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ABSTRACT. Ambient air PM2.5 is one of the major pollutants linked to respiratory and lung diseases in the Yangtze River Delta (YRD), 

which is China’s leading economic region and one of the top economic regions worldwide. The main objectives of this work is to compare 

the accuracy of some widely-used techniques to characterize and predict the space-time distribution of ground-level PM2.5 in the YRD, 

and to propose a synthesis of techniques that can yield better results than previous techniques. First, a land-use regression (LUR) model 

is implemented using the relevant data bases (such as air quality, aerosol optical depth, AOD, Modern -Era Retrospective analysis for 

Research and Applications, MERRA, meteorological monitoring, road networks information, longitude, latitude, elevation and  land-use 

data). Then, the synthesis of the LUR and the Bayesian maximum entropy (BME) techniques is proposed and implemented, for the first 

time, in the study of PM2.5 concentrations over the YRD region. It was found that the combined (integrated) BME-LUR technique 

generated PM2.5 concentration estimates showing a 28.34% improvement in accuracy (R2 indicator) compared to the standard LUR 

technique, and a 12.53% improvement compared to the mainstream geostatistical Kriging technique.  
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1. Introduction 

Particulate matter PM2.5 (particles less than 2.5 μm in di-

ameter) is one of the major pollutants causing adverse health 

effects, including respiratory lung diseases. PM2.5 concentra-

tions grow rapidly worldwide seriously affecting people’s dai-

ly-life, especially in economically developed and urbanized 

countries (Kunzli et al., 2000; Duki et al., 2003; Bogaert et al., 

2009). During the last 30 years, China has experienced a fast-

growing economy and industrial development. As a result, sev-

eral studies have shown that haze pollution has gradually be-

come a severe environmental problem in China since the 1990s 

(Che et al., 2007; Zhao et al., 2011; Ma et al., 2016b). Yet, it 

was not until the end of 2012 that a nationwide PM2.5 monitor-

ing network was established. Concerning human exposure as-

sessment in China, we lack long-term and large-scale PM2.5 

concentration datasets, which are not available before 2013.  

The study of pollutant health effects depends on the accu-

rate exposure estimation at unmonitored locations (e.g., resi-

dential places) and time periods (e.g., of high human activity). 

Accurate space-time estimation is a key prerequisite of health 

studies, like the minimization of human exposure misclassifi- 
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cation. In order to improve the accuracy of PM2.5 concentration 

estimation across space-time, different quantitative techniques 

of space-time analysis of the pollutant of interest, estimation 

and mapping have been developed (Ryan et al., 2008; Becker- 

man et al., 2013; Hu et al., 2013; Adam-Poupart, 2013; Hu et 

al., 2014a; Reyes and Serra, 2014; Liu et al., 2016; Christakos 

et al., 2017; He et al., 2018a). Specifically, land-use regression 

(LUR) (Briggs et al., 1997; Gilliland et al., 2005) is a technique 

that predicts pollutant concentrations at unmonitored (unsam- 

pled) locations as a function of georeferenced variables (topo- 

graphy, traffic, and other geographic variables). LUR consists 

of five major components: dependent variable (pollutant con- 

centration), monitoring network, land use maps, buffers (i.e., 

radii of defined distances for the geographic variables of intere- 

st), and a set of independent variables (Liu et al., 2016). The de- 

pendent variable is the pollutant of interest and measurements 

come from a monitoring network. Kriging (Olea, 1999) is 

another regression-type interpolation technique that estimates 

pollutant values at unmonitored locations as a linear combina- 

tion of weighted observations at monitoring stations. Bayesian 

maximum entropy (BME) (Christakos, 1990) is a knowledge-

synthesis theory of space-time modeling and estimation. Unlike 

the LUR and Kriging techniques, BME is a non-linear estima- 

tor that can consider non-Gaussian distributions, in general, 

and, in addition to hard data it can integrate various kinds of 

soft data and core knowledge in the spatio-temporal domain 

(e.g., Christakos and Vyas, 1998; Bell, 2006; Bogaert et al., 

2009; He et al., 2018b). 
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The main objectives of this work are (i) to compare the ac-

