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ABSTRACT. In South Korea, the endangered Eurasian otter (Lutra lutra) populations have been recovered throughout the country. 

To examine the status of otter populations, we monitored spraint densities at 250 ~ 355 sites annually from 2014 to 2017 in the 

Nakdong River basin. The diffusion kernel method was applied to both binary and continuous spraint data. Two geographical popula- 

tions were identified: northern and southern populations. The northern population continuously increased over a broad area from north 

to south during the study period. In contrast, the southern population narrowly dispersed, limited by its location in an industrial area. 

The spatial self-organizing map (Geo-SOM) revealed associations between spraint densities and environmental factors by correlating 

the geographic locations of the sampling sites. Both populations were negatively affected by anthropogenic factors, including proximi- 

ty to factories and human population density. However, cumulative association of all environmental factors, including landscape, food 

sources, and anthropogenic factors, were noted in 2016 after which otter populations fully recovered. Population development stabi- 

lized while exhibiting an overall high association with environmental factors. The results of the diffusion kernel method and data 

variation according to the Geo-SOM consistently presented substantial change in population dispersal (i.e. the merge of two subpopu- 

lations, and complete associations between spraint and environmental factors). The combination of the diffusion kernel method and 

Geo-SOM was effective in portraying temporal changes in population states in association with environmental factors based on spraint 

data in the last phase of full recovery. 
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1. Introduction 

Eurasian otter (Lutra lutra) populations have been re- 

covered worldwide, particularly in Europe (Mason and Mac- 

donald, 2004; Elmeros et al., 2006; Janssens et al., 2006; 

Prigioni et al., 2007; Clavero et al., 2010). In Korea, otter 

population recovery is a current issue (Hong et al., 2017, 

2018). Industrial development and economic growth occurred 

rapidly in South Korea beginning in the 1960s, leading to a 

simultaneous decrease in wildlife (Won and Smith, 1999). 

However, efforts have been made to improve ecological con- 

servation and restoration, as well as increase public awareness 

and social concern for ecosystem services, particularly since  
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the 1988 Olympics (Hong et al., 2017). The regional estab- 

lishment and dispersal of otter populations in Korea have been 

reported by Hong (2016). However, there is no report specifi- 

cally addressing the relationship between otter populations 

and environmental factors in the short period spanning the 

final phase of recovery. We present a recent case of otter 

populations developing rapidly to reach full recovery in the 

survey area within Korea. We surveyed population dispersal 

and measured environmental factors on an annual basis from 

2014 to 2017. To extract information from the complex data 

representing population dynamics, we applied two computa- 

tional methods: diffusion kernel to reveal dispersal patterns, 

and a spatial self-organizing map (Geo-SOM) to address the 

effects of environmental factors on recovery.  

Spatial dispersal patterns were surveyed on a fine scale 

(0.02 sites per km2) over the course of full recovery for otters 

in Nakdong River basins. Previous research on the recovery 

of otter populations examined longer intervals (5 ~ 10 years) 

using coarse spatial scales (Cortés et al., 1998; Elmeros et al., 



S. Hong et al. / Journal of Environmental Informatics 37(2) 130-141 (2021) 

131 

 

 

2006; Prigioni et al., 2007). Furthermore, the data were main- 

ly binary (presence/absence at the sampled areas), whereas 

our observation data are quantitative, comprised of spraint 

densities. 

We started investigating spatial distributions using a sta- 

tistical approach that provided utilisation distributions in rela- 

tion to home range (Hayne, 1949; Calhoun and Casby, 1958; 

Van Winkle, 1975), a multiscale random walk (Loehle, 1990; 

Gautestad and Mysterud, 1993), and Monte Carlo simulations 

(Boulanger and White, 1990; Naef-Daenzer, 1993). Addition- 

ally, an approach has been reported useful for estimating spa- 

tial distribution patterns for single time point data according 

to pair-wise spatial correlations (Keeling et al., 2004). Ulti- 

mately, a kernel density estimator, a valuable tool for ana- 

lysing complex data (e.g., non-normal or multimodal) (Silver- 

man, 1986; Doucet et al., 2001), was used to address spatial 

visualisation of population distribution.  

