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ABSTRACT. Considering the multiple uncertainties in agricultural water resources management systems, this paper established an 

agricultural water optimal allocation model under uncertainty for Shijin irrigation district (ID). Uncertainties of four parameters, in- 

cluding precipitation, available groundwater, purchase prices of crops and crop cultivated area, were fully considered. Agricultural wa- 

ter allocation schemes were obtained based on the distribution characteristics simulation of the four parameters using Monte Carlo sim- 

ulation technique. In order to thoroughly analyze the results, the relationship between system benefits and water amounts was shown 

using 3D diagram. The optimized results show that total water use amount of 2016 ([217.460, 218.017] × 106 m3 for surface water irri- 

gation and [51.765, 66.266] × 106 m3 for groundwater irrigation) remains fairly static compared with the average level from 2003 to 

2013, and irrigation water allocated to winter wheat is considerably larger than that to maize. The significant drop of the purchase price 

of maize has an apparent effect on water allocation. For winter wheat, surface water allocation of 2016 increases from 129.445 × 106 to 

174.905 × 106 m3, and groundwater allocation increases from 24.511×106 m3 to 35.379 × 106 m3. For maize, surface water allocation of 

2016 decreases from 88.329 × 106 to 42.846 × 106 m3, and groundwater allocation decreases from 34.733 × 106 to 23.865 × 106 m3. Water 

allocation amounts for the five subareas of Shijin ID are 54.326 × 106, 31.187 × 106, 51.899 × 106, 39.311 × 106, and 33.779 × 106 m3 

respectively during the irrigation period of winter wheat, and are 16.693 × 106, 8.677 × 106, 16.151 × 106, 14.004×106, and 10.752 × 106 

m3 during the irrigation period of maize. Moreover, cumulative probability distribution functions of surface water and groundwater 

allocation amounts for winter wheat and maize were obtained. Further, the linear relations between the difference in purchase price and 

the difference in water allocation of winter wheat and maize were obtained as well. These results will help decision makers learn detailed 

water distribution information and thus help make comprehensive irrigation schemes under uncertainty in future. 

 

Keywords: agricultural water allocation, optimization, uncertainty, Monte Carlo simulation. 

 

 

1. Introduction 

Agriculture is the biggest consumer of limited water re-

sources and water scarcity had led to an increasing interest in 

optimization modeling of agricultural water resources systems 

(Li et al., 2016). There are many uncertainties in agricultural 

water management systems, such as the stochastic characters of 

precipitation, groundwater, irrigation quota, and so on (Mun et 

al., 2015). Considering the uncertainties in agricultural water re- 

sources planning and management is significant from both sci- 

entific and societal perspectives (Hassanzadeh et al., 2015). 

Many recent researches on agricultural water management un-

der uncertainty have been reported. For example, Wang et al. 

(2016) developed a type-2 fuzzy interval programming meth- 

od and applied it to the conjunctive use of surface water and 

groundwater in the Zhangweinan River Basin, China. Niu et al. 

(2016) developed an interactive two-stage fuzzy stochastic pro- 

gramming method and applied it to Hetao irrigation district,  
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China. Zeng et al. (2016) developed a joint-probabilistic inter-

val multistage programming method for planning water re-

sources management under uncertainty. Liu et al. (2015) devel- 

oped a fuzzy-boundary interval programming method and ap- 

plied it to water quality management in the Three Gorges Res- 

ervoir Region of Xiangxi River, China. Xu (2012) developed 

an interval-parameter stochastic chance-constrained program- 

ming model for urban water supply system including the mu- 

nicipal, agricultural and industrial sectors. These researches are 

worth learning by converting complex optimization problems 

under uncertainty into simple expressions based on interval and 

fuzzy techniques. However, the expressive information of these 

methods is limited and these models are not portable in most 

cases. In addition, accurate measurements of certain parame- 

ters such as irrigation and rainfall are critical to effectively man- 

age water resources for crop production (Mun et al., 2015). How- 

ever, the measured data actually vary in a certain range over 

time, and deterministic optimization models are inadequate to 

completely reflect the reality of agricultural water management. 

Therefore, stochastic mathematical methods based on proba- 

bility and mathematical statistics theories can be introduced into 

agricultural water resources allocation optimization models in 
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order to provide a more detail description on the uncertainties 

of agricultural water management.  

Monte Carlo (MC) simulation is such a stochastic mathe-

matical method based on the theory of probability and statistics 

(Metropolis and Ulam, 1949), which was proposed to check the 

feasibility of potential solutions (Xu and Qin, 2013). MC simu- 

lation has great superiority in handling a variety of uncertain fac- 

tors, because it can be useful to represent the uncertainty in the 

parameter estimation by random simulations (Gelman, 2015). 

The process of MC simulation under uncertainty includes distri- 

bution determination of uncertain factors and sampling based on 

probability distributions, evaluation of estimators and statistics 

test (Hunt and Miles, 2015). MC simulation has been widely 

used in fields such as inancial engineering and macroeconom-

ics. (Wang and Sloan, 2011; Greal, 2012) and it has been grad- 

ually introduced in agriculture water allocation recently. Many 

hydrological elements that affect agricultural water allocation 

are stochastic, such as runoff, precipitation, groundwater avail- 

ability. MC simulation is suitable to solve agricultural water prob- 

lems with properties of uncertainty. For example, Shen et al. 