curacy of certain techniques that are widely-used to predict the 

ground-level PM2.5 distribution in the case of the Yangtze river 

delta (YRD) during the period January 1, 2015 ~ May 31, 2016, 

and (ii) to propose a synthesis of techniques that can yield bet-

ter results. Geographically, the YRD is located near the 30° 

North latitude on the eastern coast of mainland China. It is an 

alluvial plain before the Yangtze River flows into the East 

China Sea. The YRD lies within the subtropical monsoon cli-

mate zone, with high temperatures and heavy and hot rains dur-

ing the summer. The YRD includes the Shanghai, Jiangsu and 

Zhejiang provinces. It is China’s largest economic zone, the 

central government’s most comprehensive economic center in 

China, and one of the world’s most advanced manufacturing 

bases. Before 2013 Beijing-Tianjin-Hebei was a region of high-

ly PM2.5-related disease-incidence, and since 2013 the YRD 

has become another severe haze polluted area with high PM2.5-

re-lated incidence. Hence, improving air quality is arguably a 

ma-jor challenge in this region (Hu et al., 2016). In view of 

these considerations, the present work is a comparative study 

that uses: (a) an LUR technique based on the available data (air 

quality, aerosol optical depth, AOD, modern era retrospective 

analysis, MERRA, meteorological monitoring data, road net-

works information, longitude, latitude, land-use data, and dig-

ital elevation modeling, DEM); (b) two forms of combined 

BME-LUR techniques (BME-LUR(a) and BME-LUR(b)) incur-

porating PM2.5 monitoring station data and soft data produced 

by land-use regression; and, finally, (c) a mainstream Kriging 

technique based on PM2.5 monitoring station data. These four 

techniques are implemented in the YRD study region, assum-

ing a 3-km AOD data to estimate high-resolution PM2.5 concen-

trations in this region. Then the relative performance of these 

techniques is assessed quantitatively, an efficient BME-LUR 

synthesis is proposed, and some conclusions are drawn that 

could be useful to the practitioners and researches using these 

techniques. 

2. Material and Method 

2.1. Study Area 

As noticed above, the YRD region is located in the south-

east coastal zone of China (Figure 1). The mainstream delinea-

tion of the YRD region includes the metropolitan Shanghai area 

and the economically developed and urbanized southern part of 

Jiangsu province and the northern part of the Zhejiang prov-

ince. An expanded delineation of the YRD region (Fang et al., 

2011) includes the Shanghai, Jiangsu, Zhejiang and Anhui 

provinces, with a population of about 160 million (NBS, 2012). 

The present study focuses on the Shanghai, Jiangsu and Zhe- 

jiang areas. The locations of the PM2.5 monitoring sites in the 

YRD region are also shown in Figure 1. 

 

2.2. Data 

2.2.1. PM2.5 Measurements 

The 24-h averaged PM2.5 concentrations at nationally-ref- 

erenced monitors in the YRD study area during the period Jan-

uary 1, 2015 to May 31, 2016 were downloaded from the China 

Environmental Monitoring Center (CEMC, http://106.37.208. 

233:20035/). The observed PM2.5 concentrations, which serve 

as the dependent variable of the estimation techniques and are 

modeled as a spatiotemporal random field (Christakos, 2017), 

include 157 PM2.5 monitoring sites with a total of 40,848 obser-

vations in the YRD study area, and, also, 65 PM2.5 monitoring 

sites that were evenly distributed in the neighboring provinces 

and around the monitoring sites to avoid any edge-effects. Ac-

cording to CNAAQS (Chinese National Ambient Air Quality 

Standards), those stations were omitted in which observations 

were available for less than 15 days within a month. Daily data 

were used to calculate the average PM2.5 concentration at each 

site, and the average of the four seasons was obtained by using 

Python 2.7 (https://www.python.org/). 
 

 
 

Figure 1. The yellow dots represent 157 PM2.5 monitoring sites 
in the YRD region. 

 

2.2.2. AOD Data 

The aerosol optical depth (AOD) data were obtained from 

the newly released MODIS collection of 6 AOD products (http 

://ladsweb.nascom.nasa.gov/) with 3-km spatial resolution. 

