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ABSTRACT. Accurate streamflow estimation remains a great challenge although diverse modeling techniques have been developed 

during recent decades. In contrast to the process-based models, the empirical data-driven methods are easy to operate, require low 

computing capacity and yield fairly accurate outcomes, among which the state-space (STATE) approach takes use of the temporal 

structures inherent in streamflow series and serves as a feasible solution for streamflow estimation. Yet this method has rarely been 

applied, neither its comparison with other methods. The objective was to compare the performance of an autoregressive STATE approach 

to the traditional multiple linear regression and artificial neural network in simulating annual streamflow series of 15 catchments located 

in the Loess Plateau of China. Annual data of streamflow (Q), precipitation (P) and potential evapotranspiration (PET) during 1961 ~ 

2013 were collected. The results show that STATE was generally the most accurate method for Q estimation, explaining almost 90% of 

the total variance averaged over all the 15 catchments. The estimation of streamflow relied on its own of the previous year for most 

catchments. Besides, the impacts of P and PET on the temporal distribution of streamflow were almost equal. Missing data were estimated 

using the STATE method, which allowed inter-annual trend analysis of the streamflow. Significant downward trends were manifested 

at all the 15 catchments during the study period and the corresponding slopes ranged from -0.24 to -1.71 mm y-1. These findings hold 

important implications for hydrological modelling and management in China’s Loess Plateau and other arid and semi-arid regions. 
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1. Introduction 

Water scarcity is one of the critical problems worldwide 

and receives increasing concern. Especially in the arid and se- 

miarid regions, natural water resources are limited and experi- 

ence severe stress exerted by expanding population and cli- 

mate change (Wheater et al., 2008). Groundwater usually be- 

comes one of the main water sources owing to its reliability 

(UNESCO, 2016). However, groundwater in most cases is 

hardly renewable and its over-extraction tends to cause a chain 

of environmental problems, such as land subsidence, seawater 

intrusion and salinization. Although highly variable in both 

time and space, streamflow usually dominates the allocation of 

renewable water resources and inextricably affects local eco- 

systems and catchment morphology (Lange and Leibundgut, 

2003; Srivastava et al., 2006). It is therefore of utmost impor- 

tance to accurately estimate or model streamflow time series at 

different spatial and temporal scales (e.g., Noori and Kalin, 

2016; Zhu et al., 2016). 

 

*
 Corresponding author. Tel.: +(86) 10-58807473; fax: +(86) 58806955   

E-mail address: yang.yang@bnu.edu.cn (Y. Yang).  

 
ISSN: 1726-2135 print/1684-8799 online  

© 2020 ISEIS All rights reserved. doi:10.3808/jei.202000440  

The current methods for streamflow estimation are catego- 

rized into two groups in general (Besaw et al., 2010; Bourdin 

et al., 2012). One is characterized as process-based, aiming to 

simulate the functions and processes of the hydrological sys- 

tem, such as the Soil and Water Assessment Tool (SWAT) 

(Gassman et al., 2007) and Hydrologic Simulation Program- 

Fortran (HSPF) (Bicknell et al., 1996). However, they require 

massive input data covering diverse aspects of the system, as 

well as high computing power and capability for data process- 

ing, which are usually difficult to satisfy especially at the re- 

gional scale (Kokkonen and Jakeman, 2001; Srivastava et al., 

2006). The other group consists of empirical data-driven mod- 

els (Bourdin et al., 2012) that directly relates the impact fac- 

tors such as climate and topography to streamflow without 

consideration of underlying physical and hydrological pro- 

cesses. Requiring no elevated computing power, these meth- 

ods are easy to apply and able to derive fairly accurate es- 

timates in a short time (Lauzon et al., 2006).  

Within the group of data-driven methods, multiple linear 

regression (MLR), artificial neural network (ANN), and the 

Box-Jenkins time series model of autoregressive moving av- 

erage (ARMA) are most commonly used (Wang et al., 2008; 

Besaw et al., 2010; Noori and Kalin, 2016). The first ap- 

proach, i.e., MLR, assumes linear relationships between input 
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and output parameters and usually attempts to establish the 

regression equation via ordinary or weighted least squares 

method (e.g., Schilling and Wolter, 2005; Mohamoud, 2008). 

Nevertheless, the relationships between streamflow and pos- 

sible impact factors can be quite complex and may not be 

sufficiently described by a single linear function. As an alte- 

rnative, the ANN modeling inspired by the neural networks of 

human brain has been introduced to simulate streamflow in the 

1990s (Bourdin et al., 2012). Compared to MLR, it does not 

assume any particular model structure, i.e., linear or non-linear 

or a combination of both (Ghorbani et al., 2018). The input and 

output variables are actually connected via one or more hidden 

layers (Aleksander and Morton, 1990): the input variables are 

weighed and sent to the hidden layer(s) through, but not limited 

to non-linear transfer functions, which are weighed again and 

passed to the output variables in the same manner. In view of 

these merits, various forms of ANN models have been applied 

in streamflow estimation (e.g., Karunanithi et al., 1994; Chen 

et al., 2008; Makwana and Tiwari, 2014). 

It is assumed in both traditional MLR and ANN that the 

streamflow and all the impact factors involved are indepen- 

dent over time, which is rarely the case (Yue et al., 2002). The 

ARMA approach, in contrast, rather takes advantage of the 

temporal dependence and derives estimation models based on 

the autocorrelation of the subject variable (Box and Jenkins, 

1970). However, many previous studies have concluded that 

the ANN method generally performs better than the univariate 

ARMA modeling in streamflow estimation (e.g., Hsu et al., 

1995; Jain and Kumar, 2007), even when the latter is en- 

hanced by incorporating periodical fluctuations (ARIMA) or 

further by including the impact of possible factors (ARI-MAX) 

(Castellano-Méndez, 2004). The probable reason is that the 

prerequisite of dataset stationarity behind ARMA and related 

models is difficult to satisfy in reality.  