(2015) randomly permutated daily rainfall values by MC sim- 

ulation in a hydrologic uncertain model. Assumaning et al. 

(2014) used MC simulation to predict uncertain decay of sub- 

surface contaminant in time and space for risk assessment and 

site remediation.  

In order to better solve the multiple uncertainties in agri-

cultural water management systems, it is necessary to integrate 

MC simulation with optimization models for agricultural water 

management. Graveline et al. (2012) proposed a methodology 

to assess uncertainty in hydro-economic models using MC sim- 

ulations. The simulations were based on farming models devel- 

oped for Midi-Pyrenees and Alsace, France. Matsui et al. (2006) 

studied the impacts of herbicide application on farming sched- 

ules by simulating the uncertainties and evaluating the sorption 

of herbicide decomposition using MC simulation. As an effec- 

tive assessment tool, MC simulation conduces to fully reflect un- 

certainties in agricultural water resources management. How- 

ever, incorporating MC simulation with optimization models in 

agricultural water management has been reported in limited 

cases, and this will be one of the focuses of this study.  

Agriculture in China is facing chronic water shortages, 

which is an important social and political issue with many do-

mestic and international implications (Veeck, 2013). As China 

is undergoing a challenging period, during which, agriculture 

began to develop rapidly with economic development. Mean-

while, water supply shortage has become a growing concern for 

the Chinese government and the public (Su, 2013; He et al., 

2020; Huang et al., 2020; Guo et al., 2020; Chen et al., 2020). 

Efficient water allocation is needed to deal with shrinking wa- 

ter resources. Efficient water allocation will be embodied by eco- 

nomic prices and the purchase prices of crops directly reflect 

the expenditures of agricultural systems. Hence, it is necessary 

for stakeholders and policy makers to evaluate tradeoffs between 

profitable crop production (related to the purchase prices of 

crops) and limited agricultural water resources (Ziolkowska, 

2015). However, variability of the purchase prices of crops is a 

practical difficulty when evaluating water resources (Kim and 

Kaluarachchi, 2016). In China, from 2008, the government has 

implement institution of the purchasing and storage of maize, 

leading to the purchase price of maize increases every year, 

with 600 RMB/t higher than that of imported maize (RMB is the 

currency units of China). This results in the massive influxes of 

imported maize and the substitute for maize and as a direct re- 

sult, maize stocks face a huge overcapacity problem. In 2016, 

the supply-demand of agriculture in China is facing reform, and 

maize market takes a major step. This leads to a significant re- 

duce of the prices of maize and the huge price differential is 

unprecedented. How to re-allocate agricultural water resources 

with the consideration of stochastic distribution of the purchase 

prices of crops under such a new situation is a challenging that 

deserves attentions by decision makers.  

Therefore, the aim of this paper will develop an agricultur- 

al water management model by fully considering the stochastic 

characteristics of both hydrological and economic elements 

based on MC simulation. The potential of the developed mod- 

el is shown by applying to a case study in Shijin irrigation dis- 

trict (ID), in northern China. Shijin ID is a main grain-produc- 

ing area and it is influenced inevitably by the current economic 

situation of China. The effect of purchase prices of crops on 

agricultural water allocation based on the developed model will 

be analyzed in detail, and a series of agricultural water alloca- 

tion schemes under current economic situation will be obtain- 

ed, which will provide strategy suggestions for further adminis- 

tration on agricultural water resources of Shijin ID. 

2. Study System 

2.1. Study Area 

Shijin ID, located in Hebei Province, China, is a large ID 

with the irrigation area of 1.627 × 103 ha. The source of surface 

water for irrigation comes from Gangnan Reservoir and Huang- 

bizhuang Reservoir in the upper reaches. Many pumping wells 

are discretely distributed in Shijin ID. Groundwater from wells 

is used as a supplemental source of water to irrigate crops 

during water shortage periods or irrigates areas that far away 

from surface water source regions. The main crops in Shijin ID 

include winter wheat and maize. Besides, cotton and soybean 

are planted in a small amount. The growing period for winter 

wheat is from October to June in next year and the growing 

period for maize focuses from June to September. Most of the 

land are used for crop rotation of winter wheat and maize (Yang 

et al., 2015). The study area contains five main irrigation re- 

gions which connects with the reservoir and they are mainly 

distributed in the southern part of Shijin ID. The canal distribu- 

tions of the study area are shown as Figure 1. From Figure 1(a), 

it can be seen that the canal distribution presents tree structure, 

including main canal, trunk canal, sub-main canal, branch canal, 

lateral canal and sub-lateral canal. The flow direction of the 

main canal is from west to east and the flow direction of trunk 

canals is from north to south. The five studied subareas were 

divided based on the control area of each trunk canal as shown 

in Figure 1(b). 
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Figure 1. Study area: (a) Canal distribution, (b) Subareas. 

