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ABSTRACT. This study was undertaken to produce local, short-term, artificial intelligence-based models that estimate the ozone level 

with special attention to the relationship between diurnal and nocturnal ozone variations of some primary pollutants and meteorology- 

ical parameters in the city of Marrakesh, Morocco. Hourly data has been collected from the three air-quality monitoring stations in the 

city. This paper seeks to analyze the main factors that are associated with ozone formation, including the generation of different 

daytime and nighttime scenarios. The present work extends existing publications about the region by developing ozone prediction 

models from meteorological variables and primary pollutants. Several experiments were conducted to verify properties of the p roduced 

models, thus making it possible not only to describe but also to predict ozone pollution in this geographical area. The findings facilitate 

48 hour forecasts that have root mean square errors as low as 20 g/m3. Our results highlight the importance of using such models for 

civil applications. 

 

Keywords: ozone pollution, ozone diurnal concentration, ozone nocturnal concentration, machine learning, nonlinear models, 

Marrakesh 

 

 

1. Introduction  

Ozone is a secondary pollutant that is formed from chem- 

ical reactions of primary pollutants, such as nitrogen dioxide 

(NO2) (Seinfeld, 1989; Derwent et al., 1998; Jenkin and Clemit- 

shaw, 2000), nitrogen oxide (NO), and volatile organic com- 

pounds (VOCs) under certain weather conditions (Duan et al., 

2008). High wind speeds, high temperatures, and low levels 

of relative humidity contribute to ozone formation (Ambroise 

and Grandvalet, 2001; Khatibi et al., 2013). The hydroxyl rad- 

ical (OH) is one of the key factors in photochemical cycles 

that are responsible for ozone formation. This pollutant is rec- 

ognized as being a significant contributor to global warming 

because of its positive radiative force (Myhre et al., 2013). 

According to the United States Environmental Protection 

Agency (EPA), ozone is one of the six common air pollutants 

(known as “critical pollutants”) that have a strong and harmful 

effect on public health (Salazar-Ruiz et al., 2008; Khatibi et 

al., 2013). These chemical pollutants may even result in the 

death of people who are particularly sensitive to them (Matus 

et al., 2008; Matus et al., 2012). In addition, a high level of 

ozone can cause damage to agriculture, decrease crop yields, 
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and lead to a great economic loss (Avnery et al., 2011). There- 

fore, predicting ozone accurately and timely has become an 
important issue. It has drawn the attention of researchers and 

related authorities to the need for alerting the public about the 
risk of exposure to high levels of the pollutant (Zhang et al., 
2013; Riga et al., 2015). 

Severe air pollution episodes could be intensified by cer- 

tain weather conditions that are favorable for a weak disper- 
sion of atmospheric pollutants, thereby impacting public health. 

This leads to elevated photochemical activities that are favor- 
able to the production of ozone (Chan et al., 1998; Kommala- 
pati et al., 2016). Strong radiation, abundant traffic, and calm 

winds combine to provide ideal conditions for the production 
and the accumulation of a high level of ozone in the city and 

its suburban areas. The wind transports the pollutants and in- 
fluences the turbulence regime that is associated with their dif- 
fusion (Lin et al., 2012). Consequently, an association of mete- 

orological factors with the observed rates of pollutants is es- 
sential to understand the behavior of tropospheric pollutants 
in urban areas (Lee et al., 2007; Salazar-Ruiz et al., 2008). 

Ozone production depends on solar radiation, therefore, 

the daytime profile differs from the nighttime profile. Accord- 

ingly, we decided to separate the daytime and the nighttime 

data, taking account of the chemical reactions in the two peri- 

ods and evaluating the importance of each parameter’s influ- 

ence on the measured ozone concentration during the day and 
the night.  

The aim of this paper is to provide an analysis that tran-
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Figure 1. Surface of the pollutant-monitoring sites in Marrakesh (Courtesy of ©OpenStreetMap contributors under CC BY-SA 
license [https://www.openstreetmap.org/copyright]). 

 

scends a descriptive approach and to contribute to the imple- 

menttation of active strategies when ozone is the targeted pol- 

lutant. Therefore, the expected contribution will be to demon- 

strate the capability of forecasting ozone levels several hours 

in advance by the use of advanced nonlinear models. It will be 
demonstrated through the analysis in a specific and relevant 

city in Morocco. Additionally, this will make it possible to im- 

plement mitigation policies and to identify differentiated mech- 

anisms for ozone formation and, therefore, to understand the 

phenomenon better. 

2. Study Area 

2.1. Characteristics of the City 

The more developed areas in Morocco, like most metro- 

politan areas of emerging countries, have experienced great 

urban, social, and industrial development during the last twen- 

ty years. They have experienced a significant increase in pop- 

ulation, number of motor vehicles and industrial activities. 

This growth has generated jobs for hundreds of thousands of 

families; however, it has also contributed to the degradation of 

air quality in the region (Ouarzazi et al., 2003). 

Although the importance of the problem provoked an of- 

ficial declaration from the government of Morocco, it is use- 

ful to show that a limited number of scientific analyses have 

been conducted. In all of the cases, the existing analyses were 

descriptive (Ouarzazi et al., 2003; Inchaouh et al., 2017). 

The City of Marrakesh is situated at latitude of (31.54° N 

~ 31.69° N) and longitude of (8° W ~ 7.84° W). It has a popula- 

tion of 1,070,000 inhabitants in an area of 230 km2. Because 

of its distance from the Atlantic coast, Marrakesh has an arid 

climate characterized by strong seasonal and diurnal tempera- 

ture variations. The city and the surrounding plains are affect- 

ed by a major rainfall deficiency. The prevailing winds which 

blow through the area most of the year are from the Northwest 

and the West and are relatively calm. In contrast, the Chergui 

and Sirocco winds (observed during the summer) blow eastward 

and southward, respectively (Inchaouh et al., 2017). The pol- 

lutants that originate from industrial zones in the North and 

Northwest of Marrakesh disperse to the other parts of the city. 