To cope with these disadvantages of ARMA, a similar tool 

named the autoregressive state-space (STATE) model is recom- 

mended. This model, in the scenario of stationary data series 

and univariate analysis, is equivalent to the ARMA model 

(Shumway and Stoffer, 2011). In contrast to the latter consi- 

dering model error only, the STATE model assumes that the 

measurement vector is a linear transform of the true state vector 

with a white noise and takes the measurement uncertainty into 

account in addition. An expectation-maximization (EM) algo- 

rithm (Shumway and Stoffer, 1982) with a filtering and smooth- 

ing procedure is therefore embedded in the STATE approach to 

deal with these uncertainties, which in the meantime allows to 

analyze nonstationary data series, to estimate missing values as 

well as to forecast values outside the measurement domain 

(Morkoc et al., 1985; Nielsen and Wendroth, 2003; Shumway 

and Stoffer, 2011). Originally developed by Kalman (1960) and 

Kalman and Bucy (1961), this method was initially used for 

filtering noise from signal in aerospace-related and economic 

research, yet has rarely been employed in hydrology to date. It 

remains unclear how it performs relative to the traditional data-

driven methods such as MLR and ANN in estimating stream- 

flow time series. 

The semi-arid Chinese Loess Plateau (CLP) has long been 

characterized by thick loess distribution, serious water scarcity 

and soil erosion (Jia et al., 2015). To manage this situation, nu- 

merous soil and water conservation practices have been im- 

plemented since the 1950s (Chen et al., 2007), among which 

the “Grain-for-Green” Project initiated around 2000 was the 

largest one and turned a great many of sloping croplands into 

forestlands and grasslands. These conservation measures direct- 

ly affect water distribution and modify the water regime of CLP 

(Miao et al., 2010; Liang et al., 2015), which presents a great 

challenge for streamflow simulation using either process-based 

or data-driven techniques (Yaseen et al., 2019). 

With such premise, the goal was to compare the perfor- 

mances of MLR, ANN, and STATE methods for annual stream- 

flow estimation in CLP. Typical variables used for streamflow 

modeling include precipitation and temperature or evapotran- 

spiration, depending on the availability of data (Wu and Chau, 

2011). In the current study, annual data of streamflow (Q), 

precipitation (P), and potential evapotranspiration (PET) dur- 

ing 1961 ~ 2013 were collected or derived for 15 catchments 

across CLP. The specific objectives were to 1) compare the 

estimation results of annual Q series obtained with MLR, ANN, 

and STATE approaches, and 2) examine the inter-annual trends 

of streamflow Q in CLP. 

2. Materials and Methods 

2.1. Study Area and Datasets 

The study was conducted on the well-recognized CLP, 

which was dominated by the temperate semi-arid continental 

monsoon climate. The mean annual temperature ranges from 

3.6 °C in the northwest to 14.3 °C in the southeast. The mean 

annual precipitation, similarly, gradually increases from ~ 150 

mm in the northwest to 800 mm in the southeast, with major 

occurrence between July and September (Shi and Shao, 2000). 

The soil is mainly silt loam-textured loess. 

Fifteen catchments were selected across CLP (Figure 1), 

which range from 1,121 to 106,498 km2 in area and together 

cover 37.5% of the entire CLP. Annual streamflow data during 

1961 ~ 2013 were collected from the Yellow River Conser- 

vancy Commission. However, the streamflow data were not 

available for one or two years at 5 catchments and for up to 6 

years at the Qin catchment. Daily precipitation, minimum tem- 

perature and maximum temperature observed at 2,400 meteo- 

rological stations across China [China Meteorological Data 

Sharing Service System (http://cdc.nmic.cn/home.do)] were in- 

terpolated for a national gridded database during the study 

period, from which the corresponding precipitation and tem- 

perature data were derived for all the 15 catchments. Figure 1 

displays the total 146 meteorological stations located in the stu- 

dy area. Except for the relatively small catchments of Gushan 

and Tuwei, such stations were distributed in each catchment, 

with a maximum number of 68 at the Wei catchment. The po- 

tential evapotranspiration was then calculated using the Har- 

greaves-Samani Equations requiring only temperature data and 

coordinates for each catchment (Hargreaves and Samani, 1985). 

Based on the data series above, annual streamflow (Q), precipi- 

tation (P), and potential evapotranspiration (PET) during 1961 

~ 2013 were acquired. 
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Figure 1. Map showing locations, hydrological gauging stations and meteorological stations of 15 catchments on the Loess 

Plateau. These catchments are numbered following the sequence from upstream to downstream and secondly from small stream 

order to large order. 

 

2.2. Streamflow Estimation 

Using P and PET, three approaches, i.e., MLR, ANN, and 

STATE, were adopted to estimate the annual series of Q. To 

avoid the numerical problem that might occur when the mag- 

nitudes of the variables differ by an order or more, a normaliza- 

tion procedure was performed for each time series 𝑥𝑖 in ad- 

vance (Nielsen and Wendroth, 2003): 

 

' ( 2 )

4

i x
i

x

x x
x





 
  (1) 

 

in which �̅� and 𝜎𝑥 refer to the mean and standard deviation 

of 𝑥𝑖, respectively. 

 

2.2.1. Multiple Linear Regression (MLR) 

The MLR models were generated for Q with a stepwise 

procedure, in which the significance levels for F-to-enter and 

F-to-remove were set at 0.05 and 0.01, respectively. The anal- 

ysis was performed using SPSS 16.0. 

 

2.2.2. Artificial Neural Network (ANN) 

A typical ANN model consists of an input layer carrying 

independent variable(s), an output layer for dependent vari- 

able(s) and one or more hidden layers with varying nodes that 

connect the input and output layers. To estimate Q here, the 

feed-forward model with mainly nonlinear processing elements 

was selected. The initial weights in each layer were randomly 

assigned in each model run, resulting in varying estimations. 

The optimal ANN model with the smallest square error was 

selected from 100 models, i.e., performing ANN modeling for 

100 times, which was believed to provide a reasonably reli- 

able result (data not shown). Other than MLR, the ANN ap- 

proach is not capable of selecting input variables. But it may 

not be appropriate to simply treat both P and PET as input 

variables, because the addition of PET to P tends to increase the 

complexity of network and the risk of overfitting (Anctil et al., 

2004; Toth and Brath, 2007). Therefore, all the three combi- 

nations of input variables, i.e., P only, PET only, and P together 

with PET, were considered, and the optimal model providing 

the best estimation was selected as the final one. The ANN 

modeling was accomplished using the Neural Network Tool- 

box built in MatLab 2015a. 

