalali, 2005) 

Constrained DDP 

(Murray and Yakowitz, 1979) 

308.238 

(97,900) 

308.4 

(200,000) 

307.582  

(2,500,000) 

307.976  

(6,000,000) 

307.98 

Ten-reservoir system (methods, number of function evaluation) 

FCGSAI 

(present work) 

FCPSO 

(Afshar, 2013) 

Multi colony 

ACO (Jalali 

et al., 2007) 

FCACOA 

(Moeini and 

Afshar, 2013) 

Improved 

ACO with  

DR 

(Jalali, 2005) 

Improved 

ACO 

(Jalali, 2005) 

GA 

(Wardlaw 

and Sharif, 

1999) 

Constrained DDP 

(Murray and 

Yakowitz, 1979) 

1192.259 

(99,100) 

1194.05 

(200,000) 

1192.39 

(300,000) 

1190.26 

(1,500,000) 

1174.69 

(6,000,000) 

1153.64 

(6,000,000) 

1190.25 

(1,250,000) 

1190.652 

 

These problems have also been solved by other research-

ers proposing different methods. Table 5 compares the best re-

sults of four and ten reservoir system operation problems pro-

duced by the proposed FCGSA with some other available re- 

sults and the computational effort (number of function evalua-

tion) required by these methods. Comparison of the results shows 

that the results of first formulation of FCGSA (FCGSAI) are im-

proved 0.084, 0.08, and 0.21% in comparison with DDP, ACO 

with DR and MMAS methods, respectively, using less compu-

tational effort for solving four reservoir operation optimization 

problem. In addition, the computation effort of FCPSO was more 

than twice of FCGSAI when it was used to solve four reservoir 

operation optimization problem. Furthermore, comparison of 

the results shows that the results of first formulation of FCGSA 

(FCGSAI) are improved 0.135, 0.169, 3.347, 1.496, and 0.168% 

in comparison with DDP, GA, improved ACO, ACO with DR 

and FCACOA methods, respectively, using less computational 

effort for solving ten reservoir operation optimization problem. 

In addition, the computation effort of multi colony ACO and 

FCPSO were more than triple and twice of FCGSAI when they 

were used to solve ten reservoir operation optimization prob-

lem. In other words, it is clearly seen form the results of Table 

5 that the first formulation of proposed FCGSA (FCGSAI) shows 

superior performance to those of other available methods due 

to the reason discussed follows. In addition, the results produc-

ed by FCGSA outperform results produced by other available 

methods with smaller computational effort. Using this propos-

ed algorithm, the feasible search space of the problem is con-
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structed in which it is much smaller than original search space 

of the problem. Smaller search space size of the problem leads 

to better solution with smaller computational effort. In other 

words, the larger search space size of the problem often requires 

larger number of samples of the search space to enable the search 

algorithm to optimize the objective function and therefore it re-

quires larger populations in the population-based search algo-

rithms such as GA and PSO. However, in proposed FCGSA the 

computational effort is extremely reduced using smaller search 

space. 
 

 
 

Figure 10. Maximum benefit values versus iterations for four- 
reservoir system operation problem using first (I) and second 

(II) formulations of FCGSA. 

 

 
 

Figure 11. Maximum benefit values versus iterations for ten- 
reservoir systemoperation problem using first (I) and second 

(II) formulations of FCGSA. 

5. Concluding Remarks 

In this paper, two constrained versions for gravitational 

search algorithm (GSA) were proposed to solve multi-reservoir 

operation optimization problem. In the first version (PCGSA), 

a feasible search space was constructed for each dimension of 

agent using the decision made at previous dimension such that 

the continuity equation and the box constraints of water release 

and storage volumes were simultaneously satisfied. Although 

the large portion of the infeasible region of the search space 

was recognized and avoided using PCGSA, however, this algo-

rithm was shown to fail in some rare cases. Therefore, the sec-

ond version (FCGSA) was proposed in which, in this algo-

rithm, all the constraints of the problem were implicitly satis-

fied by providing search space for each agent that contains only 

feasible solution. The FCGSA was shown to be capable of only 

searching the feasible region of the search space and therefore 

leading to smaller search space for each agent. Here, two for-

mulations were proposed for these algorithms considering wa-

ter releases or storage volumes at each operation time period as 

decision variable of the problem in which they were denoted 

by suffix I and II, respectively. The proposed algorithms were 

used to solve the well-known four and ten reservoir operation 

optimization problems and the results were presented and com-

pared with those of original form of the GSA and any available 

results in the literature. Results indicated that the proposed con-

strained algorithms were more effective and efficient than orig-

inal form of GSA to solve multi-reservoir operation optimiza-

tion problem. It was also shown that the FCGSA was con-

sistently giving better quality solutions than existing methods 

with less computational effort in which it led to optimal so-

lutions of 308.238 and 1192.259 for the four and ten reservoir 

systems, respectively, using first formulation (I) of this algo-

rithm. Finally, it should be noted that the proposed algorithms 

can be easily used for a real-world large scale multi-objective 

reservoir operation optimization problem in which the com-

putational cost can be reduced by using the high-performance 

computing available facilities. Therefore, further research will 

be done to extend the proposed algorithms to solve multi-objec-

tive reservoir operation optimization problem and also it will 

try to use effective methods such as parallelized algorithm to 

solve real-world large-scale problem in order to reduce time 

cost and increase speedup achieving optimal solution. 
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