The City of Marrakesh receives a high level of solar radi- 

ation throughout the year (Sinha et al., 2014). However, there 

is no available information on the tropospheric ozone concen- 

trations as only one descriptive study of air quality in Marra- 

kesh has been conducted (Ouarzazi et al., 2003). Three perma- 

nent monitoring stations have been in operation, as presented 

in Figure 1. Although they have been operating only since 2009, 

huge effects of tropospheric ozone are foreseen for the near 

future (Lei et al., 2012). 

To reduce air pollution in the metropolitan area there have 

been continuous efforts to improve public transport and to im- 

prove road conditions. Some initiatives for such reduction of 

air pollution include restructuring the urban arterial network 

by widening roads, using road signs more extensively, using 

one-way streets, restricting the use of vehicles in Old Marrakesh, 

and relocating the fruit and vegetable wholesale market away 

from the center of the city. 

To protect human health, the Moroccan Directive (King- 
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dom of Morocco, 2010) established an ozone threshold of 110 

µg/m3 (the maximum daily 8 hours average). This threshold 

cannot be exceeded for more than three consecutive days. The 

ozone concentration that was established to protect vegetation 

is restricted to a daily average of 65 μg/m3. The cost of the 

degradation of the air in Morocco is estimated by the World 

Bank at 3.6 billion dirhams per year, which is approximately 

1.03% of the GDP-2002. A 4% annual growth rate in the num- 

ber of automotive vehicles due to the fleet renewal process, a 

lack of maintenance, a lack of vehicle inspection, and inade- 

quate means of control are the causes of this degradation (Se- 

crétariat d’Etat de l’Eau et de l’Environnement, 2010).  

 

2.2. Characteristics of the Stations 

Both Daoudiat and Jamaa El Fna stations (Jef) are locat- 

ed in the center of the city. In contrast, the Mhamid is located 

in the southwest part of the city where there is less traffic. 

Specific details of their locations and their monitoring start 

dates can be found in Table 1 and Figure 1. 

The variables that are available from those stations are 

related to the date and the time of measurement (DT) and cer- 

tain meteorological parameters: relative humidity (RH), tem- 

perature (T), wind speed (WS), solar radiation (SR), and pol- 

lution-related factors. The latter include particulate matter with 

a diameter less than ten microns (PM10), the ozone level (O3), 

nitrogen dioxide (NO2), carbon monoxide (CO) and sulfur di- 

oxide (SO2), even though the last two variables are not rele- 

vant to the ozone pollution level. 
 

Table 1. Features of the Permanent Air Quality Monitoring 
Stations in Marrakesh 

3. Methodology 

As indicated in the introduction of the paper, the expect- 

ed contribution will be to demonstrate the capability of fore- 

casting ozone levels several hours in advance by the use of 

advanced nonlinear models. This means that the aim is to pro- 

duce good local models that permit the forecasting of the ozone 

level based on potentially dependent variables, and to learn how 

different nonlinear-based models behave depending on their 

characteristic. The relevance of the contribution is not just at 

local level, but as far as Morocco’s air quality monitoring net- 

work is constituted of 29 fixed stations and 3 mobile stations 

across 15 towns. Processing of millions of air quality data from 

the national network with the prediction methods used in this 

paper could provide decision-makers with a realistic view thus 

constituting a rigorous decision support system for better air 

quality. These aspects are in line with interest from local au- 

thorities looking for a more integrated approach to spatial plan- 

ning. Indeed, application to other places can be easily adopted. 

Therefore, the selected methodology proposes to perform 

a first step focused on understand the relevant physical effects 

capable of increasing the quality of the forecasting activities. 

This activity was summarized in the next subsection. 

A second aspect is to develop a better understanding of 

collected data, in order to know their characteristics and pre- 

pare them according to the requirements from the previous 

step, and looking to develop the modelling step. These two 

steps are presented in Subsections 3.2 and 3.3 respectively. 

Additionally, quality assessment and sensitivity analysis 

are needed to understand the characteristics of the models, as 

well as their generalization capabilities. The discussion for 

these aspects will be provided in Section 4, after presenting the 

main characteristics of the used models.  

 

3.1. Temporal Patterns 

The maximum amount of ozone is obtained between four 

and six hours after the emission of the ozone precursors and at 

the beginning of ozone production (Gao, 2007). This explains 

why the ozone peaks are obtained far from the locations where 

the ozone precursors originate. The ozone, therefore, is present- 

ed in larger quantities in suburban and rural areas. 

Based on details present in the supplementary material, it 

can be stated that there are two general ozone concentration 

profiles in Marrakesh. The first is during the months of renew- 

al and low solar radiation. It is characterized by symmetrical 

peaks and similar values on both sides of the peak but be- 

comes nil at night. The second is during the hot season when 

the broader peaks and higher ozone values characterize the pro- 

files in the evening.  

Such differentiated behavior can be associated to seasons. 

The first one can be related to autumn and winter, and the sec- 

ond to spring and summer. This effect can be ascribed to the 

discrepancies between ozone production and solar radiation 

patterns and implies the existence of other factors that contri- 

bute to the orientation of this amplitude. 

On the entire spectrum of measured values, the region 

where the average 8-hour ozone concentrations are elevated is 

found where there is a significant amount of road traffic. How- 

ever, the dispersion of ozone prevents its accumulation in this 

area and transports the pollutant out of the urban center. This 

explains the high maxima observed in the average of the 8- 

hour periods in Mhamid (see Supplementary material Table 1).  