The 3-km AOD (MYD04_3k, MOD04_3k) is retrieved with 

the help of the same dark-target algorithm, although its accu- 

racy is slightly lower over land. MODIS is an instrument 

aboard the Terra and Aqua satellites operated by the National 

Aeronautics and Space Administration (NASA) (Remer et al., 

2005). The basic principle of MODIS aerosol data was first 

proposed by Kaufman et al. (1997). Specifically, during the 

study period (January 1, 2015 to May 31, 2016) the 10:30 AM 

Terra and 1:30 PM Aqua were used to synthesize the Chinese 

regional daily AOD products. The data processing steps were as 

follows: (a) a geometric correction of the data was applied, and 

the 550 nm wavelength aerosol optical thickness data was 

selected after geometric correction; (b) daily data of 550 nm 

https://www.python.org/
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wavelength aerosol optical thickness were mosaicked after the 

geometric correction was embedded to synthesize the daily 

product, and the average value of the overlapping area in the 

mosaic image was selected; and (c) MODIS Terra and MODIS 

Aqua aerosol data were synthesized in order to obtain the 

maximum usable range. 

 

2.2.3. Meteorological Fields 

The daily planetary boundary layer height (PBLH) and 

wind speed (m/s) data were obtained from the Modern-Era Ret-

rospective analysis for Research and Applications (MERRA) 

product (https://gmao.gsfc.nasa.gov/pubs/office_notes/). MER- 

RA is based on the Goddard Earth Observing System (GEOS-

5) general circulation model and allows a native spatial resolu- 

tion of 0.5° latitude × 0.65° longitude (Pfeifroth et al., 2013). 

The data were divided into 1-h and 6-h products, which were 

subsequently synthesized into a daily product, with the re- 

sulting data processing steps being as follows: (i) daily doc-

uments were read according to the 24-h synthesis of the 1-h 

products; (ii) for precipitation data we use their sum, and for 

PBLH data we consider their average; (iii) 6-h product docu-

mentation is processed in the same way; and (iv) the above syn-

thesized daily products was the output of data processing. Data 

were also collected daily from meteorological monitoring sta-

tions, including precipitation (m), temperature (K), relative hu-

midity (%), and air pressure (Pa) from the China Meteorologi-

cal Data Sharing Service System (http://cdc.cma.gov.cn). 

 

2.2.4. Land Use Information 

Many previous studies have showed that land-use infor-

mation could affect the relationship between PM2.5 concentra-

tions and satellite AOD (Kloog et al., 2012; Ma et al., 2014; 

Lee et al., 2016). For land-use information, 500-m resolution 

surface classification data were downloaded from MODIS 

(Friedl et al., 2010), and we measured the total area of urban 

and forest cover within 200m, 500 m, 1 km, 2 km, 3 km, 4 km, 

5 km, and 8 km buffers around the PM2.5 stations, and the area 

was expressed in m3. Yet, these different buffers were not sig-

nificant and they did not enter into the final model (because the 

p-value was > 0.05). This work also used the nearest distance 

to coast (in km) calculated for each monitoring site based on 

the coastline of the YRD region. Latitude and longitude were 

also considered in the model (Adam-Poupart et al., 2014; Liu 

et al., 2016). 

 

2.2.5. Road Network Data 

Road length data were extracted from the OpenStreetMap 

(http://www.openstreetmap.org) in which major roads, primary 

and secondary highways, and railways from all road layers 

were retained. We measured the total length (km) of such roads 

within 200m, 500 m, 1 km, 2 km, 3 km, 4 km, 5 km, and 8 km 

buffers around the PM2.5 stations. 

 

2.2.6. Elevation Data 

The 30-m resolution digital elevation data were download-

ed from the Shuttle Radar Topography Mission (SRTM, http:// 

srtm.csi.cgiar.org/SELECTION/inputCoord.asp). 

 

2.2.7. Data Integration 

For data integration purposes, and based on data pre-pro-

cessing and extraction, this paper first interpolated all the me-

teorological data at a 3-km scale using inverse distance 

weighted (IDW) interpolation tools (ArcGIS 10.3) to match the 

AOD grid size. Then, we created a grid with a 3-km spatial res-

olution that included a total number of 34,453 grid cells based 

on interpolated meteorological data. All data were integrated 

into records adequate for LUR fitting, validation and mapping 

purposes. The data collections were re-projected to the Asia 

Lambert Conformal Conic coordinate system. The observed 

PM2.5 concentrations from multiple in-situ stations were aver-

aged at the corresponding grid cell. AOD and meteorological 

fields were assigned to each grid using the nearest neighbor 

method. The area of land-use cover for urban types was calcu-

lated from the land-use data in the buffers. The road length was 

summed up in the same buffers of land-use data. And the eleva-

tions were subsequently averaged at each grid cell. 