To provide a closer examination of dispersal dynamics, 

nonparametric models were further developed. The diffusion 

kernel method is an effective tool provided that local sample 

data are interpolated over the entire spatial domain (Chen, 

1996; Blundell et al., 2001; See Seaman and Powell (1996) 

for review on ecological applications of the kernel density 

estimator). The kernels were devised to address diffusion pro- 

cesses as a special class of exponential kernel based on the 

heat equation, regarded as a discretisation of the Gaussian 

kernel over discrete structures (Kondor and Lafferty, 2004; 

Botev et al., 2010).  

In this study, we intended to use spraint densities to re- 

present population dispersal patterns. The use of faecal densi- 

ties in the estimation of otter populations and those of other 

Mustelids and carnivores has been studied extensively (Hut- 

chings and White, 2000; Webbon et al., 2004). Because Eura- 

sian otters primarily live and forage along streams, their home 

ranges tend to be linear in shape (Erlinge, 1967). However, 

faecal densities are also subject to uncertainty in the repre- 

sentation of population densities. Spraint production per indi- 

vidual is not well known (Green et al., 1984), and unknown 

proportions of spraints may be defecated in the water. For 

these reasons, some otter specialists deem spraints a poor 

method for monitoring otter populations (Kruuk and Conroy, 

1987).  

To resolve this problem, namely spraints data insuffi- 
ciently representing population dispersal, we opted for a step- 

by-step approach in utilization of data for spraint densities. 

We provided two types of data, binary and continuous, to pre- 

sent dispersal patterns of otter populations. Initially, we trans- 

lated the continuous data into binary data (see ‘Dispersal 

patterns based on diffusion kernel’ section in Materials and 

Methods): the transformed data only represented either exist- 

ence or absence of otters, not population density. After ap- 

plying the binary data, we further discussed the possibility of 

using the continuous data as a means of presenting population 

dispersal patterns. According to Mowry et al. (2011), spraint 

densities of otters are linearly and positively related with pop- 

ulation densities; although the species used in the referenced 

study differs from the species surveyed in our study, feeding 

and defecating behaviours are widely known to be similar 

(Rostain et al., 2004; Kruuk, 2006). Given that spraint densi- 

ties are proportional to population densities and the surveys 

were conducted by the same surveyor with the same protocol 

during the study period (see Materials and Methods), we 

could hypothesise that the spraint densities were effective 

means for representing relative densities. Although absolute 

densities were not known, the data was suspected to suffi- 

ciently depict the overall population trend (increase/decrease) 

throughout the survey area.  

We also investigated the relationship between otter pop- 

ulations and environmental factors during the course of recov- 

ery. Numerous environmental factors are involved in deter- 

mining the distribution of otter populations, including land- 

scape, food source, and anthropogenic disturbances (Cortés et 

al., 1998; Barbosa et al., 2003; Ruiz-Olmo et al., 2005, 2009, 

2011; Marcelli and Fusillo, 2009; Clavero et al., 2010). With 

respect to landscape factors, the proportion of riparian forest 

(Janssens et al., 2006; Van Looy et al., 2014; Zhang et al., 

2016), stream density (Prenda et al., 2001), vegetation cover 

(Scorpio et al., 2016), and altitude (Jo et al., 2017) were re- 

ported to be of notable importance for otter populations.  

To analyse the relationship between spraint data and 

environmental factors, we used a machine learning technique. 

Data for spraints and related environmental factors are com- 

plex and could not be easily analysed using simple methods 

such as linear regression (Kruuk, 2006; Cho et al., 2009). 

Instead, we used the self-organizing map (SOM) method to 

extract features from complex ecological data (Chon et al., 

1996, 2000; Cho et al., 2009; See Chon (2011) regarding 

SOM ecological application). Further, we utilised a SOM that 

included geographic information: the Geo-SOM. This tech- 

nique, developed by Bação et al. (2004), adds the geographi- 

cal location of sample sites to the SOM algorithm for training 

(Bacão et al., 2004, 2005). In this study, we attempted to 

demonstrate that associations between otter populations and 

environmental factors were effectively portrayed by the geo- 

graphic locations of sample sites based on Geo-SOM during 

the course of recovery. 