 

2.2.3. State-Space (STATE) Model 

An autoregressive STATE model consists of a state equa- 

tion and an observation equation (Shumway and Stoffer, 1982; 

Shumway, 1988). For a time series xi, the commonly used first-

order state equation describes the state vector Zi at time i with 

respect to the state Zi-1 at previous time i - 1: 

 

1i i iZ Z    (2) 

 

in which  is the transition matrix and ωi the uncorrelated 

model error. Considering the measurement uncertainty in ad- 

dition to the model error, the observation model relates the 

observed vector Xi to the true state vector Zi through a meas- 

urement matrix Mi, and an uncorrelated measurement error 

matrix vi: 

 

i i i iX M Z v   (3) 



Y. Yang et al. / Journal of Environmental Informatics 37(1) 36-48 (2021) 

 

39 

As the two matrices of 
 

and Mi, and the distributions 

of the two error matrices are unknown, the commonly-used 

least square method is not applicable for model estimation. 

Instead, the likelihood based inference called Kalman filter 

(Kalman, 1960) allows the construction of the likelihood func- 

tion associated with a STATE model and was employed to solve 

the models together with an iterative EM algorithm which 

terminated at the relative convergence limit of 0.005 (Shum- 

way and Stoffer, 1982). Similar with the ANN modeling, the 

optimal STATE model was selected from the models consi- 

dering three input variable combinations of P and PET. 

All the variables were normalized to the same order of 

magnitude prior to the STATE modeling using Equation (1). In 

this case, the transition coefficient before each input vari- able 

describes its contribution to the output (estimate) in any STATE 

model. But it would not be sufficient when comparing the 

contributions of each variable in different models. The rel- 

ative contribution of a particular variable was therefore cal- 

culated by dividing its transition coefficient by the sum of the 

coefficients in each model (Yang and Wendroth, 2014). 

 

2.2.4. Data Validation 

The extensive soil and water conservation practices, es- 

pecially during the “Grain-for-Green” Project, tend to substan- 

tially modify the relationships between streamflow and clima- 

tic factors (Bi et al., 2009; Han et al., 2019). Under such cir- 

cumstances, the traditional cross-validation scheme that adopts 

early half or more of the data series for calibration and later half 

or less for validation may lead to unsatisfactory results. There- 

fore, a leave-one-out procedure consisting of two scenarios was 

applied to cross validate the estimations of streamflow Q at the 

15 catchments during 1961 ~ 2013. Scenario 1 eliminated the 

Q observations made in the even years and Scenario 2, on the 

contrary, removed the Q observations in the odd years. In each 

Scenario, the Q observations eliminated as planned were after- 

wards estimated with the corresponding remaining Q observa- 

tions, together with P, PET or both. 

 

2.2.5. Evaluation Criteria 

The coefficient of determination (R2) and the adjusted R2(
2

adjR ) considering the number of regression variables (k) are 

usually employed to evaluate the performances of different 

estimation models, which are defined as: 

 
2 * 2 2[ ( ) ] / [ ( ) ]i i i iR x x x x     (4) 
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where xi and *

ix refer to the measurement and estimation at time 

i, respectively, ix is the mean of measurements xi, and n denotes 

the number of measurements. 

Regarding hydrological models, a combination of abso- 

lute value error statistics, normalized goodness-of-fit statistics 

and graphical results are widely recommended as evaluation 

criteria (Ritter and Muñoz-Carpena, 2013). Therefore in addi- 

tion to 2

adjR , the root mean square error (RMSE), and Akaike 

information criterion (AIC) were also calculated, and the esti- 

mates were plotted against measurements to visually illustrate 

the model performance. The value of RMSE is calculated as: 

 

* 21
( )i iRMSE x x

n
   (6) 

 

The AIC balances between the fitting goodness and the 

simplicity of the regression model, and is reliable for model 

comparison and selection (Akaike, 1969): 

 

* 21 2
ln[ ( ) ]i i

k
AIC x x

n n
    (7) 

 

For a finite time series, e.g., k/n < 40, the corrected AIC, 

AICc, is suggested (Nielsen and Wendroth, 2003): 

 

* 21 ( )
ln[ ( ) ]

( 2)
c i i

n k
AIC x x

n n k


  

 
  (8) 

 

For either AIC or AICc, the smaller the value, the better the 

estimation quality.  

 

2.3. Trend Analysis 

The Mann-Kendall (MK) test is one of the most widely- 

used trend analysis tools for hydrological time series (Hamed, 

2008). This non-parametric method is grounded on the ranks, 

rather than the actual values, of the measurements, and is there- 

fore less sensitive to the outliers and does not require normal 

distribution (Yue and Pilon, 2004), which is perfectly suitable 

for the hydrological time series typically manifesting skewed 

distributions and data missing (Hirsch and Slack, 1984). The 

inter-annual trend of annual streamflow Q was examined by the 

MK test (Mann, 1945; Kendall, 1975; Hirsch et al., 1982) for 

each catchment. For a time series xi with a total of n meas- 

urements, the statistic S of Kentall’s tau is defined as: 

 
1

1 1

sgn( )
n n

j i

i j i

S x x


  

   (9) 

 

where the sign function sgn(xj - xi) depends on the comparison 

between xi and xj: 

 

1

sgn( ) 0

1

i j

j i i j

i j

x x

x x x x

x x

 


  
 

 (10) 

 

The statistic Z determines whether the trend analyzed is 

upward or downward, and is defined as: 
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in which the variance of S is calculated as: 

 

1

( 1)(2 5) ( 1)(2 5)

var( )
18

q

p p p

p

n n n t t t

S


    




 (12) 

 

here, q refers to the number of tied groups and tp the pth group. 

The slope of the trend, if present, is calculated as the median 

slope of the adjacent observations: 

 

( )
j iy y

slope median
j i





 (13) 

 

von Storch (1995) demonstrated that significant autocorrela- 

tions in the data series tend to increase the probability of signi- 

ficant trends detected in the MK test and thereby developed a 

pre-whitening procedure to remove the lag-one autocorrelation 

component from the time series. Hamed and Rao (1998) pro- 

posed another method for pre-whitening, in which the effective 

sample size (ESS) was computed via an empirical formula and 

the MK statistic S was modified accordingly to compensate the 

impact of autocorrelation on the variance. These two essential 

techniques, however, do not deal with the interaction between 

the trend and the autocorrelations, which tends to decrease the 

magnitude of existing trend. Therefore in the current study, the 

trend-free pre-whitening (TFPW) procedure developed by Yue 

et al. (2002), which removes the trend before ascertaining the 

magnitude of auto-correlation, was performed prior to the MK 

trend analysis for the Q series at each catchment. 