 

2.3. Analysis Methods 

2.3.1. Model Developments—The LUR Model 

Based on the observations available at the monitoring 

sites, we developed a stepwise linear multiple regression (LUR) 

mixed-effects model to predict PM2.5 concentrations using the 

SPSS software version 19.0. Being a stepwise linear regression 

using environmental data as independent variables, the LUR 

model predicts PM2.5 seasonally averaged concentration given 

a group of variables. The PM2.5 seasonally averaged concentra- 

tion can be expressed using the equation: 
 

0 ,1

k

p i i p pi
  


  X Y    (1) 

 

where Xp denotes seasonally averaged PM2.5 concentrations 

(recall that averaged PM2.5 concentrations during different sea-

sons were calculated using meteorologically daily data), β0 is 

the equation intercept, the Yi, p (i = 1, …, k) are the independent 

variables for the seasonal PM2.5 concentrations at the space-

time location p, εp is an error term, and βi (i = 1, …, k) are the 

coefficients of each independent variable. In view of LUR’s 

stepwise linear regression structure, initially a model with 36 

variables was considered, and then the implementation of SPSS 

utomatically provided the best model with 7 variables. The 

values of the variance inflation factors (VIFs), which are a mea-

sure of model collinearity, were calculated for the LUR model. 

If a variable within a model has a VIF value greater than 10, 

that particular variable is considered to be collinear with the re-

maining variables in a model. The VIF for the jth variable in a 

model of m variables is:  
 

21 (1 )jVIF r    (2) 

 

where rj is the correlation coefficient from regressing the jth 
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variable on the remaining m − 1 variables. Note that each model 

produces m VIF values. If any one of them is greater than 10, 

the model is said to have collinearity and is not considered as 

the final optimum LUR model. The incorporation of site-spe-

cific variables into the model detected small area variations, 

and the VIFs values of the final optimum LUR model were all 

less than 10. 

 

2.3.2. The BME Technique 

BME is a spatiotemporal modeling and prediction theory 

with very general features, e.g., it is non-linear and non-Gauss-

ian, and it incorporates space-time information from many dif-

ferent sources, core and site-specific (Christakos, 1990, 2000). 

Its implementation is made possible in terms of various soft-

ware libraries, like the one used here, namely, the Spatiotem-

poral Epistemic Knowledge Synthesis Graphical User Interface 

software library (SEKS-GUI-v0.8) (Yu et al., 2007). The basic 

set of BME equations of space-time PM2.5 estimation used in 

the present YDR study are (Christakos, 2000, 2010): 

 

  0dG e  
μ g

g g   (3a) 

 

  0pdSe Af


 
μ g

X    (3b) 

 

where g is a vector of functions expressing mathematically the 

available core knowledge base G, including spatiotemporal co-

variance models, exposure laws, and scientific theories, in-

cluding the LUR model; g̅ denotes the mean value of g; S rep-

resents the available site-specific (i.e., the YRD in this case) 

knowledge base about the pollutant as described earlier, in-

cluding AOD, MERRA, meteorological monitoring data, road 

networks information, land-use data, and DEM; μ is a vector of 

coefficients representing the relative importance of each g-

function (μ∙ g denotes the inner product of the vectors g and μ, 

which are both functions of space-time); and A is a normaliza-

tion parameter. Equations (3a and b) can be solved with respect 

to the PM2.5 probability law f(Xp) at all disease mapping points 

of interest (i.e., space-time points at which BC predictions are 

sought). Software libraries have been developed dealing with 

the solution of Equations (3a and b) in real world conditions, 

including BMElib, QuantumBME, and StarBME (e.g., Yu et 

al., 2007). More technical details and physical interpretations 

of the basic BME equations above can be found in the relevant 

literature. 