Employing the fine-scale dispersal data, we aimed to (1) 

define population dispersal patterns of otters during the last 

phase of full recovery in the Nakdong River basin, Korea, by 

applying diffusion kernel to the spraint data in field conditions, 

and (2) identify important environmental factors associated 

with otter populations using Geo-SOM. 

2. Materials and Methods 

2.1. Study Area 

The Nakdong River, occupying a principal watershed 

area in South Korea, flows approximately 520 km north to 

south with a catchment covering approximately 23,800 km2 (a 

quarter of South Korea’s land area), as illustrated in Figure 1. 

Approximately 60% of annual rainfall occurs during the short 

wet period from June to September (Jeong et al., 2007). The 

../../User/AppData/Local/Microsoft/Windows/INetCache/IE/6QV7WO5V/Jeong
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environment of the river basin has seen substantial improve- 

ment regarding forest development and water quality due to 

effective social campaigns and civil efforts (Hong et al., 2017). 

Consequently, the improved environmental conditions were 

suitable for the recovery of otter populations (Hong, 2018). 

Until the beginning of the 21st century, there were two otter 

populations located in different areas within the Nakdong 

River basin, partitioned into northern and south-western areas. 

The two separate populations originated as parts of two other 

populations in South Korea: south-central and northeastern 

populations (Hong, 2018).  

 

 
 

Figure 1. Study area. 250 sites between 2014 and 2016, and 

355 sites during 2017 in the Nakdong River basin. Red circles 

(47 sample sites) represent the consistent sites throughout 

survey periods (2014 ~ 2017). Light green (203 sample sites) 

and light red circles (308 sample sites) represent the survey 

sites from 2014 to 2016 and 2017, respectively. Dark and light 

blue lines show the main river and tributaries of local rivers 

near the east coast, respectively. The upper left panel shows 

South Korea, and the light green area in the rectangle 

represent the Nakdong River basin. 

 

2.2. Spraint Density Measurement 

Otter spraints were observed along the main trajectories 

of the Nakdong River. Along a 600 m transect, we recorded 

the starting point of each sample site and searched for spraints 

underneath bridges, rocks, and artificial concrete structures 

(Kruuk, 2006). We spent approximately 40 minutes to count 

the number of spraints per sample site. After sampling, we 

converted the number of spraints into indices of abundance 

(number of spraints per metre). At each site where spraints 

were collected, a GPS reading (GPSMAP 64s, GARMIN) was 

taken to measure the distance from the starting point. All 

surveys were conducted by the same experienced surveyor. 

For 45 days (May 1st to June 15th) each year from 2014 to 

2016, 250 sample sites were observed. In the same 45-day 

period of 2017, the survey was conducted at 355 sample sites 

to fulfil the objective of the research project (MOE/NIER, 

2017) that suggests examination of dispersal degree over a 

broad area in the last year of the survey. 

 

2.3. Environmental and Biological Variables 

To characterize biological and environmental factors as- 
sociated with otter recovery, landscape, food source, and an- 

thropogenic stressors were selected considering previous re- 

ports on otter habitat preference (Cortés et al., 1998; Barbosa 

et al., 2003; Cho et al., 2009), as stated above. We included 

forest, water area, vegetation, and altitude for the survey in 

this study. In addition to the proportion of riparian forest, we 

also observed distance to the forest, as this factor was pre- 

viously related to otter presence in the mountainous area 

(Teresa et al., 2014; Scorpio et al., 2016). The two landscape 

factors, densities of water areas (streams, lakes, rivers, off- 

shore seas, and dams) and riparian forests, within the buffer 

area (2.5 km radius; 15 km2 indicating adult male home range; 

Erlinge, 1967; Min, 2007) were added using the join tools of 

ArcMap 10.5 (ESRI, USA). 