3. Results 

3.1. Descriptive Statistics 

The mean and standard deviation (STD) of P, PET, and Q 

at each catchment during 1961 ~ 2013 are presented in Table 1. 

The mean P ranged from 379.0 to 716.4 mm, with the STD 

falling between 87.3 and 134.9 mm. The mean PET was much 

larger than P, ranging from 956.0 to 1163.3 mm, with a na- 

rrower STD range between 46.0 and 55.4 mm. There was no 

apparent spatial pattern in Q among the catchments studied. 

The maximum mean Q of 127.5 mm was observed at the Yi- 

luo catchment with a STD of 82.2 mm and the minimum of 

22.1 mm was obtained at the Fen catchment with a STD of 17.1 

mm, both of which are located in the east of CLP (Figure 1). 

According to the Pearson’s correlation analysis, P was sig- 

nificantly correlated with Q at the level of 0.01, except for the 

correlation at the Tuwei catchment at the level of 0.05. The cor- 

responding correlation coefficients were all positive and ranged 

from 0.308 at the Tuwei catchment to 0.832 at the Wei catch- 

ment. On the contrary, the correlations between PET and Q were 

all negative. Except for the Tuwei, Dali, and Qingjian catch- 

ments, they were significant (p < 0.05) at the rest 12 catch- 

ments. The corresponding correlation coefficients ranged from 

-0.301 at the Wuding catchment to -0.618 at the Xinshui catch- 

ment. 

 

3.2. Streamflow Estimations Based on All Observations 

3.2.1. Multiple Linear Regression (MLR) 

Table 2 presents the MLR models for Q at each catch- 

ment. For 11 out of the 15 catchments, less than half of the total 

Q variance was explained with the MLR models, as the cor- 

responding 2

adjR were smaller than 0.5. Especially at the Tuwei

 

Table 1. Mean and Standard Deviation (STD) of Annual Precipitation (P), Potential Evapotranspiration (PET) and Streamflow (Q) 

at Each Catchment during 1961 ~ 2013 

ID Catchment Hydrological Station Area 

(km2) 

P (mm) PET (mm) Q (mm) 

Mean STD Mean STD Mean STD Year(s) of Missing Data 

1 Gushan Gaoshiya 1263 425.8  112.9  1030.8  52.5  48.4  39.7   

2 Kuye Wenjiachuan 8645 399.7  103.4  998.8  50.1  57.8  32.6   

3 Tuwei Gaojiachuan 3253 405.1  106.6  1006.6  50.5  95.9  27.8   

4 Jialu Shenjiawan 1121 446.7  104.7  1055.5  52.7  48.7  30.7  1968 

5 Qiushui Linjiaping 1873 442.8  98.6  1163.3  55.4  35.1  26.7  2007, 2008 

6 Sanchuan Houdacheng 4102 553.1  108.2  956.0  50.5  51.3  23.3  2007, 2008 

7 Dali Suide 3893 448.9  97.4  1063.8  51.2  35.4  12.3   

8 Wuding Baijiachuan 29662 379.0  87.3  1040.4  48.8  36.2  10.7   

9 Qingjian Yanchuan 3468 506.8  104.1  1034.2  50.4  39.2  15.8  2007, 2008 

10 Xinshui Daning 3992 575.7  104.8  987.0  52.5  29.0  19.0   

11 Yan Ganguyi 5891 541.9  109.2  1094.0  53.8  34.2  13.2  1990 

12 Fen Hejin 38728 512.0  92.4  1052.9  49.4  22.1  17.1   

13 Wei Huaxian 106498 569.5  90.2  994.1  49.0  61.0  31.1   

14 Yiluo Heishiguan 18563 716.4  134.9  1049.8  47.7  127.5  82.2   

15 Qin Wulongkou 9245 602.8  110.2  1023.8  46.0  86.7  61.7  2001 ~ 2006 

*All the catchments are numbered following the sequence from upstream to downstream and secondly from small stream order to large order 
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Table 2. Multiple Linear Regression (MLR) Models for Annual Streamflow (Q) at 15 Catchments during 1961 ~ 2013 based on 

Annual Precipitation (P) and Potential Evapotranspiration (PET), together with the Respective RMSE, 𝑅𝑎𝑑𝑗
2  and AICc 

ID Catchment Model RMSE R2
adj AICc 

1 Gushan Q = 0.603P + 0.198 0.199 0.352 -2.146 

2 Kuye Q = 0.540P + 0.230 0.210 0.277 -2.037 

3 Tuwei Q = 0.308P + 0.346 0.238 0.077 -1.792 

4 Jialu Q = 0.503P + 0.249 0.216 0.238 -1.982 

5 Qiushui Q = 0.522P + 0.239 0.213 0.257 -2.007 

6 Sanchuan Q = 0.402P - 0.317PET + 0.458 0.193 0.381 -2.165 

7 Dali Q = 0.590P + 0.205 0.202 0.335 -2.121 

8 Wuding Q = 0.523P + 0.239 0.213 0.259 -2.012 

9 Qingjian Q = 0.486P + 0.257 0.219 0.220 -1.958 

10 Xinshui Q = 0.480P - 0.329PET + 0.424 0.172 0.510 -2.402 

11 Yan Q = 0.593P + 0.203 0.201 0.339 -2.125 

12 Fen Q = 0.636P + 0.182 0.193 0.393 -2.211 

13 Wei Q = 0.832P + 0.084 0.139 0.687 -2.873 

14 Yiluo Q = 0.699P - 0.209PET + 0.255 0.145 0.652 -2.744 

15 Qin Q = 0.772P + 0.114 0.160 0.582 -2.576 

 

catchment, 2

adjR was as low as 0.077, indicating that the cor- 

responding model accounted for only 7.7% of Q variance. The 

mean 2

adjR averaging over the 15 catchments was 0.371, and the 

mean RMSE and AICc were 0.194 and -2.210, respectively. 

Using a stepwise procedure, P was included in all the 15 MLR 

models. But PET was only employed for the models at 3 catch- 

ments, i.e., Sanchuan, Xinshui and Yiluo, and the correspond- 

ing coefficients reflecting the relative contributions of PET to 

Q were all smaller than those of P. It is implied in these models 

that the variance of Q was mainly explained by the annual pre- 

cipitation at most catchments. In other words, the magnitude of 

P, rather than PET, largely determined the size of streamflow. 