BME is able to combine core or general knowledge (the-

oretical models, physical laws, and scientific relationships) 

about the attribute of interest with site-specific knowledge (hard 

data and soft data in the form of uncertain measurements, 

probabilistic assessments and auxiliary information). In this 

work, the core knowledge includes a mean trend function and 

a theoretical covariance model, and site-specific knowledge 

comes from seasonally averaged PM2.5 concentration. Site-spe-

cific knowledge can either be considered hard or soft. Hard data 

includes site-specific measurements with little or no uncertain-

ty associated with them. Soft data includes site-specific knowl-

edge characterized by various levels of uncertainty in the form 

of uncertain observations, auxiliary information, and proba-

bilistic assessments (probability distribution functions, PDF, 

Gaussian, interval, uniform, triangle etc.). This allows BME to 

rigorously integrate any non-Gaussian soft data, such as soft 

data with a truncated Gaussian distribution (Reyes and Serre, 

2014). Also, it has been proven in theory that Kriging is a special 

case of BME under limiting conditions linear estimation, Gaussian 

distribution and hard only site-specific data (Christakos, 2000). 

 

2.3.3. BME-LUR and Kriging Techniques 

We applied the BME-LUR and Kriging techniques to es-

timate space-time PM2.5 concentrations in an economically de-

veloped southeast coastal area. The hard data that served as in-

put to the Kriging technique included the measured PM2.5 con-

centration values at monitoring stations for all eligible station-

days during the period January 1, 2015 to May 31, 2016 (all 

predictions are about seasonally-averaged data). On the other 

hand, two hard data forms were used by the BME-LUR tech-

niques: 

(i) the measured PM2.5 concentration dataset (for BME-

LUR(a)), and  

(ii) the residual PM2.5 seasonally-averaged concentrations pro- 

vided by LUR based on the PM2.5 monitoring stations (for 

BME-LUR(b)). 

Otherwise said, in the BME-LUR setup, the LUR model is 

the input to the BME technique. The soft data generated by the 

LUR model and used in the BME-LUR(a) technique consisted 

of PM2.5 estimates at each location and an associated confi-

dence interval (each location was the center of the 50 km × 50 

km grid cell). For BME-LUR(b) and Kriging we used only hard 

data (i.e., no soft data estimates from the LUR model were con-

sidered in these two techniques). 

 

2.3.4. 10-Fold Cross-Validation between Spatiotemporal 

Estimation and Ground Observations 

The coefficient of determination (R2), mean error (ME), 

mean absolute prediction error (MAE), and root mean squared 

prediction error (RMSE) were the accuracy indicators calcu-

lated between the estimates generated by each spatiotemporal 

estimation technique (LUR, BME-LUR(a), BME-LUR(b), and 

Kriging) vs. ground observations in order to assess the per-

formance of each technique. The estimates generated by each 

technique used the same dataset, and, thus, they did not expe-

rience potential over-fitting (i.e., the situation where the esti-

mation technique performs well in the context of the dataset 

used for model fitting, but poorly at locations and during days 

outside this dataset). 

Specifically, we used a sample-based, 10-fold cross vali-

dation (CV) technique (Lee et al., 2011) to test the potential 

over-fitting of the spatiotemporal estimation techniques. In 

terms of the k-fold cross-validation classification error estima-

tor (k-cv) technique, the data set is divided into k folds (in this 

case, k = 10), a classifier is learned using k  1 folds, and an 
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error value is calculated by testing the classifier in the remain-

ing fold. Finally, the k-cv estimation of the error is the average 

value of the errors committed in each fold. Thus, the k-cv error 

estimator depends on two factors: the training set and the 

partition into folds (Rodriguez et al. 2010). Previous BME-

LUR studies mainly used the leave-one-out validation method 

(Adam-Poupart et al., 2014; Reyes and Serre, 2014). In terms 

of the sample-based 10-fold CV method, all samples in the 

dataset were randomly divided into 10 subsets with equal num-

bers of samples. One subset served as the testing base, and the 

remaining nine subsets were used to test the values generated 

by the spatial estimation techniques during each validation 

round. Since the sample-based, 10-fold CV method has been 

more widely used in previous PM2.5-AOD modeling studies 

than the site-based CV technique (Chang et al., 2014), in this 

study we selected the sample-based 10-fold CV method. 