 

3.2. Dataset 

The dataset includes samples for a period of a year and a 

half that begins in the middle of 2009. It is based on hourly 

data sampling, which explains the significant number of sam- 

ples (see Table 2). Most stations have meteorological variables 

(temperature, relative humidity, solar radiation, wind speed), 

and other pollutants such as CO, NO2, and PM10 (Daoudiat 

does not maintain a record of temperatures). 

This study considers daytime and nighttime behaviors dif- 

fervently. Therefore, specific datasets were prepared for the 

daytime, nighttime and total samples of each station. The er- 

Station Type Latitude (N) Longitude (W) 
Began 

Operation 

Mhamid Urban 31.5962 8.0436 01/06/2009 

Jef   Urban 31.6202 7.9888 01/06/2009 

Daoudiat Urban 31.6536 7.9956 01/03/2010 
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ror measurements that were considered were the adjusted R2 

for model fitness and the Nash-Sutcliffe Efficiency coefficient 

(NSE), the root mean square error (RMSE), and relative root 

mean square error (RRMSE) for residual characterization and 

correlation of real and predicted ozone values. 
 

Table 2. Number of Hourly Samples per Dataset and Station 
Selected for Experimentation  

Station Segment 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 

Total 1759 1351 3110 

Training 1501 1143 2644 

Testing 258 208 466 

Mhamid 

Total 4601 4438 9039 

Training 3902 3782 7684 

Testing 699 656 1355 

Jef 

Total 4302 3811 8113 

Training 3663 3234 6897 

Testing 639 577 1216 

 

3.3. Data Modelling  

Different alternatives to build models are possible, in the 

understanding that previous knowledge about pollution exists 

and that potential dependent variables have been also collect- 

ed, which allow us to consider supervised machine learning 

based modelling. This means the data patterns will be used to 

build models by adjusting their outcome to the real ozone 

values observed for those patterns. 

Auto-correlation between dependent variables has been 

tested by using the variance of inflation factors (VIF), which 

consists of metrics for the severity of multi-collinearity in the 

least square regression analysis, with a threshold of 5, which 

gives a maximum of the variance of 3.26 for temperature. These 

values support the idea of a very low correlation between de- 

pendent variables, as a VIF > 10 means high collinearity, mak- 

ing it possible to use generalized multilinear models as a way 

to provide reference levels for model accuracy. 

After defining a reference for learning, based on multi- 

linear models, different models of each station were config- 

ured by considering dependent variables, such as temperature, 

solar radiation, relative humidity, nitrogen oxide, carbon mon- 

oxide, wind speed, solid particulates, and the hour at which 

they were measured. The objective is to predict the ozone lev- 

el at a specified time in advance, by using the selected super- 

vised learning approach. 

In the relevant literature, there are abundant statistical stud- 

ies of the ozone production and prediction using data compiled 

over 24 hours (Salazar-Ruiz et al., 2008; He and Lu, 2012). Ad- 

vanced models using ensemble architecture and other statistical 

technique have been used (Gong and Ordieres-Meré, 2016; Free- 

man et al., 2018; Gao et al., 2018), and they have been used to 

reconfigure measurement networks (Gong and Ordieres-Meré, 

2017). Few studies, however, have been carried out on the mete- 

orological parameters’ influence on nocturnal ozone (Kovač- 

Andrić et al., 2009). Most studies have emphasized the lack of 

a relationship between SO2 and O3. Therefore, SO2 was remov- 

ed from the analysis (see Figure 2, where linear correlations 

are shown in the upper matrix, the lower matrix plots the pair- 

ing values to provide a feeling of their relative behavior, and 

the diagonal shows a histogram of the individual variables and 

their names). 

As there is no consensus about which kind of machine learn- 

ing model type should produce the best results, it was decided 

to select several of them in order to avoid bias coming from the 

type of model.  

In order to avoid bias because of the learning dataset, the 

model training uses the tenfold cross-validation strategy, which 

is commonly adopted as a way to improve the robustness of the 

learning procedure. Tools for data training and testing were 

produced by using the R library (Team, 2014) and some of their 

packages (Limas et al., 2014; Kuhn et al., 2014).  

4. Results and Discussions 

4.1. Data Modelling 

In this subsection a short introduction to all the different 

model types selected, either as reference learning or for advanc- 

ed learning, is presented. Therefore, it will be possible to under- 

stand what the fundamentals of each of them are. Particular ad- 

aptation to the problem being addressed is also provided when 

needed. 

 

4.1.1. Linear Regression Modeling 

Multiple Linear Regression (MLR) is one of the most com- 

monly used methods to model ozone concentrations (dependent 

variable) according to meteorological parameters and differ- 

ent air pollutants (independent or explanatory variables). MLR 

is a model that creates a linear combination of input variables. 

The mathematical equation is presented in the Equation (1): 

 

0 1 1 2 2i i i n iny x x x          L   (1) 

 

where yi is the dependent value, i  [1, m]; j is the regres- 

sion coefficient of input variable, j  [1, n]; xij is the ith value 
of the input variable j. The estimation of the parameters βi is 

based on the least-squares method, which totals the squares of 

the differences between the observed and the predicted values. 

Normalization and ridge regression were undertaken, as 

the latter shrinks coordinates with respect to the orthonormal 

basis that is formed by the principal components. Table 3 shows 

adjusted R2 values per model and the Nash-Sutcliffe Efficien- 

cy coefficient (NSE), demonstrating that solar radiation (SR) 

has relevance in ozone production for diurnal models under 

the hypothesis of linearity. The wind speed is a dominant pa- 

rameter during the night in the dispersion and the distribution 

of ozone in all three areas. An asterisk inside parentheses 

accounts for the coefficient’s relevance when hypotheses 

about their significance were contrasted at α = 0.95. 