 

2.2. Modeling Formulation 

2.2.1. System Objective 

In agricultural systems, many system objectives are eco- 

nomic-related, such as maximizing system economic benefits 

(Kim and Kaluarachchi, 2016). Hence, the system objecttive in 

this study is to maximize the revenue of local farmers. The ex-

pression is provided as follows: 
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where i is the index for crops (i = 1, 2, …, iCrop); j is the index 

for subareas (j = 1, 2, …, iSubarea); k is the index for growth 

stage of crop i (k = 1, …, iStagei);
*f is the benefit of local farm- 

er (RMB); *

,C iC is the purchase price of crop i (RMB/kg); *

ijA is 

the planting area of crop i in subarea j (ha); Ym,i is the maximum 

yield of crop i under given management conditions (kg/ha); 
*

,c ijkET is the actual evapotranspiration of crop i in subarea j dur- 

ing growth stage k (mm); ETcm,ik is the maximum evapotranspi- 

ration of crop i during growth stage k (mm); λik is the sensitiv- 

ity to water stress of crop i during growth stage k; CWs,j is the 

surface water price for local farmers in district j (RMB/m3); 
*

ijkW is the surface water availability for crop i in district j dur- 

ing growth stage k (m3); CWg is the groundwater cost for local 

farmers (RMB/m3); *

ijkWg is the groundwater availability for crop 

i in district j during growth stage k (m3). Among above param- 

eters, 
* * * *

,, , , ,C i ij ijkf C A W and 
*

ijkWg  are uncertain parameters. 

In the objective function, the yields of different crops are 

calculated by Jensen model, from which, relative yield through 

relative evapotranspiration can be obtained (Igbadun et al., 

2007). The decision variables are surface water availability *

ijkW  

and groundwater availability * .ijkWg Meanwhile, the actual evap- 

otranspiration *

,c ijkET can be calculated by the decision variables 

using water balance equation. Therefore, it is obvious that the 

system has an objective with nonlinear characteristic. Then the 

revenue of local farmers can be obtained based on the purchase 

prices of crops. 

There are many factors affecting crop growth, such as so- 

lar radiation, temperature, plant moisture stress and nutrition 

(Muchow et al., 1990; Amir and Sinclair, 1991). However, many 

of these influence factors have been reflected in the Jensen mod- 

el, so these is no need to consider so many factors in optimiza- 

tion modeling of agricultural water resources systems for this 

study. Considering excessive factors will generate a complex 

optimization model with complicated calculation procedures. 

 

2.2.2. System Constraints 

The constraints of the developed model contain evapotran- 

spiration constraints, water availability constraints and nonneg- 

ative constraints.  

(1) Evapotranspiration constraints 

These constraints restrict the reasonable ranges of 

*

, .c ijkET  

Crop evapotranspiration must be larger than the minimum evap- 

otranspiration and smaller than the maximum evapotranspira- 

tion. The constraints can be expressed as follows: 
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where 
*

ijkP  is the precipitation for crop i in district j during the 

growth stage k (mm). 

(2) Surface water availability constraint 

This constraint restricts the maximum surface water avail- 

ability and it can be expressed as follows: 

 

,
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where ηs,j is the utilization coefficient of surface water for irri-

gation in district j; Wsa is the amount of surface water availa-

bility for irrigation (m3). 

(3) Groundwater availability constraint 

This constraint restricts the maximum groundwater avail-

ability in each district and it can be expressed as follows: 
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where ηg, j is the utilization coefficient of groundwater for irri-  
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Table 1. Parameters in Jensen Model for All Growth Stages 

Crop Parameters Growth Stages 

Winter Wheat Name Seedling Overwintering Reviving Booting Heading Ripening 

 λ 0.1721 0.0411 0.0591 0.1694 0.3108 0.1895 

 ETcm (mm) 66.00 80.40 115.96 134.00 67.00 127.82 

 Ym (kg/ha) 7569      

Maize Name Seedling Booting Tasseling Ripening   

 λ 0.0557 0.1106 0.3197 0.2113   

 ETcm (mm) 28.50 62.80 133.00 201.00   

 Ym (kg/ha) 6900      

 

Table 2. Parameters of Gamma Distribution of Precipitation in Crops’ Growth Stages 

Crop Parameters Growth Stages 

Winter wheat Name Seedling Overwintering Reviving Booting Heading Ripening 

 phat 1.536 1.525 0.814 1.517 3.443 3.214 

 pci 2.213 0.441 1.497 1.300 0.757 2.063 

 χ2 0.02660 0.323 0.009 0.144 0.416 1.537 

Maize Name Seedling Booting Tasseling Ripening   

 phat 2.235 8.303 5.863 11.211   

 pci 2.383 1.551 1.154 0.995   

 χ2 0.1521 0.886 0.619 0.329   

Note: phat is the shape parameter; pci is the scale parameter; χ2 is the Chi-square statistics. 

 

gation in district j; Wgaj is the amount of groundwater availa- 

bility for irrigation in district j (m3).  

(4) Nonnegative constraints 

These constraints require that the decision variables must 

be nonnegative. 

 
* 0 , ,ijkWs i j k   (6) 

 
* 0 , ,ijkWg i j k   (7) 

 

2.3. Data Sources 

Winter wheat and maize were chosen as the study crops in 

this study because they occupy the most planting areas of the 

studied irrigation regions. Let iCrop = 2, with i = 1 representing 

winter wheat and i = 2 representing maize; iSubarea = 5 repre-

sents the five subareas according to trunk canal distributions; 

iStage1 = 6 represents six growth stages of winter wheat, includ- 

ing seedling, overwintering, reviving, booting, heading and rip- 

ening; iStage2 = 4, represents four growth stages of maize, in- 

cluding seedling, booting, tasseling and ripening. The growth 

parameters of the Jensen model of the two crops come from 

Farmland Irrigation Research Institute, Chinese Academy of 

Agricultural Sciences (Yang et al., 2015) and the related val- 

ues of the parameters are shown in Table 1. 