 

 
 

Figure 2. Histogram and summary statistics of the LUR 
model variables for the seasonally monitored datasets (N = 

830 estimated points). 

3. Results 

3.1. Descriptive Statistics 

The seasonal histograms and summary statistics of the 

LUR variables are plotted in Figure 2 and Table 1. Various sim-

ulations of models with 36 variables were initially generated, 

and then the model was selected with 7 independent variables. 

In particular, the yearly average PM2.5 concentration, AOD, 

temperature, planetary PBLH, precipitation, distance to coast, 

longitude and latitude were calculated: 54.49 μg/m3, 0.76, 2910 

K, 637.5 m, 3.34 mm, 140.72 km, 119.4 and 31.51, respect-

tively. Table 2 summarizes the main features of the LUR model 

with the highest value of R2 = 0.440 generated with seasonally-

averaged PM2.5 concentrations using the 7 independent vari- 

ables above. The three time scales (i.e., daily-, monthly- and 

yearly-averaged scales) of the LUR models gave the indicator 

R2 values 0.170, 0.366, and 0.339, respectively. All indepen- 

dent variables were statistically significant at the α = 0.05 level 

for the LUR techniques. Concerning the effect of each variable: 

the AOD, temperature, longitude, and distance to coast were 

found to be the main predictors; the AOD and latitude had a 

positive association with PM2.5; and the temperature, PBLH, 

longitude, precipitation and distance to coast showed negative 

associa oE tions with PM2.5 concentrations. These findings are 

consistent with the fixed effects shown in previous implement- 

tations of the LUR technique in China (Adam-Poupart et al., 

2014; Li et al., 2015; Liu et al., 2016; Ma et al., 2016a, b; Meng 

et al., 2016). Note that the LUR technique produced 7 distinct 

VIF values (corresponding to the 7 independent variables). Since 

all of them were < 10, the technique was considered collinearity-

free, and the 7 variables were selected into the final optimum LUR 

technique.  

 

Table 1. Descriptive Statistics of Modeling Dataset 

Variable Min Median Mean Max 

PM2.5 (μg/m3) 11.5 51.42 54.49 183.0 

Temperature (K) 272.0 291.1 291.1 304.8 

Latitude (oN) 26.69 31.42 31.51 35.42 

AOD (unitless) 0.147 0.758 0.756 1.736 

PBLH (m) 131.1 629.1 637.5 1196.1 

Longitude (oE) 116.8 119.6 119.4 122.3 

Precipitation (mm) 0.0 258.8 333.6 2302.8 

Distance of Coast 

(km) 

0.07 103.2 130.4 363.2 

 

Table 2. Summary of the LUR Model Variables 

Seasonal model Regression 

coefficients 

Significant VIF 

Intercept 914.384 .000  

Temperature (K) -1.247 .000 1.356 

Latitude (oN) 1.296 .001 2.232 

AOD (unitless) 19.918 .000 1.709 

PBLH (m) -.024 .000 1.467 

Longitude (oE) -4.445 .000 9.903 

Precipitation (mm) -.603 .001 1.242 

Distance of Coast (km) -3.664 .006 7.969 

Adjusted R2 0.440   

 

3.2. Covariance Model Fitting 

Concerning the empirical space-time covariances present-

ed in Figure 3 we notice that the covariances of the combined 

BME-LUR techniques showed a sharp drop after the space or-

igin, whereas they displayed a very slow decline along the time 

axis. This dual behavior indicates a short correlation range in 

space and a long correlation range in time. By comparison, the 

covariance of the Kriging technique showed the slowest de-

crease across space implying a longer spatial correlation than 

the models of the other techniques, whereas the covariance of 

file:///C:/Users/GC/AppData/Local/Youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
file:///C:/Users/GC/AppData/Local/Youdao/Dict/Application/6.3.69.8341/resultui/frame/javascript:void(0);
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the BME-LUR(a) technique experienced the slower decrease in 

time implying a longer temporal correlation space (given that 

there are only four seasons, the temporal correlation of adjacent 

seasons is stronger). 