The R2 values in Mhamid are lower than those in the two 

other areas, thereby justifying the difference in ozone behav- 

ior at this station. This station receives more ozone from down- 



J. Ordieres-Meré et al. / Journal of Environmental Informatics 36(2) 93-106 (2020) 

97 

 
 

 

 
 

Figure 2. Linear correlation of variables for the Jef station. 

 

town than by producing it, since it is the least affected by an- 

thropogenic emissions. 

Researchers wish to analyze different regressors (ANN, 

SVR, and RF) and their forecasting capability in order to re- 

duce the risk of severe mistakes. The reference forecasting pre- 

diction of linear models will be considered the baseline for non- 

linear techniques. 

 

4.1.2.1. ANN Models 

Artificial Neural Networks (ANN) are programming par- 

adigms that seek to emulate the microstructure of the brain. Mul- 

tilayer Perceptron (MLP) is an example of an ANN that can be 

seen as a function that transforms the input space into the out- 

put. It does this by processing every input signal by convenient 

weight into neurons that are located at the hidden layer (Gardner 

and Dorling, 1999; Dutot et al., 2007; Salazar-Ruiz et al., 2008).  

The output O of a neural network (NN) can be defined as 

a function of input I and weight W in the form O = ϕ(I, W), in 

which ϕ represents the mapping function defined by the NN 

(ϕ: Rm → R). The NN learning process consists of adjusting 

weights wij in order that a “good” mapping ϕ for the learning 

data is achieved, including local independence through bias 

component (B). Therefore, for learning data with an unknown 

mathematical relation, the NN provides a mapping. Based on 

an input Ii and its corresponding desired output Oi, the train- 

ing process minimizes the energy function E, which is the 

mean quadratic error between the desired (d) and achieved out- 

puts (o) for all elements in the training set (see Equation (2)): 
 

21
= ( )

2
tt Training Set

E d o


   (2) 

 

An MLP trained with Back Propagation algorithm was 

used, varying the number of neurons in the hidden layer be- 

tween 4 and 20. Also, different decay speeds and number of 

iterations and relative tolerances were used (see Figure 3).  

The best architecture was a fully connected configura- 

tion, with linear output layer and logistic as activation func- 

tions and with the hidden neurons as indicated in Table 4.  

One can learn from the architectures how behavior that 

differed from the others was selected in the case of Daoudiat 

station. At the latter station, the nighttime structure without 

temperature information reduces the incoming information 

through layers (6-5-1), instead of adding diversity by promot- 

ing larger number of neurons in the hidden layer than the in- 

put layers have.  



J. Ordieres-Meré et al. / Journal of Environmental Informatics 36(2) 93-106 (2020) 

98 

 

 

 

Table 3. Linear Regression Modelling of Dependent Variable O3 and the Resulting Regression Coefficients  

 

Jef 

Total 

R² = 0.57 

NSE = 0.58 

Jef 

Diurnal 

R² = 0.55 

NSE = 0.55 

Jef 

Nocturnal 

R² = 0.50 

NSE = 0.50 

Daoudiat 

Total 

R² = 0.52 

NSE = 0.52 

Daoudiat 

Diurnal 

R² = 0.45 

NSE = 0.45 

Daoudiat 

Nocturnal 

R² = 0.36 

NSE = 0.36 

Mhamid 

Total 

R² = 0.30 

NSE = 0.30 

Mhamid 

Diurnal 

R² = 0.26 

NSE = 0.26 

Mhamid 

Nocturnal 

R² = 0.18 

NSE = 0.18 

Ind. (*) 20.06 (*) 41.59 3.22 (*) 92.76 (*) 101.87 (*) 84.79 (*) 24.72 (*) 29.84 (*) 6.30 

CO (*) -5.08 (*) -12.46 -1.07 (*) -1.32 -0.86 (*) -1.58 (*) -32.20 (*) -44.03 (*) -25.93 

NO2 (*) 0.23 (*) 0.31 (*) 0.13 (*) -1.00 (*) -1.01 (*) -1.08 (*) 0.47 (*) 0.53 (*) 0.39 

PM10 (*) -0.16 (*) -0.15 (*) -0.14 (*) -0.05 -0.04 -0.03 0.002 0.006 -0.001 

RH (*) -0.20 (*) -0.43 0.001 (*) -0.40 (*) -0.45 (*) -0.36 (*) -0.18 (*) -0.28 (*) -0.15 

WS (*) 13.58 (*) 7.45 (*) 20.41 (*) 2.64 0.22 (*) 6.15 (*) 5.99 (*) 3.51 (*) 9.93 

SR (*) 0.03 (*) 0.02 - (*) 0.02 (*) 0.02 - (*) 0.03 (*) 0.03 - 

T (*) 1.06 (*) 0.81 (*) 1.04 - - - (*) 0.39 (*) 0.51 0.03 

 

 
 

Figure 3. Proposed ANN topology for nightly prediction at the Daoudiat station. Left: Topology. Right: weighted connections 
relevance. I: Input neuron; H: Hidden neuron; O: Output neuron; B: Bias element. 

 

After selecting the most suitable configuration from the 

tenfold cross-validation process, the model fitness from train- 

ing data that was estimated as its adjusted R2 coefficient can 

be seen in Table 5, where it outperforms the MLR by approxi- 

mately 15%. 
 