Many parameters in the developed model are uncertain, 

such as, precipitation, groundwater amount, purchase prices of 

crops, planting area. The key of MC simulation is to analyze the 

uncertain parameters accurately, and then describe the value 

ranges and distribution characteristics of these uncertain pa- 

rameters. This study will reflect the characteristics of different 

kinds of uncertain parameters by MC simulation. 

Precipitation is a typical stochastic parameter and the 

amounts of single rain often present lognormal distribution 

(Biondini, 1976; Limpert et al., 2001). In most regions of China, 

precipitation in summer is basically matched with normal dis-

tribution, while in winter, precipitation obey non-normal distri- 

bution in most cases on annual and seasonal scale. Most areas 

in China, including northwest, northern and northeast parts, be- 

long to continental climates, and the distribution of the precip- 

itation in these areas deviates normal distribution seriously (Li 

et al., 1998; Fang et al., 2009; Zhang et al., 2009; Bai et al., 2014). 

For monthly precipitation, the gamma distribution is the more 

suitable probability model (Mooley, 1973; Husak et al., 2007). 

Shijin ID belongs to continental climates. According to the 

monthly precipitation data from 2002 to 2013, the distribution 

of precipitation disobeyed normal distribution; however, Gam- 

ma distribution can describe it well (Tang et al., 2014; Fan et 

al., 2015). This paper simulated the precipitation in each growth 

stage of crops using Gamma distribution based on MC simula-

tion. Through fitting the precipitation dataset spanning from 

2002 to 2013 by Matlab, the corresponding parameters of Gam- 

ma distribution of precipitation are obtained and shown in Ta- 

ble 2. The maximum Chi-square statistic of the fitting parame- 

ters is 1.537 which is less than the refusal area 
2

1,0.05 =x 3.84. 

Therefore, using Gamma distribution to describe precipitation 

is feasible. 

Groundwater availability is uncertain as well. Groundwa- 

ter availability was regarded to obey interval distribution be- 

cause past statistical information of groundwater availability is 

so limited to fit probability distribution with specific forms such 

as normal distribution. Groundwater availabilities of each sub- 

area are listed as Table 3. 

In order to make comparisons among different years, 

monthly purchase prices of winter wheat and maize are cho- 
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sen, among which, the purchase prices of the harvest month of 

the two crops were selected. That is, the purchase price of win- 

ter wheat was based on the price of June and the purchase price 

of maize was based on the price of October. The purchase prices 

of the two crops were expressed as interval forms, with Cw re- 

presenting the purchase price of winter wheat and Cm repre- 

senting the purchase price of maize (see Table 4). Particularly, 

the purchase prices of the two crops in 2016 refer to the corre-

sponding prices in April. 

 

Table 3. Groundwater Availability of Each Subarea (×106 m3) 

Subarea Groundwater Availability 

Subarea 1 [19.29, 21.45] 

Subarea 2 [14.61, 23.40] 

Subarea 3 [5.97, 7.70] 

Subarea 4 [6.86, 7.14] 

Subarea 5 [12.06, 21.41] 

 

Table 4. Purchase Prices of Winter Wheat and Maize (RMB/kg) 

Year 
Purchase Price of  

Winter Wheat Cw 

Purchase Price of  

Maize Cm 

2003 [1.04, 1.07] [1.30, 1.34] 

2004 [1.54, 1.60] [1.30, 1.35] 

2005 [1.48, 1.51] [1.40, 1.42] 

2006 [1.40, 1.45] [1.58, 1.60] 

2007 [1.66, 1.70] [1.79, 1.81] 

2008 [1.68, 1.70] [1.55, 1.58] 

2009 [2.04, 2.10] [1.60, 1.63] 

2010 [2.08, 2.14] [2.05, 2.08] 

2011 [2.10, 2.12] [2.20, 2.21] 

2012 [1.90, 2.10] [1.90, 1.93] 

2013 [2.50, 2.52] [2.28, 2.29] 

2016 [2.40, 2.46] [1.50, 1.67] 

 

According to statistic data, the planting areas of winter 

wheat and maize approximately obey normal distributions, and 

the relevant parameters of fitted normal distributions can be seen 

in Table 5. Although there is a significant change in the purchase 

prices of maize in 2016, the planting area of maize was consid- 

ered to remain relatively unchanged over the past years because 

(1) farmers are accustomed to adopt previous planting patterns 

since they are insensible of how much area is proper with few 

references; (2) famers rarely plant other crops and there are a- 

bundant rainfall during the growth period of maize, thus farm- 

ers can still obtain benefits through planting maize even with- 

out irrigation. 

In total, the distribution characteristics of the uncertain pa- 

rameters of the developed model are shown in Table 6. There 

are in total three types of distributions for the four uncertain 

parameters. It is difficult with heavy workload if using trade- 

tional method to solve the developed model, thus MC simula- 

tion was adopted to address these uncertain parameters. 

3. Result Analysis 

According to the solution process of MC simulation, first- 

ly, discretize the four kinds of uncertain parameters into a num- 

ber of parameters based on their distribution characteristics; sec- 

ondly, optimize the obtained parameters of the four kinds of un- 

certain parameters and a large number of optimal solutions were 

obtained; thirdly, comprehensively analyze and discuss theses 

optimal solutions. The research process is shown in Figure 2. 