In light of these features of the empirical covariances, the 

following theoretical covariance models were fitted to the em-

pirical ones:  

 

(1) BME-LUR(a) 
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(2) BME-LUR(b) 
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(3) Kriging 
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where [c1, c2, c3, c4, c5, c6, c7] = [0.6, 0.4, 0.54, 0.46, 0.32, 0.45, 

0.23], [
1s

a ,
2sa ,

3sa ,
4sa ,

5sa ,
6sa ,

7sa ] = [0.15, 0.3, 0.1, 0.25, 0.1, 0.2, 

2] in degrees, and [
1t

a ,
2t

a ,
3t

a ,
4t

a ,
5t

a ,
6t

a ,
7t

a ] = [6.3, 3, 3, 3, 3, 3.2, 

4] in quarters. Using the above covariance models, we obtained 

BME estimates that are representative of the actual PM2.5 distri-

bution and spread. 

 

3.3. Cross Validation 

Figure 4 and Table 3 show the cross-validation (CV) re-

sults of the four space-time estimation techniques. The BME-

LUR(b) was the most accurate among them (R2 = 0.548) with 

the lowest RMSE (12.382 μg/m3). The BME-LUR(a) (R2 = 

0.483, RMSE =13.946382 μg/m3) and the Kriging techniques 

(R2 = 0.487, RMSE = 13.2382 μg/m3) performed better and 

with greater precision than the LUR technique (R2 = 0.427, 

RMSE = 13.779382 μg/m3). Compared to the LUR, BME-

LUR(a) and Kriging techniques, the BME-LUR(b) technique 

also performed best at the seasonal scale. This is a key feature 

of BME-LUR(b), i.e., it is an effective integration of BME and 

LUR that combines multi-sourced data and predicts accurately 

the air pollution distributions in a composite space-time do-

main. 

 

3.4. Spatial Distributions of PM2.5 Predictions 

Figure 5 presents ground-level PM2.5 measurements and 

the seasonal mean PM2.5 predictions using the four different 

space-time techniques. First, we notice that the spatial patterns 

of the LUR and BME-LUR(b) predictions of the PM2.5 concen-

trations are very similar, and they are both characterized by 

some missing data. This is due to the fact that the MODIS 3-

km AOD data were retrieved by the Dark Target (DT) algo-

rithm, and DT-AOD cannot be retrieved over bright surfaces, 

thus causing a considerable number of AOD missing values 

inbright urban or water areas. Most of the PM2.5 monitoring 

sites are clustered in urban areas in China, which may impact 

the performance of a space-time estimation technique (Ma et 

al., 2016b). Although BME-LUR(a) and Kriging predictions do 

not involve any missing values, the BME-LUR(b) technique 

provides more spatial details due its incorporation of soft data. 

For example, without the inclusion of the LUR model, the 

small “hot spots” in Wenzhou, Ruian, and the northeast part of 

Cangnan during the winter would have been missed. Also, 

unlike the BME-LUR(b) technique, the other three techniques 

tend to greatly underestimate PM2.5 at low concentrations. 

 

Table 3. 10-Fold Cross-validation Results of the Space-time 
Estimation Techniques for the 2015 ~ 2016 Seasonal PM2.5 

Averages  

Method R2 RMSE MAE ME 

LUR 0.427 13.779 10.028 -0.040 

BME-LUR(b) 0.548 12.382 8.623 0.184 

BME-LUR(a) 0.483 13.946 9.428 0.305 

Kriging 0.487 13.200 9.281 0.223 

* k = 222 monitoring stations, N = 830 estimated points 

 

Spatially, the PM2.5 concentrations were high in the nor- 

thern part of the study area, especially in the Jiangsu province. 

The spatial gradient of PM2.5 concentration showed a little 

change during the summer. During the winter and autumn, 

however, the spatial gradient of PM2.5 concentration changed 

significantly, and the overall trend was high in the north and 

low in the south, which is consistent with previous YRD studies 

(Zou, 2016; Zhang et al, 2017). Temporally, the PM2.5 concen- 

tration in the YRD region showed an obvious seasonal varia- 

tion, the average PM2.5 concentration during winter (which 

reached 80.39 μg/m3) was significantly higher than that during 

the other three seasons. 