Table 4. Number of Hidden Neurons for the MLP Architecture 

(X) 

Station 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat (6-X-1) 13 5 4 

Mhamid (7-X-1) 18 19 19 

Jef (7-X-1) 18 19 13 

 
Table 5. R2 for the ANN / R2 for the Linear Model  

Station 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 0.48 / 0.45 0.38 / 0.35 0.53 / 0.52 

Mhamid 0.46 / 0.26 0.49 / 0.18 0.53 / 0.30 

Jef 0.601 / 0.55 0.58 / 0.50 0.67 / 0.58 

4.1.2.2. SVR Models 

The standard support vector regression (SVR) is a quad- 

ratic optimization where the goal is to find a function f(x) that 

has no more than an ε deviation from the currently obtained 

targets for all of the training data, and also has the smallest 

possible slope (see Figure 4). It is helpful to introduce slack 

variables ξi, ξ
∗
i to cope with the otherwise unfeasible constraints 

of the optimization problem (Cao et al., 2003). The constant C 

> 0 determines the trade-off between the flatness of f and the 

maximum acceptable amount of deviation that exceeds ε. Only 

the points that are outside the shaded region contribute to the 

cost insofar as the deviations are penalized in a linear fashion. 

To allow nonlinear SVR, we can preprocess the training patterns 

by a kernel Φ: X → F into some feature space F and then apply 

the standard SVR algorithm. 

In SVR the objective function is to minimize a cost func- 

tion called E, as presented in Equation (3): 
 

2

1

1
( , )

2

n

i ii
E w C y D x w


      (3) 
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where D is presented in Equation (4): 

 

1
( , ) ( ( ) ( ) )

n T

i ii
D x w sign w x x b


       (4) 

 

After selecting the most suitable configuration from the 

tenfold cross-validation process (see Table 6), the model fit- 

ness from training data, estimated as its adjusted R2 coeffi- 

cient and the NSE (presented in parentheses), can be seen in 

Table 7 where it outperforms the MLR by about 29% with 

less bias. 

 

 
 

Figure 4. SVR soft margin concept. 

 
Table 6. C, Gamma, Epsilon, and Number of Support Vectors 

Adopted for SVR Models  

 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 
8; 0.13; 0.1; 

1205 

2; 0.5; 0.1; 

958 

2; 0.5; 0.1; 

2107 

    

Mhamid 
8; 0.5; 0.1; 

3026 

8; 0.5; 0.1; 

3079 

8; 0.5; 0.1; 

5918 

    

Jef 
2; 0.5; 0.1; 

2906 

4; 0.5; 0.1; 

2642 

2; 0.5; 0.1; 

5441 

 
Table 7. R2 for the SVR Model /Adjusted R2 for the Linear 

Model  

Station 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 
0.58 / 0.45 

(0.58) 

0.58 / 0.35  

(0.58) 

0.69 / 0.52 

(0.69) 

    

Mhamid 
0.72 / 0.26 

(0.72) 

0.64 / 0.18  

(0.64) 

0.69 / 0.30   

(0.69) 

    

Jef 
0.85 / 0.55 

(0.85) 

0.76 / 0.50  

(0.76) 

0.83 / 0.58   

(0.83) 

 

4.1.2.3. Random Forest Models 

Random Forest (RF) (Liaw and Wiener, 2002) is a predict- 

tor ensemble with a set of decision trees that grow in randomly 

selected subspaces of data. They can be implemented quickly 

and easily. They produce highly accurate predictions and can 

handle a very large number of input variables without over- 

fitting. In fact, RF is considered to be one of the most accurate 

general-purpose learning techniques that are available. 

After selecting the most suitable configuration from the 

tenfold cross-validation process (see Table 8), the model fitness 

from the training data is estimated as its adjusted R2 coeffi- 

cient, which can be seen in Table 9 to outperform the MLR by 

about 38%.  

It is also helpful to analyze the importance that these meth- 

ods attribute to the different variables (see Table 10), as it appears 

that different nighttime and daytime mechanisms are at work. 

For daytime pollution, the major participants are T, NO2, SR, and 

RH, as expected, because O3 is a secondary pollutant. However, 

in the nighttime episodes, the relevance of WS becomes much 

greater where transport mechanisms used to be dominant. 

 

Table 8. The Number of Variables per Tree and the Number of 

Trees in the Ensemble Adopted for the Random Forest Models  

Station 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 5 ; 300 2 ; 500 3 ; 700 

Mhamid 4 ; 500 4 ; 700 4 ; 300 

Jef 4 ; 300 2 ; 700 3 ; 900 

 
Table 9. R2 for the Random Forest Model /R2 for the Linear 

Model  

Station 
Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 
0.93 / 0.45 

(0.93) 

0.91 / 0.35  

(0.91) 

0.93 / 0.52  

(0.91) 

    

Mhamid 
0.95 / 0.26 

(0.95) 

0.93 / 0.18  

(0.93) 

0.94 / 0.30   

(0.94) 

    

Jef 
0.95 / 0.55 

(0.95) 

0.93 / 0.50  

(0.93) 

0.95 / 0.58  

(0.95) 

 

4.1.2.4. Other Techniques 

In order to explore other nonlinear techniques, optimal 

selection of the model’s parameters were carried out with the 

use of the caret meta-modeler package that is available within 

the R library for some other models. Those models were the 

followings. The relative performance of those models can be 

seen in Table 11, where the NSE is presented in parenthese. 