 

3.1. Analysis of System Benefit and Irrigation Amounts 

3.1.1. Optimal Results from 2003 to 2013 

Through solving the developed model of uncertain param- 

eters based on historical data, the relationship between system 

benefit and irrigation amount (both surface water and ground- 

water) was obtained from 2003 to 2013 (see Figure 3). From Fig- 

ure 3(a), it can be seen that during the growth period of winter 

wheat under the economic situation in previous years, the aver- 

age surface water irrigation amount is 129.445 × 106
 m3, ranging 

from 84.775 × 106
 to 166.000 × 106

 m3; the average groundwater 

irrigation amount is 24.511 × 106
 m3, ranging from 4.198 × 106

 to 

47.410 × 106 m3; the average system benefit is 911.084 × 106 

RMB, ranging from 583.183 × 106 to 1295.569 × 106 RMB. As 

Figure 3(a) shows, data points present hierarchical structure on 

the axis of system benefit. The reason is that the economic pa- 

rameters of the model are expressed as piecewise intervals (see 

Table 4). The discontinuity of the purchase prices of crops leads 

to the randomly generated data by using MC simulation. As the 

table shows, the purchase prices of crops have discrete distri- 

bution forms. Especially the purchase prices of 2003 and 2013 

have large difference than other years. The purchase prices of 

crops in 2003 was the lowest, with only [1.04, 1.07] RMB/kg 

for winter wheat, leading to the optimized data concentrate on 

the bottom of Figure 3(a), i.e., concentrate on the location with 

system benefit of 600.786 × 106
 RMB. For 2013, the purchase 

prices of crops was the highest ([2.50, 2.52] RMB/kg for winter 

wheat); therefore, the optimized data concentrate on the top of 

Figure 3(a), i.e., concentrate on the location with system bene- 

fit of 1255.797 × 106 RMB. 

From Figure 3(b), during the growth period of maize un- 

der the economic situation in previous years, the average sur- 

face water irrigation amount is 88.329 × 106 m3, ranging from 

51.927 × 106
 to 132.761 × 106

 m3; the average groundwater irri- 

gation amount is 34.733 × 106
 m3, ranging from 12.168 × 106

 to 

51.024 × 106
 m3. Irrigation amount for maize is less than winter 

wheat from 2003 to 2013. It is because that maize can produce 

more food from less water attributing to its higher crop water 

productivity under the same irrigation conditions (Zwart and 

Bastiaanssen, 2004). The growth period of maize is mainly in 

summer and autumn with abundant precipitation, while the pe- 

riod of winter wheat is mainly in droughty winter and spring. 

The water consumption of winter wheat during its growth peri- 

od greatly exceeds the precipitation. Thus, supplemental irriga- 

tion is very important to winter wheat production (Liu et al., 

2002). As there is abundant precipitation during the growth pe- 

riod of maize, it needs only a small amount of irrigation for 

maize to obtain larger economic outputs. In addition, the pur- 

chase prices of both winter wheat and maize remain the same 

basically, therefore, the purchase price is not the major reason  
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Figure 2. Flow chart of the study. 

 

that affects the irrigation water allocation amount. 

Comprehensively considering the irrigation water amount 

of the two crops, the surface irrigation water amount concen-

trates in a particular range ([217.440, 218.136] × 106 m3) with 

the average level of 217.774 × 106 m3
. Groundwater irrigation 

amount ranges from 51.765 × 106 to 66.266 × 106 m3. The ball 

distribution of both surface water and groundwater for the two 

crops concentrates in a small range as seen in Figure 3(c). This 

favorable allocation result is because that the allocation results 

of the two crops are considered simultaneously. 

 

3.1.2. Optimal Results in 2016 

The No. 1 Central Document coming from the Central 

Committee of the Communist Party of China declared the spe- 

cific deployment and requirement of maize, that is, actively and 

steadily promote the purchase and storage reform of maize ac- 

cording to the principles of market-set price, and separation of 

price and subsidy. The aim of the reform is to make the maize 

market in China integrate with international market in next few 

decades. In 2016, the purchase price of maize has fallen sub- 

stantially as seen in Table 4. The purchase prices of winter 

wheat and maize respectively are [2.40, 2.46] RMB/kg and 

[1.50, 1.67] RMB/kg in April in 2016, with the price differen- 

tial is 0.9 RMB/kg. While the purchase prices of winter wheat 

and maize remained about the same during 2003 to 2013, with 

the biggest price differential is 0.4 RMB/kg in 2009. The influ- 

ence of the significant decrease of maize on economic benefit 

and irrigation water allocation under the new policy is pretty 

conspicuous. Based on the purchase price of crops in April in 

2016, the relationship of the optimized system benefits and ir- 

rigation water amount (both surface water and groundwater) is 

shown in Figure 4. 

From Figure 4(a), during the growth period of winter 

wheat under the new economic situation, the average surface 

water irrigation amount is 174.905 × 106 m3, ranging from 

153.108 × 106 to 192.992 × 106 m3; the average groundwater 

irrigation amount is 35.379 × 106 m3, ranging from 22.326 × 

106 to 52.933 × 106 m3; the average system benefit is 1066.755 

× 106 RMB, ranging from 1012.847 × 106 to 1123.634 × 106 

RMB. For maize as seen from Figure 4(b), the average surface 

water irrigation amount is 42.846 × 106 m3, ranging from 24.637 

× 106 to 64.658 × 106 m3; the average groundwater irrigation 

amount is 23.865 × 106 m3, ranging from 8.427 × 106 to 39.755 

× 106 m3. Irrigation amount of maize is far less than that of 

winter wheat, attributing to the purchase prices of crops in 2016. 