For food sources, we used the number of fish individuals 

(NFI), Fish Assessment Index (FAI), and Benthic Macro- 

Invertebrate Index (BMI). The number and biomass of fish 

plays an important role in determining population dispersal, 

abundance (Sjoasen, 1997; Barbosa et al., 2003; Cho et al., 

2009), and stability for otters (Ruiz-Olmo et al., 2005, 2009, 

2011; Vergara et al., 2014). We could not include biomass 

due to limited data and substantial measurement effort. FAI is 

an index representing ecosystem health based on fish species 

composition; while the number of fishes indicates the amount 

of food available for otters, FAI indicates whether or not the 

habitat conditions at the sample area are suitable for otters 

(Hong et al., 2018). In addition, to account for the food chain 

of otter populations in this study, we included a BMI index 

that considers benthic macroinvertebrates as a food source for 

fish.  

Anthropogenic factors are reported as a major constraint 

to increasing the population abundance and distribution of 

otters (Conroy et al., 1998, 2000; Robitaille and Laurence, 

2002; Zhang et al., 2016; Hong et al., 2017). Human popu- 

lation density (Robitaille and Laurence, 2002), distance to res- 

idence (Cho et al., 2009), road densities (Robitaille and Lau- 

rence, 2002), and traffic rates (Jo et al., 2017) have previously 

been recorded as important factors. We selected human popu- 

lation density (Hong et al., 2018) and distance to residential 

area (Cho et al., 2009). Marcelli and Fusillo (2009) reported 

that industrial areas had a negative impact on otter distribution. 

Considering a large proportion of the survey area was occu- 

pied by industry, we also included distance to factory areas. 

Road densities, however, were not included in this study as 

the sample sites were within 600 m of the river and the roads 

were mostly nearby (sampling largely started from a bridge 

over the river); therefore, the effect of roads could not be 

differentiated at such a narrow range in this study. The resi- 

dential and factory areas were determined using land cover 

maps (1 × 1 m resolution) distributed by the Ministry of Envi- 

ronment based on satellite remote sensing imagery (2010 ~ 

2013).  
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The sample sites were selected according to the Stream 

Health project by the Korean government (MOE/NIER, 2017). 

Bio-integrity was measured by assessing aquatic organisms 

(benthic diatoms, benthic macroinvertebrates, and fish) and 

canopy cover. Of the indices, we utilised altitude, canopy cov- 

er rate (%), BMI, FAI, and the number of fish individuals 

based on the survey by MOE/NIER (2017) (Hong et al., 2018). 

In 2017, the canopy cover rate was excluded due to a partial 

change in the project objective (MOE/NIER, 2017). The BMI 

and FAI were scored based on indicator and diversity values, 

ranging from 0 to 100 (MOE/NIER, 2017). The equations for 

calculating the indices are shown in Appendices S1 ~ S4.  

Three variables expressing anthropogenic stress were also 

measured, including distance to factory, distance to residence, 

and human population density within the buffer area. The dis- 

tances from the variables, including distance to mountains, 

were calculated to the nearest metre with a GIS tool (Arc Map 

10.5, ESRI, USA). The land cover maps were provided by the 

Ministry of Environment, EGIS from 2011 to 2014 at a 1 m 

resolution. The human population size (100 m resolution) was 

provided by BIZ-GIS (http://www.biz-gis.com). The data for 

all variables were log-transformed (with the exception of BMI 

and FAI) and normalised [0, 1] according to the minimum and 

maximum for each variable per year. 

 

2.4. Data Analysis 

2.4.1. Dispersal Patterns Based on Diffusion Kernel 

Diffusion kernel was applied to the binary and continu- 

ous spraint data to address population dispersal patterns over 

the course of recovery during the survey period between 2014 

and 2017 (Kondor and Lafferty, 2004). Initially, binary data 

were produced from the continuous data. If at least one spraint 

was found at the sampling site, we considered otter present in 

the survey area (Presence, 1), otherwise the sampling site had 

no otter (Absence, 0). Accordingly, the uncertainty inherent in 

using continuous values of spraint densities to represent popu- 

lation densities would be alleviated: the transformed data only 

represented either existence or absence of otters, not popula- 

tion densities. Given the large number of sample sites sur- 

veyed on a fine-scale over a broad survey area, the simple 

presence/absence data could present population dispersal pat- 

terns. The diffusion kernel method was applied to the binary 

data (Seaman and Powell, 1996; Botev et al, 2010). After ana- 

lysing the binary data, diffusion kernel was subsequently ap- 

plied to the continuous data (number of spraints per 600 m), 

assuming the linear relationship between spraint and popula- 

tion densities (Mowry et al., 2011; See ‘Introduction’).  