• Stochastic Gradient Boosting (Gbm),  

• Boosted Trees (Blackboost),  

• Ridge Regression (Ridge),  

• Project Pursuit Regression (Ppr),  

• Multivariate Adaptive Regression Splines Models (Earth),  

• Generalized Linear Models (Glm),  

• Generalized Additive Models (Gam),  

• Partial Least Squares with Kernel (Kernelpls) and  

• Two ensembles - one defined by model stacking (ELM) 

and the other greedy approximated (Greedy) throughout all 

of the previously trained models. 
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Table 10. Relative Importance of Each Variable as Identified by the Random Forest Method. Importance Weighted Impurity 
Decreases Measured by the Gini Index 

 

Daoudiat 

Daytime 

Model 

Daoudiat 

Nighttime 

Model 

Daoudiat 

Complete 

Model 

Mhamid 

Daytime 

Model 

Mhamid 

Nighttime 

Model 

Mhamid 

Complete 

Model 

Jef 

Daytime 

Model 

Jef 

Nighttime 

Model 

Jef 

Complete 

Model 

CO 9.23 12.00 8.94 7.45 13.31 8.43 4.90 10.99 6.00 

NO2 26.88 10.36 27.00 26.50 30.87 23.58 15.44 10.17 10.68 

PM10 9.57 10.79 7.79 5.84 18.23 7.52 7.72 13.78 8.43 

RH 34.90 21.69 25.61 14.89 8.39 11.89 30.48 10.94 17.43 

WS 5.80 45.15 6.61 5.01 12.75 6.90 4.66 34.12 12.56 

SR 13.63 - 24.05 19.69 - 22.02 17.98 - 23.06 

T - - - 20.63 16.44 19.65 18.81 20.01 21.84 

 

Table 11. R2 of Additional Nonlinear Models throughout the 
Daoudiat Dataset  

 
Complete 

Dataset 

Daytime 

Dataset 

Nighttime 

Dataset 

Gbm 0.78 (0.8) 0.79 (0.8) 0.71 (0.7) 

Blackboost 0.78 (0.8) 0.78 (0.8) 0.66 (0.7) 

Ridge 0.75 (0.8) 0.73 (0.7) 0.64 (0.6) 

Ppr 0.78 (0.8) 0.77 (0.8) 0.68 (0.7) 

Earth 0.78 (0.8) 0.78 (0.8) 0.64 (0.6) 

Glm 0.72 (0.7) 0.73 (0.7) 0.64 (0.6) 

Gam 0.76 (0.8) 0.75 (0.7) 0.65 (0.6) 

Kernelpls 0.78 (0.7) 0.73 (0.7) 0.66 (0.7) 

Greedy 0.82 (0.8) 0.82 (0.8) 0.72 (0.7) 

ELM 0.82 (0.8) 0.82 (0.8) 0.72 (0.7) 

 

4.1.3 Modelling Unbalanced Data   

The analysis reveals clearly the improvement that is pro- 

vided by combining different learners (ensemble modeling), 

even if they evolve into specialized learners. This arose pre- 

viously in the context of RF models. This result also confirms 

what other studies (Mallet et al., 2009; Rahman et al., 2012; 

Silver et al., 2013; Debry and Mallet, 2014;) have found in 

different types of models.  

Although the model learning processes look impressive, 

especially for the RF method (see Figure 5 for Daoudiat Station, 

where MLR, ANN, SVR, and RF model predictions are pre- 

sented by rows; the first column reflects learning from the com- 

plete dataset, while the second column considers the nightly 

dataset only), these techniques are quite sensitive to unbalanced 

sets, because there is a slightly underestimated bias for higher 

pollution levels (Gong and Ordieres-Meré, 2016). To highlight 

this, we have plotted in Figure 5a dashed line with triangles 

embedded in it for the identity relationship and a dashed line 

with circles embedded in it for the linear regression of the pre- 

dicted values. The closer together the two lines become, the 

greater the robustness against imbalanced datasets is. Again, 

the RF method outperforms all other methods. Further, it be- 

comes clear how great the impact of lower data density is on 

imbalanced datasets, as nightly models do not perform as well 

as the diurnal ones or complete ones. 

The biased learning due to an unbalanced dataset effect 

can be addressed by specific bootstrapping data preparation for 

such samples. Alternatively, we can accept it and simply change 

the model’s prediction in a way that corrects any observed bias. 

The latter strategy was adopted in this work. 

In 2009 the ozone hourly values regularly exceeded the 

threshold for several months, as presented in the supplemen- 

tary material (see Figure S2). There were strong variations, 

reaching concentration levels of 100 to 150 μg/m3, with some 

isolated events rising to 270 μg/m3
 in Mhamid. The hourly max- 

imum reached 217 μg/m3 in Daoudiat and 157 μg/m3 in Jef, 

both of which are located downtown (see Figures S7 and S8 as 

well as Table S1 in the supplementary material). The same be- 

havior was observed in 2010 as well. 

In order to guarantee as much as possible the representa- 

tiveness of the conclusions, datasets were prepared by random- 

ly selecting 85% of the data to be used for training and the re- 

maining 15% for final testing of the quality of the selected 

models. 

Various types of models were presented in the previous 

section. The discussion of performance was based on cross- 

validation, including corrections to avoid a systematic bias. 

However, as discussed in Section 3.2, a small dataset was ran- 

domly selected and removed from the data that was used for 

cross-validation based learning processes. It is now possible 

to conduct an independent assessment of the model’s quality 

with this new dataset. 

 

4.2. Models Performance 

To have confidence in the quality of models, a different 

experiment was conducted. To measure the forecasting capa- 

bility of developed models, a subset of the existing Daoudiat 

station data was selected. This particular dataset had never been 

used previously, neither for training nor for validation. There- 

fore, the quality is not measured by the cross-validation tech- 

nique, but by fresh data where developed models never saw 

before. 