 

3.2.2. Artificial Neural Network (ANN) 

The optimal ANN model was selected according to AICc 

at each catchment (Table 3). Obviously, both P and PET were 

included in each optimal model, which performed much better 

than the corresponding MLR equation, as indicated in the con- 

sistently higher 2

adjR , and smaller RMSE and AICc. Especially at 

the Tuwei catchment where the time series of Q was most poor- 

ly estimated with the MLR method, 2

adjR was improved by 0.767 

using the ANN modeling, suggesting an additional 76.7% of Q 

variance explained by the ANN model than by the MLR equa- 

tion. Averaging over all the 15 catchments, the mean 2

adjR , 

RMSE, and AICc were 0.877, 0.083 and -3.904, respectively. 

 

3.2.3. State-Space (STATE) Approach 

The optimal STATE models were selected with the same 

scheme used in the ANN modeling (Table 4). Both P and PET 

were adopted in the optimal models for 11 out of the total 15 

catchments. Whereas for the rest 4 catchments, the Q estima- 

tions depended on P or PET only. In general, Q was better esti- 

mated with the STATE models than using MLR or ANN mod- 

eing. The mean 2

adjR was as high as 0.891, suggesting that the 

STATE models were able to explain nearly 90% of the total Q 

variance on average. The three STATE models for the Fen, Wei, 

and Yiluo catchments, furthermore, revealed 2

adjR values even 

greater than 0.99, accounting for almost all the Q variance. The 

corresponding RMSE and AICc were lower than those of the 

MLR and ANN models, with their means of 0.065 and -4.979, 

respectively. However, at the five catchments of Gushan, Qiu- 

shui, Qingjian, Xinshui, and Yan, the ANN models seemed 

better than the STATE ones, as indicated by the relatively higher
2

adjR , together with lower RMSE and AICc (Table 3, Table 4). 

 

Table 3. Optimal Artificial Neural Network (ANN) Models 

for Annual Streamflow (Q) at 15 Catchments during 1961 ~ 

2013 based on Annual Precipitation (P) and Potential 

Evapotranspiration (PET), together with the Respective 

RMSE, 2

adjR and AICc 

ID Catchment Factor(s) RMSE R2
adj AICc 

1 Gushan P, PET 0.075 0.907 -4.060 

2 Kuye P, PET 0.097 0.845 -3.551 

3 Tuwei P, PET 0.097 0.844 -3.548 

4 Jialu P, PET 0.085 0.879 -3.801 

5 Qiushui P, PET 0.067 0.924 -4.265 

6 Sanchuan P, PET 0.075 0.907 -4.058 

7 Dali P, PET 0.122 0.752 -3.086 

8 Wuding P, PET 0.108 0.807 -3.336 

9 Qingjian P, PET 0.120 0.759 -3.110 

10 Xinshui P, PET 0.056 0.947 -4.629 

11 Yan P, PET 0.082 0.887 -3.867 

12 Fen P, PET 0.083 0.884 -3.847 

13 Wei P, PET 0.065 0.931 -4.357 

14 Yiluo P, PET 0.057 0.946 -4.613 

15 Qin P, PET 0.062 0.936 -4.432 

 

3.2.4. Model Comparison 

According to the evaluation criteria of RMSE, 2

adjR and 

AICc, the Q series was generally better estimated by the STA- 

TE model than by the MLR or ANN model (Tables 2 ~ 4). To 

visually compare the performances of these three methods, the 
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resulting Q estimates were plotted against the observations at 

each catchment (Figure 2). Apparently, the scatters of the MLR 

model were most divergent from the 1:1 line. Especially for 

large Q observations located on the right end of each sub- plot, 

Q was generally underestimated. By comparison, the ANN 

modeling with the involvement of nonlinear processing ele- 

ments (Aleksander and Morton, 1990) provided a better fit be- 

tween the scatters and the 1:1 line, suggesting more accurate 

estimations. It is implied that the overall relationships of an- 

nual streamflow with the climatic factors of P and PET were 

prone to be nonlinear, rather than linear, during the study pe- 

riod. This deduction is to some extent consistent with Liang et 

al. (2015), which employed a Budyko framework and con- 

cluded highly nonlinear responses of streamflow discharge to 

P and PET in CLP during recent decades. 

It is worth noting that the ANN method performed espe- 

cially well for the large Q observations, but provided rather 

biased estimates for the small ones. As displayed in Figure 2, 

the corresponding red triangles were the closest to the 1:1 line 

on the right end of each subplot but rather more divergent from 

the 1:1 line on the left end. As a result, ANN surpassed both 

MLR and STATE approaches in estimating Q at 5 out of the 

total 15 catchments, i.e., Gushan, Qiushui, Qingjian, Xin- shui, 

and Yan catchments. For the rest 10 catchments, the STATE 

approach was the most accurate method for Q esti- mation, as 

the corresponding scatters were distributed gener- ally closest 

to the 1:1 line (Figure 2).

 

Table 4. Optimal State-space (STATE) Models for Annual Streamflow (Q) at 15 Catchments during 1961 ~ 2013 based on Annual 

Precipitation (P) and Potential Evapotranspiration (PET), together with the Respective RMSE, 2

adjR and AICc 

ID Catchment Model RMSE R2
adj AICc 

1 Gushan Qi = 0.729Qi-1 + 0.245PETi-1 + wi 0.102  0.828  -3.449  

2 Kuye Qi = 0.932Qi-1 - 0.247Pi-1 + 0.256PETi-1 + wi 0.046  0.964  -5.001  

3 Tuwei Qi = 1.127Qi-1 - 0.209Pi-1 + wi 0.029  0.986  -5.958  

4 Jialu Qi = 1.027Qi-1 - 0.294Pi-1 + 0.231PETi-1 + wi 0.071  0.915  -4.124  

5 Qiushui Qi = 1.035Qi-1 - 0.306Pi-1 + 0.232PETi-1 + wi 0.114  0.777  -3.163  

6 Sanchuan Qi = 0.955Qi-1 - 0.194Pi-1 + 0.216PETi-1 + wi 0.035  0.979  -5.525  

7 Dali Qi = 0.703Qi-1 - 0.146Pi-1 + 0.393PETi-1 + wi 0.108  0.802  -3.285  

8 Wuding Qi = 1.162Qi-1 - 0.259Pi-1 + wi 0.040  0.974  -5.334  

9 Qingjian Qi = 0.790Qi-1 + 0.191PETi-1 + wi 0.179  0.467  -2.315  

10 Xinshui Qi = 1.094Qi-1 - 0.377Pi-1 + 0.262PETi-1 + wi 0.066  0.926  -4.273  

11 Yan Qi = 0.612Qi-1 - 0.062Pi-1 + 0.434PETi-1 + wi 0.118  0.762  -3.097  

12 Fen Qi = 0.875Qi-1 - 0.162Pi-1 + 0.275PETi-1 + wi 0.011  0.998  -7.937  

13 Wei Qi = 1.138Qi-1 - 0.577Pi-1 + 0.413PETi-1 + wi 0.020  0.994  -6.704  

14 Yiluo Qi = 0.162Qi-1 + 0.547Pi-1 + 0.273PETi-1 + wi 0.008  0.999  -8.527  

15 Qin Qi = 0.721Qi-1 - 0.056Pi-1 + 0.326PETi-1 + wi 0.027  0.987  -5.997  

 