The economic outputs of maize is lower than that of winter 

wheat under the same water quantity, leading to the water allo- 

cation give priority to winter wheat. The ball distribution of the 

total water allocation of winter wheat and maize concentrates 

on a small range as seen in Figure 4(c). Total average surface 

water allocation amount remains at 217.751 × 106 m3, with the 

lower bound of 217.460 × 106 m3 and the upper bound of 

218.017 × 106 m3. Total groundwater allocation amount ranges 

from 51.765 × 106 to 66.266 × 106 m3.  

 

3.1.3. Optimal Results Comparison 

Compared the optimal results of 2016 with the results of 

2013, the system economic benefit in 2016 deceases slightly, 

dropping from 1255.797 × 106
 to 1066.754 × 106

 RMB. The main 

reason is the purchase price of maize decreases significantly, 

with the decrease amplitude achieves around 30% through the 

comparison of the purchase price in 2013 and 2016, and the pur- 

chase price of winter wheat remains probably the same. There- 

fore, the economic benefit in 2016 is lower than that of 2013. 

In terms of the water allocation amount, more water will be al- 

located to winter wheat, and the amount increases from 153.956 

× 106
 m3

 during 2003 ~ 2013 period to 210.284 × 106
 m3

 in 2016 
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          Table 5. Planting Areas of the Two Crops of Each Subarea (ha) 

Subarea Planting Area of Winter Wheat Planting Area of Maize 

Subarea 1 N(13752.42, 239.462) N(13914.13, 91.602) 

Subarea 2 N(8236.83, 232.432) N(8225.17, 223.912) 

Subarea 3 N(12887.85, 545.342) N(12887.85, 545.342) 

Subarea 4 N(9417.83, 19.002) N(9760.17, 124.332) 

Subarea 5 N(8449.10, 832.302) N(8449.10, 832.302) 

 

                    (a) Winter wheat         (b) Maize 

  
 

(c) Total crops 

   
 

Figure 3. Three dimensional scatter plot of the relationship between system benefit and irrigation amount (both surface water and 

groundwater) from 2003 to 2013. 

 

in general. This phenomenon shares the same reason as that of 

the decreased economic benefit. 

Figure 5 shows the results comparison between 2016 and 

the average level from 2003 to 2013. Total water allocation 

amount remain approximately the same. Total surface water al- 

location amount in 2016 achieves the upper bound of surface 

water availability basically compared with the results of pre- 

vious years, and the same trend applies to groundwater alloca- 

tion amount. However, winter wheat is allocated more surface 

water than before, increasing from 129.445 × 106 to 174.905 × 

106 m3 as the average level, and groundwater allocation in- 

creases from 24.511 × 106
 to 35.379 × 106

 m3. However, the av- 

erage surface water allocation amount for maize decreases from 

88.329 × 106 m3 in previous years to 42.846 × 106 m3 in 2016, 

and the average groundwater allocation amount decreases from 

34.733 × 106 m3 in previous years to 23.865 × 106 m3 in 2016. 

This phenomenon shows that the substantial fall of the price of 

maize significantly affects the allocation schemes. 

 

3.2. Analysis of Irrigation Amounts of Subareas 

This study uses scatter plots to study the surface water and 

groundwater allocation conditions of each subarea under the 

new economic policy (see Figure 6). As surface water and  

 Data points in the three-dimensional space  

  Projection of data points on the plane of   

     system benefit and groundwater availability  

 Projection of data points on the plane of   

     system benefit and surface water availability  

 Projection of data points on the plane of   

     surface water availability and groundwater   

     availability 
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                  (a) Winter wheat         (b) Maize 

  
 

(c) Total crops 

   
 

Figure 4. Three dimensional scatter plot of the relationship between system benefit and irrigation amount (both surface water and 

groundwater) in 2016. 

 

 
 

Note: WS means the surface water allocation of winter wheat; WG 

means groundwater allocation of winter wheat; MS means surface wa- 

ter allocation of maize; MG means groundwater allocation of maize; 

TS means total surface water allocation; TG means total groundwater 

allocation; The upper and lower endpoints of error bars mean the max- 

imum and the minimum water allocation amounts. 

Figure 5. Comparison of optimization results. 

Table 6. Distributions of the Four Uncertain Parameters 

Parameters Distributions 

Precipitation Gamma Distribution 

Groundwater Availability Interval Distribution 

Purchase Price of Crops Interval Distribution 

Planting Area Normal Distribution 

 

groundwater are of equal importance, the form of y = – x + c 

was adopted to fit the trend line, where x and y represent sur- 

face water availability and groundwater availability respective- 

ly, and c represents the summation of surface water availability 

and groundwater availability. It can be seen from Figure 6 that 

the average water allocation amounts for winter wheat from 

subarea 1 to subarea 5 are 54.326 × 106, 31.187 × 106, 51.899 × 

106, 39.311 × 106 and 33.779 × 106 m3; for maize are 16.693 × 

106, 8.677 × 106, 16.151 × 106, 14.004 × 106
 and 10.752 × 106

 m3. 