The interpolation processes for applying diffusion kernel 

are outlined below (ArcGIS, http://pro.arcgis.com). The search 

radius was determined according to the formula: 

 

20 A

N

 
 
 

 (1) 

 

where A is the rectangular area that minimally covers the sur- 

vey area (46,101 km2 in 2014 ~ 2016 and 42,384 km2 in 2017), 

N is the total number of samples surveyed annually (250 in 

2014 ~ 2016 and 355 in 2017), and π is the circle rate. In our 

study, the radius was 34.26 km in 2014 ~ 2016 and 27.57 km 

in 2017.  

We applied diffusion kernel to the spraint data in two 

ways. First, environmental conditions were assumed to be ho- 

mogenous in the Nakdong River basin, where the cost of dis- 

persal remained constant over the whole survey area. Second, 

barriers to otter population dispersal were assumed to depend 

on land type. Diffusion kernel effectively addresses dispersal 

differentiation in heterogeneous environments with different 

costs to barrier crossing (ArcGIS 10.5); the cost of travel was 

considered as a source of spatial heterogeneity. In our study, 

the travel cost was assigned to urban areas which is the pri- 

mary limiting factor in otter dispersal (Marcelli and Fusillo, 

2009). The index of urbanisation, used as the weight for the 

cost, was measured with the focal statistics of ArcGIS 10.5. 

The number of cells (10 × 10 m resolution) occupied by the 

urban area was determined per 1 km radius circle on the map 

in which industrial areas were defined (Ministry of Environ- 

ment, 2010 ~ 2013; Figure 2c). The cell numbers for the ur- 

ban area varied between 0 and 279. The numbers were di- 

vided into nine groups (1: 0 ~ 4, 2: 4 ~ 12, 3: 12 ~ 26, 4: 26 ~ 

45, 5: 45 ~ 68, 6: 68 ~ 94, 7: 94 ~ 125, 8: 125 ~ 164, 9: 164 ~ 

279) according to the Jenks optimisation method (de Smith et 

al., 2007). The newly classified numbers were then regarded 

as cost values that served as a barrier for otter dispersion. The 

weight of the cost was used to respectively enlarge the cell 

distance; if the cost was high, the distance between the cells 

was increased. More diffusion processes were required based 

on the enlarged distances on the map, represented as additive 

barriers (http://pro.arcgis.com; Krivoruchko and Gribov, 2002): 

 

Barrier = (average cost value in the neighbouring cells) × 

(distance between cell centre) (2) 

 

2.4.2. Application of Geo-SOM to Identify Spraint Density 

Relationships 

SOM is a learning algorithm used in artificial neural net- 

works without supervision (without knowledge a priori), also 

frequently referred to as a Kohonen network (Kohonen, 1982; 

Chon et al., 1996). Although the SOM can be used mainly for 

training biological/environmental factors, additional informa- 

tion on geographical location could be accommodated in the 

Geo-SOM, which has been devised in such a manner that 

variables of sample sites are trained to geographic tolerance 

(Bação et al., 2005).  