 
 

Figure 2. Annual streamflow (Q) observations versus estimates made by multiple linear regression (MLR), artificial neural 

networks (ANN) and state-space (STATE) models at all the 15 catchments studied. Note that Q and the climatic factors of P and 

PET, were normalized according to Nielsen and Wendroth (2003). 
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3.3. Cross Validation for Streamflow Estimations 

In both validation scenarios, the optimal MLR, ANN, and 

STATE models were derived for the calibration datasets apply- 

ing the same strategy in Section 3.2 for the entire time series. 

With the significance level of 0.05 for F-to-enter in the stepwise 

procedure, no MLR model was generated for Q estimation at 

the Tuwei catchment in Scenario 2 eliminating all the odd-year 

Q observations or at the Qingjian catchment in Scenario 1 re- 

moving even-year observations. Regardless of these two cases, 

the resulting MLR models explained 15.5% ~ 73.6% of the to- 

tal Q variance for calibration considering both scenarios. How- 

ever, these models performed rather poorly in estimating Q of 

the validation years. Negative values of 2

adjR were even obtained 

for validation datasets at 3 catchments in Scenario 1 and up to 

8 catchments in Scenario 2, suggesting strong deviations from 

the primary trends of Q distributions. 

Such typical overfitting phenomenon, i.e., excellent esti- 

mations in calibration but poor ones in validation, was detected 

in the ANN modeling for all the catchments in both scenarios. 

The RMSE were all smaller than 0.03 and the 2

adjR were all 

greater than 0.99 while calibrating, except for the ones at the 

Tuwei catchment in Scenario 1 with RMSE of 0.039 and 2

adjR of 

0.976, and at the Jialu catchment also in Scenario 1 with RMSE 

of 0.097 and 2

adjR of 0.851. When applying the calibration mod- 

els in validation, the resulting 2

adjR were all negative except for 

a very small positive one of 0.003 at the Wei catchment in Sce- 

nario 1. It is then reasonable to draw a conclusion that relying 

on P and PET only, ANN modeling was not appropriate for 

annual streamflow estimation in the study region. 

Overfitting was also spotted in the STATE modeling. As a 

typical example, negative 2

adjR were obtained when applying the 

optimal calibration STATE models to the validation datasets in 

both scenarios at the Qingjian catchment and in Scenario 2 at 

the Yan catchment. For the rest 13 catchments, the optimal 

STATE models accounted for 75.9 ~ 99.9% of total Q variance 

in calibration and 22.6 ~ 91.1% of variance in validation. 

In view of the negative 2

adjR obtained in the validation data- 

sets for almost all the combinations of catchment and scenario, 

the ANN method was excluded from the following model com- 

parison, which simply categorized the 15 catchments into 3 

groups. Group 1 consists of the Qingjian and Yan catchments, 

at which neither MLR nor STATE could properly simulate Q 

from P and PET. Both the optimal MLR and STATE calibration 

models resulted in negative 2

adjR when applied in the validation 

datasets. Figure 3 plots the Q observations versus MLR and 

STATE estimates for both calibration and validation in Scenario 

2 at the Qingjian catchment, as no significant MLR calibration 

model was generated in Scenario 1. Apparently, both the MLR 

and STATE models performed well in calibration as the corre- 

sponding scatters were close to the 1:1 line, resulting in 2

adjR as 

high as 0.723 and 0.990, respectively. In contrast, the scatters 

in validation were quite biased from the 1:1 line and the corre- 

sponding 2

adjR were both negative, i.e., -1.586 for the MLR mod- 

el and -1.257 for the STATE one. 

Group 2 comprises two catchments of Gushan and Wei, 

and illustrates a tie of model performance. The STATE approach 

generated much better calibration models compared to the 

MLR method, but performed similarly in validation. It is clear- 

ly shown in Figures 4a and 4c that the scatters of the STATE 

approach were closer to the 1:1 lines in contrast to those of the 

MLR modeling. Nevertheless, such comparison became unob- 

vious in the validation in Scenario 2 (Figures 4b, 4d). The cor- 

responding 2

adjR , RMSE and AICc were similar between these 

two types of models in validation (data not shown). 

 

 
 

Figure 3. Annual streamflow (Q) observations versus 

estimates made by multiple linear regression (MLR) and 

state-space (STATE) models for (a) calibration and (b) 

validation in Scenario 2 at the Qingjian catchment. Note that 

Q and the climatic factors of P and PET, were normalized 

according to Nielsen and Wendroth (2003). 

 

All the other 11 catchments fell into Group 3, where the 

STATE modeling was believed to surpass the MLR method in 

Q estimation. The corresponding STATE models performed 

much better not only for calibration but also for validation in 

both scenarios, accounting for averagely 93.3% of the total Q 

variance in calibration and 57.6% of variance in validation. In 

contrast, the mean percentages of the Q variance explained by 

the MLR models were only 36.8% and 28.0% in calibration and 

validation, respectively, disregarding the models possessing 

negative 2

adjR in validation. A typical example at the Tuwei 

catchment is displayed in Figure 5. The scatters of the STATE 

models were closer to the 1:1 lines than those of the MLR 

models, no matter for calibration or validation, in Scenario 1 or 

Scenario 2.  

 

3.4. Inter-Annual Trends of Streamflow 

In view of its superiority in simulating annual streamflow 

Q, the STATE technique was applied to estimate the missing 

streamflow data at the Jialu, Qiushui, Sanchuan, Qingjian, Yan, 

and Qin catchments (Table 1). The resulting completed 6 time 

series as well as the series measured at the other 9 catchments 

were then subject to the MK test to explore the inter-annual 

trends of streamflow in CLP (Table 5). 