In all subareas, the optimal allocation amount for winter wheat 

is larger than that for maize and the proportion is about 3:1. Fig- 

ure 6 also provides the intervals of 95% and 50% confidence  

 Data points in the three-dimensional space  

  Projection of data points on the plane of    

     system benefit and groundwater availability  

  Projection of data points on the plane of  

     system benefit and surface water availability  

  Projection of data points on the plane of   

     surface water availability and groundwater     

     availability 
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(a) W1         (b) M1 

   
 

(c) W2         (d) M2 

   
 

(e) W3         (f) M3 

   
 

 

 (g) W4         (h) M4 

   
 

 

Surface water availability (×106 m3) Surface water availability (×106 m3) 

Surface water availability (×106 m3) Surface water availability (×106 m3) 

Surface water availability (×106 m3) Surface water availability (×106 m3) 

Surface water availability (×106 m3) Surface water availability (×106 m3) 
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(i) W5         (j) M5 

     
 

Note: The dotted line represents the median of the optimal range; The imaginary line represents the allocation bounds of 50% confidence level; 

The solid line represents the allocation bounds of 95% confidence level; The first letter of the figure name means the kind of crops, with W repre- 

senting winter wheat and M representing maize, and the second letter means the number of subarea, for example, W1 means the water allocation 

results of winter wheat in subarea 1.  
 

Figure 6. Irrigation water allocation amount of each subarea in 2016. 

 

levels of irrigation water allocation amounts. For example, op- 

timal irrigation water amount of winter wheat has a 50% possi- 

bility occurs among the range of [53.196, 55.472] × 106, [30.408, 

31.875] × 106, [49.800, 53.558] × 106, [38.536, 40.015] × 106, 

and [31.274, 36.022] × 106
 m3

 of the five subareas, respectively. 

Optimal irrigation water amount of maize has a 50% possibil- 

ity occurs among the range of [15.658, 17.953] × 106, [8.087, 

9.266] × 106, [15.204, 17.410] × 106, [13.101, 14.970] × 106, and 

[9.706, 11.736] × 106 m3 of the five subareas, respectively. The 

water allocation width of winter wheat is about 2.746 × 106 m3, 

while the width of maize is about 1.916 × 106
 m3, slightly small- 

er than that of winter wheat. Figure 6 gives the water alloca- 

tion targets of winter wheat and maize in 2016. When using the 

developed model, decision makers can adjust actual water allo- 

cations for surface water and groundwater based on water avail- 

ability and precipitation conditions. 

 

3.3. Analysis of Crop Water Allocation Probability 

Distribution 

In order to study crops’ water allocation conditions in 2016, 

the cumulative probability distributions of winter wheat and 

maize were plotted as shown in Figure 7. Optimal water alloca- 

tion condition under a certain probability can be obtained from 

the cumulative probability distributions. For example, the prob- 

ability of surface water to winter wheat that less than 174.688 

× 106 m3 is 50%, and the probability of groundwater to winter 

wheat that less than 35.466 × 106 m3
 is 50%. Likewise, the prob- 

ability of surface water to maize that less than 42.979 × 106 m3 

is 50%, and the probability of groundwater to maize that less 

than 24.198 × 106 m3 is 50%. 

 

3.4 The Impact of Purchase Prices of Crops on Water 

Allocation 

Purchase prices of crops directly affect the economic ben- 

efits and thus affect the irrigation water allocation. In order to 

analyze the influence relations between purchase prices and wa- 

ter allocation of winter wheat and maize, the relationship be- 

tween the difference of purchase price of winter wheat and maize 

and the difference of water allocation amount of winter wheat 

and maize was studied based on the optimal results of both 

2016 and 2003 ~ 2013 period (see Figure 8). It can be seen from 

Figure 8 that there keeps a linear relationship between the dif- 

ference of purchase price and the difference of water alloca- 

tion amount of winter wheat and maize. The fitting formula is 

∆S = 130.733∆C + 29.975, and correlation coefficient R2
 is above 

0.935. The fitting effect is good and the fitting formula can be 

used to describe the relation between the difference of purchase 

price and the difference of water allocation amount. When ∆C 

= 0, i.e., the purchase prices of winter wheat and maize are the 

same, then ∆S = 22.190, indicating that the water optimal allo- 

cation for maize is 22.190 × 106 m3 greater than that for win- 

ter wheat. From Figure 8, it can also be seen that data points 

are discrete when ∆C = 0.23, with a large difference to the trend 

line. In other words, when ∆C = 0.23, ∆S has a larger freedom 

degree, indicating that water resources can be adjusted between 

winter wheat and maize in a larger range. That is, when the pur- 

chase prices of winter wheat is 0.23 RMB/kg higher than that of 

maize, the benefits obtained from winter wheat and maize are 

approximately equal, and water resources are adjustable be- 

tween the two crops. 

4. Discussions 

This paper developed an agricultural water allocation mod- 

el under uncertainty by coupling with MC simulation for the five 

subareas in Shijin ID. For the study area, Yang (2016) devel- 

oped a fuzzy interval multiobjective programming approach and 

a decision support system for irrigation scheduling. However, 

in our study, the method based MC simulation is adopted to deal 

with the multiple uncertainties. The study analyzed optimal wa- 

ter allocation under the current economic situation which has not 

been considered in previous studies.  

The determination of the purchase prices of crops is impor- 

tant as they affect the allocation schemes directly. Generally,  

Surface water availability (×106 m3) Surface water availability (×106 m3) 
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                 (a) Winter wheat – Surface water      (b) Winter Wheat – Groundwater 

  
 

  (c) Maize – Surface water        (d) Maize – Groundwater 

  
Figure 7. Cumulative distribution curve of crop water allocation amount in 2016. 