The RF models outperform all of the other types, even 

though SVR have only narrow differences (see Figure 6, where 

MLR, ANN, SVR, and RF models performance are presented 

by rows; the first column reflects validation from the com- 

plete dataset, while the second column considers the nightly 

dataset only). Consequently, the discussion will continue with 

reference to RF models, and the RMSE-measure error that  
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Figure 5. Bias of different models at Daoudiat Station. a - Linear regression model predictions for the whole dataset. b - Linear 

regression model predictions for the nighty dataset. c - ANN model predictions for the whole dataset. d - ANN model predictions 
for the nighty dataset. e - SVR model predictions for the whole dataset. f - SVR model predictions for the nighty dataset. g - RF 

model predictions for the whole dataset. h - RF model predictions for the nighty dataset. 
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Figure 6. Performance of different models at Daoudiat Station. a - LR model performance for the whole dataset. b - LR model 

performance for the nighty dataset. c - ANN model performance for the whole dataset. d - ANN model performance for the nighty 
dataset. e - SVR model performance for the whole dataset. f - SVR model performance for the nighty dataset. g - RF model 

performance for the whole dataset. h - RF model performance for the nighty dataset. 
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was calculated at all stations for all of the datasets presented 

in Table 12, where the RRMSE values are presented in 

parentheses. 

The ozone is a secondary pollutant that could reach a max- 

imum due to a late reaction after sunrise (SR = 0) or lengthy 

transportation, depending on the wind speed. These factors can 

produce outliers (situations not well predicted by the special- 

ized model as they are caused by a different physical mechan- 

ism, such as a local spill of VOC with fire, etc). They can be 

observed in Figure 6 where four outliers appear. 

These values for RMSE are about half of those that were 

produced by the referenced linear regression model (33 μg/m3 

for Daoudiat, around 57 μg/m3 for Mhamid and 24 μg/m3 for 

Jef Stations). This evidence supports the contribution of non- 

linear modeling techniques in pollution forecasting, however, 

it also raises a clear signal that training models with cross- 

validation tend to be over-estimated by about 20% of the true 

RMSE for new and fresh data. 
 

Table 12. RMSE in μg/m3 for New Datasets when Random 

Forest Models are Used in Forecasting and are Bias-Corrected  

Station Daytime 

Dataset 

Nighttime 

Dataset 

Complete 

Dataset 

Daoudiat 17.37 (0.22) 17.26 (0.33) 17.49 (0.26) 

Mhamid 20.46 (0.39) 15.68 (0.41) 18.15 (0.40) 

Jef 12.55 (0.22) 10.80 (0.30) 11.81 (0.26) 

 

4.3. Models Sensitivity to the Ozone Production 

Mechanism 

The authors were interested in determining how specific 

the models become when they were used at the same station, 

but to predict different datasets so several experiments were 

conducted when test datasets were being considered. They 

involved: 

• predicting only daytime data with the model trained with 

the complete dataset; 

• predicting only nighttime data with the model trained with 

the complete dataset; 

• predicting daytime data with the model trained with the 

nighttime dataset; and 

• predicting nighttime data with the model trained with the 

daytime dataset. 

Table 13 (where the RRMSE values are presented in paren- 

theses) summarizes the result. It is clear that non-linear mod- 

els learned daytime and nighttime behaviors together, accord- 

ing to the RMSE values for cases (a) and (b), which are lower 

and similar for each station, and RRMSE which are smaller as 

well. Even when specific models outperform the predictions, 

the advantage is always moderated. However, it is also evident 

that mechanisms of ozone prediction differ for the daytime 

and nighttime datasets and when another model predicts them, 

the predictions become dramatically degraded, according to 

the values for cases (c) and (d), which are larger than the mod- 

els trained with the whole dataset. The same happens with the 

RRMSE. 

Table 13. RMSE in μg/m3 for New Datasets when Random 

Forest Models are Used in Forecasting and are Bias-Corrected  

Station Case (a) Case (b) Case (c) Case (d) 

Daoudiat 
17.27 

(0.25) 

17.27 

(0.25) 

20.18 

(0.39) 
28.54 (0.37) 

     

Mhamid 
19.94 

(0.45) 

15.53 

(0.35) 

19.78 

(0.56) 
30.15 (0.57) 

     

Jef 
12.58 

(0.27) 

10.81 

(0.23) 

14.43 

(0.40) 
24.18 (0.43) 

 

4.4. Forecasting Time 

The potential use of such models as a tool for policy deci- 

sion makers to enforce regulatory measures requires the ability 

to forecast the ozone level several hours in advance. Within 

this time window, it will be possible to generate a proper ad- 

vertisement and to fully communicate the actions being taken. 

The station selected was Mhamid and the family of models 

selected was RF, in accordance with the knowledge that was 

acquired in previous sections. Training sets were prepared by 

including the hour and the hourly ozone levels 8, 16, 24, 48 or 

72 hours in advance. As usual, randomly-selected training and 

testing subsets were generated to analyze the performance. Fig- 

ure 7 shows the capabilities of forecasting 72 hours in advance 

by models trained with the ensemble Random Forest technique 

are remarkable (left). They evolve logically as the standard 

deviation (SD) and inter-quartile ranges grow along with the 

forecast period (right). 

The analysis of the importance of independent variables 

for the random forest model shows that the current ozone val- 

ue is the most relevant factor. The second variable, with half of 

the relevance, is the current NO2 concentration, followed by the 

wind speed, the hour of the day, the temperature, and the solar 

radiation. Other factors, such as relative humidity, are still rele- 

vant, although less so. Therefore, the evolution of ozone in this 

area is mainly affected by human behavior, with meteorology- 

cal factors having a less relevant, role. This means that pollu- 

tion levels will have a strong relationship to anthropogenic com- 

bustion in car engines and related factors, thereby increasing 

the inhabitants and the transportation congestion that will nega- 

tively affect the ozone pattern. In the opposite way, policies 

that encourage increment renewal of cars, which will contribute 

to increasing their efficiency, will have a positive effect which 

can be quantified in limiting NO2 levels. Because of the eco- 

nomic crisis currently affecting European citizens, the growth 

of tourism activities has been limited. This has contributed the 

most to moderating the pattern. 