There is no significant trend in P at any catchment except 

for a downward one at the Qin catchment (p < 0.05). The cor- 

responding MK slope was -1.85 mm y-1. Regarding PET, never- 

theless, 9 out of the 15 catchments possessed significant trends 

during the study period, all of which were increasing with the 

slopes between 0.77 and 1.65 mm y-1. Significant downward 

trends were detected in Q at all the catchments (p < 0.05) and  
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Figure 4. Annual streamflow (Q) observations versus estimates made by multiple linear regression (MLR) and state-space 

(STATE) models for calibration and validation in (a, b) Scenario 1 and (c, d) Scenario 2 at the Gushan catchment. Note that Q and 

the climatic factors of P and PET, were normalized according to Nielsen and Wendroth (2003). 

 

 
 

Figure 5. Annual streamflow (Q) observations versus estimates made by multiple linear regression (MLR) and state-space 

(STATE) models for Q calibration and validation in (a, b) Scenario 1 and (c, d) Scenario 2 at the Tuwei catchments. Note that Q 

and the climatic factors of P and PET, were normalized according to Nielsen and Wendroth (2003). 

 

 
 

Figure 6. Autocorrelograms for annual streamflow (Q) with 95% confidence limits (dash lines) at (a) Qingjian, (b) Gushan and (c) 

Tuwei catchments. 

 

the corresponding MK slopes ranged from -0.24 mm y-1 at the 

Qingjian catchment to -1.71 mm y-1 at the Qin catchment. In 

view of the different catchment areas, the MK slopes acquired 

for all the catchments were averaged by area. The resulting MK 

slope for the entire study area was calculated at -0.49 mm y-1. 

That is to say, the streamflow or the surface water resource has 

decreased by almost 0.5 mm per year for the 53 years from 

1961 to 2013.  

The value of MK slope derived is affected by the magni- 

tude of the Q series analyzed. To compare different catchments, 

the MK slopes expressed in percentage per year (% y-1) were 

calculated by dividing the MK slope over the corresponding 

mean. From 1961 to 2013, Q at all the catchments studied were 

decreased by an average of 1.74% y-1, ranging from 0.62% to 

2.70% per year. The greatest decreasing rate was obtained at 

the Fen catchment, while the lowest one at the Qingjian catch- 

ment.  

4. Discussion 

In general, the STATE approach surpassed both the MLR 

and ANN methods and provided the most accurate estimates 

for annual streamflow Q in the current study. Using the “leave 

-one-out” validation procedure, the overfitting problem was 
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Table 5. Mann-Kendall (MK) Slopes of Annual Precipitation (P), PotentialEvapotranspiration (PET) and Streamflow (Q) at Each 

Catchment during 1961 ~ 2013  

ID Catchment MK Slope (mm y-1) MK Slope (% y-1) 

P PET Q P PET Q 

1 Gushan 0.58 0.98* -1.31* 0.14 0.10 -2.70 

2 Kuye 0.60 0.74 -1.35* 0.15 0.07 -2.34 

3 Tuwei 0.53 0.77* -1.50* 0.13 0.08 -1.57 

4 Jialu 0.66 0.99* -1.27* 0.15 0.09 -2.61 

5 Qiushui -0.16 0.91* -0.75* -0.04 0.08 -2.14 

6 Sanchuan -0.45 1.24* -0.85* -0.08 0.13 -1.65 

7 Dali 0.22 0.77* -0.35* 0.05 0.07 -0.98 

8 Wuding 0.48 0.54 -0.46* 0.13 0.05 -1.28 

9 Qingjian -0.28 0.81* -0.24* -0.06 0.08 -0.62 

10 Xinshui -1.23 1.65* -0.67* -0.21 0.17 -2.32 

11 Yan -0.75 0.89* -0.33* -0.14 0.08 -0.95 

12 Fen -1.05 0.76 -0.60* -0.20 0.07 -2.70 

13 Wei -0.67 0.29 -0.72* -0.12 0.03 -1.19 

14 Yiluo -1.41 -0.02 -1.29* -0.20 0.00 -1.01 

15 Qin -1.85* 0.56 -1.71* -0.31 0.05 -1.97 

*: Significant trend at the level of 0.05 

 

detected in the ANN modeling for each catchment. In contrast 

to MLR, the STATE method performed better for 11 out of the 

total 15 catchments according to the three evaluation criteria of
2

adjR , RMSE, and AICc as well as the graphical results. The pro- 

bable reason was that the STATE modeling, rather than the tra- 

ditional MLR and ANN simulations, accounts for the temporal 

dependence in the measurements (Poulsen et al., 2003), which 

is commonly present in the hydrological time series (Beven, 

2001). To be specific, a first-order autoregressive state-space 

modeling, i.e., as used here, is based on the auto-correlation of 

the output variable and the cross-correlations of the output with 

the input variables at the first lag (Shumway and Stoffer, 2011). 

In accordance with the catchment categorization in the 

data validation section, Figure 6 depicts the auto-correlograms 

for Q at the Qingjian catchment from Group 1, Gushan catch- 

ment from Group 2, and Tuwei catchment from Group 3. On 

each auto-correlogram, the 95% confidence limits were also 

displayed, which were calculated according to Bartlett (1946) 

assuming approximately normal distribution of the auto-cor- 

relation coefficient r and considering the order of the stochastic 

process, or in other words, the lags for random distribution 

(Morkoc et al., 1985). It is obvious that for the Qingjian catch- 

ment where Q was unsatisfactorily estimated with the STATE 

method (Table 4, Figure 3), not a single auto-correlation coeffi- 

cient r was significant at the lag h of 1 year or longer (Figure 

6a), suggesting poor temporal structure inherent in the time se- 

ries of Q. For the catchments within Group 2 where the STATE 

modeling performed equivalently well with the MLR method, 

r was found slightly above the 95% confidence limits at the first 

lag (Figure 6b). In addition, the “hole effect” describing signifi- 

cant r at longer lag h greater than those at shorter h, was obser- 

ved in the autocorrelogram at the Gushan (Figure 6b) catchment, 

indicating that the temporal Q distribution included one or more 

oscillating variation components (Nielsen and Wendroth, 2003; 

Webster and Oliver, 2007) and might not be sufficiently des- 

cribed by a simple MLR or first-order autoregressive STATE 

model. For the rest 11 catchments in Group 3, the auto-correla-

tion coefficients r at the first lag were all significant and larger 

than those calculated for the catchments in Groups 1 and 2. As 

a typical example, r was as high as 0.789 at h of 1 year for the 

Q series at the Tuwei catchment and stayed significant until the 

lag h reached 5 years (Figure 6c).  