4. Discussions 

In this work, for the first time integrated BME-LUR tech-

niques are applied in the study of space-time PM2.5 concentra-

tions in the YRD region (China). The latest MODIS 3-km AOD 

dataset was used to estimate ground-level PM2.5 concentrations 

in the southeast coastal zone of China. Benefiting from wide 

spatial and temporal coverage, satellite data have been proven 

to be a powerful supplementary tool to estimate PM2.5 concen-

trations in regions without sufficient ground-level measure-

ments (Hu et al., 2014b; Li et al., 2015; Ma et al., 2016a; You 

et al., 2016; Zou, 2016). 

Overall, our findings suggest that the PM2.5 estimation 

accuracy can be improved considerably by integrating the 
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Figure 3. Spatiotemporal empirical covariances and fitted theoretical models used by the BME techniques: (a) BME-LUR(a), (b) 

BME-LUR(b), and (c) Kriging. 
 

 
 

Figure 4. CV results for the four models (N = 830, t = 4): (a) LUR, (b) BME-LUR(a), (c) BME-LUR(b), and (d) Kriging. Dashed 

lines are the 1:1 lines, for reference. Solid lines are the regression lines. 
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Figure 5. (a) Ground measurements and spatial distributions of seasonal PM2.5 predictions for the four space-time estimation 
techniques: (b) LUR, (c) BME-LUR(a), (d) BME-LUR(b), and (e) Kriging 

 

BME technique in the analysis compared to other commonly 

used techniques. In particular, the BME-LUR(b) technique had 

the best performance in terms of 10-fold cross-validations with 

ac-curacy indicator values, R2 = 0.548, RMSE = 12.382, and 

MAE = 8.623. The proposed BME-LUR(b) technique showed a 

28.3% improvement in R2, a 14% reduction in MAE and a 1.4 

g/m3 reduction in RMSE compared to the existing techniques.  

It should be noticed that Adam-Poupart et al. (2014) also 

compared the LUR technique (PM2.5 estimation accuracy indi-

cators: R2 = 0.466, RMSE = 8.747) vs. the BME technique (R2 

= 0.653, RMSE = 7.057), and it was found that BME was more 

accurate with respect to both accuracy indicators (R2 and 

RMSE). Reyes and Serre (2014) improved PM2.5 estimation 

across the USA from 1999 to 2009 by combining the LUR 

model (which accounted for on road mobile and stationary 

source emissions) with the BME technique (R2 = 0.78, RMSE 

= 1.12, MAE = 0.63). Their LUR-BME technique (R2 = 0.53) 

improved R2 by 47.17% compared to the LUR model. Yu et al. 

(2011) used a combined LUR-BME model with road and land 

use data to predict seasonal PM2.5/PM10 concentrations in the 

Taipei area (Taiwan) during 2005 ~ 2007. We notice that the 

BME-LUR technique of Reyes and Serre (2014) covered a 

larger study area and more types of environment variables than 

Yu et al. (2011). Although most of earlier studies did not report 

any accuracy indicator values, the mean of their pollutant esti-

mation errors were higher than those of our present study. In 

particular, the mean error (ME) for BME-LUR (Yu et al., 2011) 

was 2.156 vs. the ME of BME-LUR (present study) that was 

found to be 0.184. All of the above show that the integration of 

BME can improve considerably the LUR model.  

Furthermore, in the present study we collected and pro-

cessed more data on environmental factors than previous 

studies, such as 3-km AOD, PBLH and temperature, we ex-

plored the relationship between them and PM2.5 pollution, and 

we incorporated a LUR model into the BME estimation 

technique. The calculated accuracy indicators of the combined 

BME-LUR techniques showed a considerable improvement 

compared to the LUR technique.  

Future work could consider (i) adding more data sources, 

such as 1-km AOD data (Wang et al., 2010; Lin et al., 2015; Wu 

et al., 2016), (ii) interpolating more accurate meteorological 

data by means of spatial interpolation software for climatic data 
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(ANUSPLIN) instead of the simple IDW technique, (iii) con-

sidering different pollution sources and visualizing exposure 

estimates in ArcEngine 10 in order to properly assess the long-

term effects of PM2.5 exposure on human health and facilitate 

better prevention and control of PM2.5 in the YRD region. 
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