Specifically, two processes are performed in the Geo- 

SOM. Initially, the geographic information is trained for each 

sample unit, and the sample sites of the closest corresponding 

unit are selected based on the geographic tolerance k. Only the 

sample sites chosen by geographic training are used for train- 

ing with environmental variables in the next round of the 

SOM. The detailed calculation processes for the Geo-SOM 

are described by Bação et al. (2005). 

http://www.biz-gis.com/
http://pro.arcgis.com/
http://pro.arcgis.com/
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Parameter k defines the radius magnitude in the output 

spaces with spatial influence at low levels of tolerance (Bação 

et al., 2005). As k (e.g., 1 ~ 12) increases, the radius of the 

neuron will also increase and more broadly cover the spatial 

range, consequently ensuring that geographic relationships 

with neighbouring vectors during training are to a large extent 

forced (see Bação et al. (2005) for detailed calculation pro- 

cesses of the Geo-SOM). In this study, we used the geo- 

graphic tolerance k = 0 with the maximum geographic effect. 

Slight variations were observed when different levels of k 

between 0 and 12 were applied to the Geo-SOMs. Considering 

the consistency of data variation among different levels of 

geographic tolerances, as well as accordance with real geo- 

graphical and environmental conditions, we chose the value k 

= 0 for the output.  

We determined the initial number of nodes as 5 n , ac- 

cording to Vesanto and Alhoniemi (2000). The number of 

nodes was adjusted through pre-training and 6 × 9 nodes were 

finally used as the SOM output layer. The learning rate was 

equal to 0.3 initially and decreased gradually to 0.1 as the 

training proceeded for fine tuning. In order to compare the 

Geo-SOM results with correlations, we also plotted correla- 

tion matrices using package ggplot2 in R Software v3.2.3 

(Wickham, 2016).  

The input matrix for the Geo-SOM was composed of 250 

(2014 ~ 2016) and 355 (2017) sample units and 11 (2014 ~ 

2016) and 10 (2017) environmental variables. As stated above, 

the environmental variables were landscape, including altitude 

(ALT), distance to forest (DFO), canopy cover rate (CAN), 

riparian forest zones within home range (ZFO), and water 

zones within home range (ZWA); food sources, including 

BMI, FAI, and number of fish individuals (NFI); and anthro- 

pogenic factors, including distance to factory (DFA), distance 

to residence (DRE), and human population (POP). Position 

data, latitude (LAT) and longitude (LON), were also included 

as input data per sample site for training by the Geo-SOM.  

3. Results 

3.1. Spraint Dispersal Patterns Based on Binary Data 

Figure 2 shows otter dispersal patterns when the diffu- 

sion kernel was applied to binary data (presence/absence) of 

spraint densities (see Materials and Methods) during the sur- 

vey period from 2014 to 2017. The upper panel of Figure 2a 

presents dispersal patterns under homogenous environmental 

conditions, where the cost of travel for otters was equivalent 

throughout the survey area, while Figure 2b considered the 

travel cost for otters under heterogenous environmental condi- 

tions (see ‘Dispersal patterns based on diffusion kernel’ in 

Materials and Methods). Two separate populations were ob- 

served in the north (N population) and south-west (S popula- 

tion) areas for both homogenous and heterogenous conditions. 

The centre area with the maximum occurrence probability 

was observed in the S population in 2014 (Figures 2a ~ b), lo- 

cated in the survey area surrounding the Hapcheon dam river 

basin (127.645E and 35.583N, arrow in Figure 2a). The pro- 

babilities according to the diffusion kernel in this area were 

continuously high across the survey period: initially the area 

of maximum occurrence probability was small and grew con- 

tinuously as the survey proceeded (Figures 2a ~ b). In the N 

population, however, the centre area was not clearly observed 

for both homogenous and heterogenous conditions (Figures 2a 

~ b).  

Dispersal pattern development differed between the two 

subpopulations as time progressed. While the N population 

spread somewhat horizontally from west to east with occur- 
rence probabilities extending broadly in the eastern area and 

then further dispersed to the south, the S population dispersal 

was limited to the left region of the south, bound by the indus- 

trial belt connecting Gumi-Daegu-Changwon north to south 

(see white dotted ellipses, Figures 2a ~ c). Notably, the S and 

N population merged in 2016 and separated again in 2017 

under homogenous environmental conditions (dotted ellipse 

in the right panel, Figure 2a).  