 

 
 

Note: ∆C (∆C = Cw – Cm) means the difference of purchase price of 

winter wheat and maize; ∆S (∆S = Sw – Sm) means the difference of the 

optimal water allocation (the summation of surface water amount and 

groundwater amount) of winter wheat and maize; the solid line is the 

fitted trend line and the two dash lines are auxiliary lines. 
 

Figure 8. Influence relation between purchase prices and 

water allocation of crops. 

 

three aspects deserve consideration when determining the pur-

chase prices of crops. Firstly, the purchase prices of crops should 

select the prices in the harvest period from the angle of system 

benefit, that is, for winter wheat, the purchase of June should be 

chosen and for maize, the price of October should be chosen. 

Secondly, from the angle of crop planting, the planting area val- 

ue is determined in the early stage of crop planting, and the pur- 

chase price in this stage will directly affect the planting area and 

thus affect the system benefit during the whole growth period of 

crops. Thirdly, during the irrigation periods, water allocation 

may be affected by the purchase prices of crops. From this point, 

the purchase price of crops during the irrigation period should 

be chosen. From sowing to harvest, there is a long period dur- 

ing which the economic situation may change. Generally, the 

purchase price of a certain growth period may be chosen as the 

input of optimization model. This paper selected the purchase 

prices of crops in April in 2016 as one of the inputs of the de- 

veloped model. In fact, this purchase price does not belong to 

the three aspects when determining the purchase prices of crops 

mentioned above. However, the purchase prices of crops in April 

of 2016 are the newest price data which can represent the new- 

est economic situation. The purchase price in which stage should 

be chosen deserves further study. 

In previous years, the purchase prices of winter wheat and 

maize remain the same basically, while there is a significant de- 

crease of the purchase price of maize in 2016, with the decrease 

amplitude achieves 0.90 RMB/kg (see Figure 5). From Figure 8, 

the scatters occur in the right side under the purchase price of 

maize in 2016, experiencing a big gap compared with the results 

in previous years. The optimal results in 2016 were optimized in 

the new economic situation, without any references from pre- 

vious years because the changes of the purchase price of maize 

is rare. Therefore, facing the allocation schemes under previous 

economic situation and under the new economic situation, which 

Optimal surface water availability (×106 m3) Optimal groundwater availability (×106 m3) 

Optimal groundwater availability (×106 m3) Optimal surface water availability (×106 m3) 
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scheme farmers should choose has a great uncertainty and need 

verification using future data. 

Through the detailed analysis on the optimal results of the 

developed model, MC simulation is considered as an effective 

tool in dealing with different kinds of stochastic parameters. 

MC simulation enables the results to be expressed as probabil-

ity distributions intuitively which overcomes the limitation of 

traditional optimization method. In the field of agricultural wa- 

ter management, coupling the MC simulation into optimization 

model has large potentialities. 

5. Conclusions 

This paper studied the irrigation water allocation schemes 

for winter wheat and maize and for the five subareas in Shijin 

ID based on the developed water allocation optimization model 

considering the uncertainties of precipitation, water availabil- 

ity, purchase prices of crops, planting area using MC simula- 

tion. Results show that water allocation amount to winter wheat 

in 2016 should more than previous years for higher economic 

benefits. On the contrary, water allocation of maize would be 

less owning to its purchase price fell sharply in 2016. 

The total optimal water allocation amount remains fairly 

static compared with average level from 2003 to 2013, while 

winter wheat is given priority in water allocation. For winter 

wheat, surface water allocation of 2016 increases from 129.445 

× 106 to 174.905 × 106 m3, while groundwater allocation in- 

creases from 24.511 × 106
 to 35.379 × 106

 m3. During the irriga- 

tion period of winter wheat, water allocation amount for the five 

subareas of Shijin ID are 54.326 × 106, 31.187 × 106, 51.899 × 

106, 39.311 × 106, and 33.779 × 106
 m3, respectively. During the 

irrigation period of maize, water allocation amount for the five 

subareas of Shijin ID are 16.693 × 106, 8.677 × 106, 16.151 × 

106, 14.004 × 106, and 10.752 × 106 m3. Relationship between 

benefits and water amounts was shown using 3D diagram. Cu- 

mulative probability distributions of both surface water and 

groundwater for winter wheat and maize were obtained in 2016. 

In addition, there keeps a linear relationship between the differ- 

ence of purchase price and the difference of water allocation 

amount of winter wheat and maize. However, when the purchase 

price of winter wheat is 0.23 RMB/kg higher than maize, the 

benefits obtained from winter wheat and maize are approxi- 

mately equal and water resources are adjustable between the 

two crops, indicating that water resources can be adjusted be- 

tween winter wheat and maize more freely. 

The application of the proposed method into a real case 

study of Shijin ID demonstrated that it is feasible to deal with 

the multiple uncertainties using MC simulation in agricultural 

water management systems. MC simulation is an effective meth- 

od in handling the value ranges and distribution characteristics 

of uncertain parameters. MC simulation enables the results to 

be expressed as probability distributions intuitively, and the in- 

tegration of MC simulation with optimization models in agricul- 

tural water management can solve the complex practical prob- 

lem under multiple uncertainties. It will become a favorable tool 

in tacking the complexity in agricultural water management. 
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