 

 
 

Figure 7. Relative contribution of annual precipitation (P) and 

potential evapotranspiration (PET) in the optimal STATE 

model for annual streamflow (Q) estimation at each 

catchment. 

 

In view of the generally superior performance of the 

STATE method in simulating streamflow, the transition coeffi- 

cients of the corresponding optimal STATE model were used 

to evaluate the influence of the two climatic factors, i.e., P and 

PET, on the temporal distribution of streamflow Q. Figure 7 

concludes the relative contributions of P and PET for the STATE 

modeling of Q at each catchment, which allowed the impact  
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Figure 8. Cross correlograms for annual streamflow (Q) versus (a) annual precipitation (P) and (b) annual potential evapo-

transpiration (PET), together with 95% confidence limits (dash lines) at the Yiluo catchment. 

 

comparison among different catchments. For most catchments, 

i.e., 14 out of 15, the temporal distribution of Q was dominated 

by its temporal dependence at the first lag, as the relative contri- 

bution of Q in the previous year exceeded 50%. The only ex- 

ception was observed at the Yiluo catchment, where the tempo- 

ral behavior of Q was rather affected by P. In addition to a sig- 

nificant autocorrelation coefficient r obtained at the first lag 

(data not shown), the temporal correlations of Q with P and 

PET were also considerable (Figure 8). Especially for the one 

between Q and P, the corresponding cross-correlation coefficient 

Γ at lag h of 1 year was significant at the level of 0.05 (Figure 

8a). 

The relative contributions of P and PET to the temporal 

distribution of Q were almost equal (Figure 7). On one hand, 

there was no significant difference between the relative con- 

tributions of P and PET when taking all the catchments into 

account. The corresponding means of their contributions were 

16.2% and 19.4%, respectively. On the other hand, the tem- 

poral pattern of Q mainly relied on P at 7 out of the 15 catch- 

ments and on PET at the remaining 8 catchments, regardless of 

the temporal dependence inherent in the Q series (Figure 7). 

This finding seems to disagree with the common knowledge 

that the streamflow in semi-arid regions such as CLP mainly 

depends on several heavy rainstorms during the rainy season 

(Love et al., 2010; Camacho Suarez et al., 2015), or in other 

words, the streamflow in this region is more sensitive to preci- 

pitation rather than evapotranspiration (Li et al., 2017). How- 

ever, in view of the high temporal variability in rainfall events, 

the time span in between can be very long, and the evapo- 

transpiration as well as its impact on streamflow are expected 

to be pronounced at a relatively long temporal scale (Lange and 

Leibundgut, 2003), such as the annual scale here. As an indirect 

evidence, PET has significantly increased at 9 out of the 15 

catchments, whereas P has significantly decreased at only 1 

catchment, along with the significant decreasing trends of Q at 

all the catchments. 

During the study period of 1961 ~ 2013, the streamflow 

has decreased by 0.24 ~ 1.71 mm y-1, resulting in an area- 

weighted mean of 0.49 mm y-1. These decreasing rates are 

within the ranges detected by Zhang et al. (2008) and Liang et 

al. (2015) that were performed on different CLP catchments for 

slightly divergent periods. Considering domestic use, industry, 

fishing, and animal husbandry, Feng et al. (2016) estimated that 

at least 11.9 mm y-1 of water should be acquired from streams 

to sustain the current socio-economic activities on CLP. The 

mean streamflow at the catchments investigated ranged from 

12.8 mm at the Gushan catchment to 117.8 mm at the Yiluo 

catchment over the recent 5 years, i.e., 2009 ~ 2013. If the 

streamflow continues to decline at the current rates, it will de- 

plete in 30 years for more than half of the catchments. In addi- 

tion, the decrease of streamflow would also possess serious 

threat to groundwater recharge and discharge (Li et al., 2019), 

sediment transport (Wang et al., 2016), delta development 

(Kong et al., 2015), and fish assemblages (Xie et al., 2018).  

5. Conclusions 

Three data-driven methods, i.e., MLR, ANN, and STATE, 

were applied in the current study to estimate annual stream- 

flow Q from the climatic factors of P and PET at 15 catchments 

across CLP. In general, the STATE approach surpassed the 

other two methods, especially at the 11 catchments categorized 

to Group 3 in data validation. This comparison is probably 

caused by the fact that in contrast to the ANN and MLR models 

assuming temporal independence, the STATE model accounts 

for the temporal dependence in the Q series as well as the tem- 

poral correlations of Q with P and PET. This reasoning is to 

some extent verified by the autocorrelograms of Q manifesting 

significant autocorrelation coefficients at the first lag of 1 year 

at most catchments. Calculating the relative contributions of 

each variable based on the transition coefficients in the STATE 

models, the temporal distribution of Q mostly relied on its tem- 

poral dependence at the first lag of 1 year. Other than that, P 

and PET exerted almost equivalent impact on the temporal dis- 

tribution of Q in CLP. The MK analysis was conducted to ex- 

plore the inter-annual streamflow trends at the 15 catchments, 

after estimating the missing data at the 6 catchments with the 

optimal STATE models. The results manifested significant 

downward trends of Q at all the catchments during 1961 ~ 

2013, at a rate ranging between -0.24 and -1.71 mm y-1. 

The Loess Plateau has undergone extensive land use 

changes as well as other soil and water conservation measures 

during recent decades. These anthropogenic activities are prone to 

modify the relationships between streamflow and climatic fac- 
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tors, thereby leading to unsatisfactory streamflow estimations 

made at several catchments, e.g., Gushan and Qingjian, no 

matter using which modeling technique. It is then of great im- 

portance to collect the detailed types and scales of relevant con- 

servation practices and to systematically examine their impact 

on the water regime of different Loess Plateau catchments. At 

the long time scale, moreover, these activities may also interact 

with the local climate, which tends to further complicate the 

simulations of streamflow and other hydrological components. 

Future research is required to clarify these intricate interactions 

and to provide solid basis for sustainable catchment manage- 

ment.  
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