 

4.5. Model Generalization Capability 

The last relevant experiment for this research concerns 
the specificity of models by station. This matter is relevant as 

several authors have become interested in spatial pollution in- 

terpolation (Blanchard et al., 2014). Also, it could be relevant 

for alternative estimation by classical regional models and for 

exposure estimation (Fraser et al., 2013).  
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Figure 7. Performance of models at Mhamid station with different forecasting times. 

 

Table 14. Error and Correlation of Data Predicted by the Models in Columns and Real Values of the Complete Dataset of Stations 
Defined by Row 

Station 
RMSE  

Daoudiat Model 

RMSE  

Mhamid Model 

RMSE  

Jef Model 

Correlation 

Daoudiat Model 

Correlation 

Mhamid Model 

Correlation 

Jef Model 

Mhamid 29.75 17.94 23.53 0.226 0.596 0.311 

Jef 23.67 20.58 11.82 0.417 0.453 0.777 

 

The experiment analyzes the forecasting of ozone at each 

station by using models from the other stations, whenever pos- 

sible, as one station missed one of the relevant meteorological 
variables (T). In any case, it is still possible to evaluate the ef- 

fect of substitution of specific models. 

Table 14 presents the results of the experiment showing 

that replacement is not a good solution because performance 

losses range from 32% (17.94 of RMSE at Mhamid station 

against 23.53 by using the Jef model) to 99% (11.82 for 

RMSE at Jef station versus 23.67 by using Daoudiat model). 

This is relevant when inference is used to predict pollution in 

places where no information is available. However, it will not 

be possible to accept single behavior of the phenomena, which 

must be identified first in order to suggest an appropriate way 

to combine behaviors in the final forecasting model. 

4. Conclusions 

The main contributions of this paper can be understood 

from both a technical and an application point of view. From 

the technical point of view, one of the contributions of this pa- 

per is to show that nonlinear models for predicting hourly ozone 

levels outperform linear models by more than 50%, even though 

the latter makes it possible to understand the relevance of de- 

pendent variables. The study also shows that ensemble models 

have a greater forecasting accuracy than individual ones. To this 

end, it is worth remembering that RF is nothing but a class of 

ensemble technology. Indeed, it shows that boosted models out- 

perform individual ones and that they can be compared to the 

ensemble-based ones, at least in the case of a limited number 

of variables. The learning capability of non-linear models based 

on the hidden structure of data was also emphasized, as switch- 

ing models between daytime and nighttime datasets severely 

downgraded their performance. A large amount of data enables 

the construction of robust models, which makes it possible to 

extend the forecast time-window beyond the commonly used 

eight hours.  

From the application point of view, it is relevant to high- 

light how such synthetic models can accurately forecast ozone 

pollution levels even when there is little information, not in- 

cluding details of wind direction, rainfall values, or traffic in- 

tensities. Therefore, the study contributes to policy makers’ pub- 

licly declared interest in pollution monitoring by introducing 

characteristics of the area and pollution levels and also by de- 

veloping specific and local models for short-term forecasting 

of air quality in an area of the world where there has been no 

such forecast. These instruments make it possible to warn the 

population of the days and periods that may pose a hazard and 

to contribute to the establishment of public policy for strategic 

decision-making procedures. The interest in Ozone emissions 

is motivated by two reasons: The first being that Morocco is 

an agricultural country and ozone at a daily concentration of 

65 μg/m3 has the effect of destroying the respiratory cells of 

plants and cereals. The second reason is that tourism is a signi- 

ficant source of economical revenue, therefore enhancing air 

quality is essential to maintaining and attracting tourists to 

Morocco. Indeed, by having better understanding of the local 

mechanisms responsible for the ozone pollution, different strat- 

egies can be assessed against what it could happen in the pre- 

vious situation. Therefore, the ‘what-if’ scenario becomes easier 

to quantify, and it starts to be relevant as local authorities and 

elected officials are increasingly sensitive to the environment 

and ready to invest in the quality of life of citizens in a more 

integrated approach to spatial planning. In this way, alterna- 

tives such as diversifying infrastructure through one-way 

roads, multi-level roads, bypass routes and smart traffic lights 

a b 
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that provide traffic flow with alternatives can be evaluated. In- 

deed, vigorously enforcing annual technical vehicles inspection 

can be measured in terms of real improvement by having a 

simulator of the previous context for a given meteorological 

context. 

The ozone concentrations at the three stations differ in 

their specific nature, reflecting the economic characteristics of 

Marrakesh. That means that models are able to cope with phys- 
ical behavior. Therefore, it was possible to identify the mech- 

anisms that are responsible for the ozone levels that were 

found. Similarly, the separation of the ozone concentration 

data into two categories (daytime and nighttime), has under- 

scored the importance of solar radiation in daytime ozone pro- 

duction, the importance of wind speed on the measured val- 
ues of ozone concentration at night, and the influence of pri- 

mary pollutants and relative humidity globally. To assess this 

approach, a specific study was carried out with the goal of 

extending the coverage of the models to other ranges where 

such exchanges increased the expected error levels. 

Additionally, as far as Morocco’s air quality monitoring 
network is constituted of 29 fixed stations and 3 mobile sta- 
tions across 15 towns, the used methodology can be easily ex- 
panded to other cities in the country, as well as to different 
locations in the world. 

Finally, this paper has shown that model interchange be- 

tween geographical locations does not perform well without 

additional considerations as there are various mechanisms at 

work. An interesting field of research will be to develop fore- 

casting ozone models that are based on local, short-term, data- 

oriented prediction models in a way that considers and em- 

ploys different mechanisms. 
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