When the cost of travel was accounted for in the diffu- 

sion kernel method (i.e., higher cost associated with urban 

areas), as outlined in Figure 2b (see Materials and Methods), 

the general pattern was similar to the case of a homogeneous 

environment: two subpopulations were divided into northern 

and southern areas and then merged in 2016 (Figure 2b). 

However, differences were also observed. Overall, as expect- 

ed, the industrial and city areas had lower occurrence probabi- 

lities predominant across the north-south industrial belt con- 

necting Gumi, Daegu, and Changwon, as stated above. Fur- 

ther, lower otter occurrence probabilities were observed in the 

additional belt connecting Pohang, Ulsan, and Busan from 

north to south on the east coast of the survey area as well (see 

high levels of urbanisation (red colour) in the eastern coastal 

area, Figure 2c). Separation on the Gumi-Daegu-Changwon 

belt in the middle of the survey area was consistently ob- 

served throughout the survey area, including the heterogenous 

environment of 2016 (Figure 2b) when two populations were 

characteristically connected in the homogenous environment 

(Figure 2a).  

Based on the dispersal kernel method applied to both 

homogenous and heterogenous environments, otter popula- 

tions were prevalent during the survey period. But further ex- 

pansions were observed during the study period in areas of 

low occurrence probabilities, confirming a full population re- 

covery in the final phase (Hong et al., 2017). Due to the com- 

bination of the two subpopulations in 2016, populations fur- 

ther extended into local areas of low occurrence probabilities 

(Figure 2).  

 

3.2. Spatial Patterns of Environment-Spraint 

Relationships according to Geo-SOM  

In order to address impacts of environmental factors on 

otter populations during the survey period, a machine learning 

technique was applied to analyse the complex data exhibiting 

the existing relationships between spraint densities and en- 
vironmental factors. Geo-SOM presented associative patterns 

between spraint and environmental data effectively on the  
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Figure 2. (a) Four maps of binary data using diffusion kernel estimations. Arrows indicate origin of S population. (b) Four maps 

using diffusion kernel estimations with additive barriers (urban area densities). (c) Urban area densities. Red and green colours 

represent high and low levels of urbanisation, respectively. White dotted circles in the fourth map of panel (a), first, third, and 

fourth maps of panel (b), and map (c) indicate the industrial belts (Gumi, Daegu, and Changwon). 

 

 
 

Figure 3. U matrices for N population in (a) 2014, (b) 2015, (c) 2016, and (d) 2017; and S population in (e) 2014, (f) 2015, (g) 

2016, and (h) 2017. Sites clustered with high abundance of spraint densities in (i) N population and (j) S population. Hexagons 

ranging from light to deep purple and outlined in black indicate the strongest spatial clusters from earlier (2014) to later (2017) 

survey years, corresponding to study sites with the same-coloured circles in legend labels (i and j). Open white circles outlined in 

corresponding colours for each year indicate highest regional spraint density clusters (c, d) and sites (i). The arrow indicates the 

origin of the S population. 

 

ordination map (Figure 3; See ‘Application of Geo-SOM to 

identify spraint density relationships’ section in Materials and 

Methods). The odd and even lines (columns and rows) on the 

ordination map indicate the SOM output nodes and U-Matrix 

(Ultsch and Siemon, 1990). The different sizes of hexagons 

on the odd lines indicate clusters of sample sites on Geo-SOM 

(in this case, mainly located at the corners of the maps), while 

the colours on the even lines represent the U-matrix, with 

bright tones (e.g., yellow and orange) indicating a greater dis- 

tance between the nodes (Ultsch and Siemon, 1990). The 

largest clusters with the highest number of sample sites on the  

ordination map (Figures 3a ~ d and 3c ~ h) are surrounded by 

black outlines. In the S population, the clusters corresponding 

to the largest group of sample sites were consistently observed 

at the top left corner of the SOMs, which correspond to the 

area of the Hapcheon dam river basin, as presented by the 

arrow in Figure 3j, as well as in Figure 2a displaying the dis- 

persal kernel method.  

In the N population, the cluster of the largest group of 

sample sites was located primarily in the top left corner until 

2016 (Figures 3a ~ c), occupying the Mungyeoung area in the 

north-west region of the survey period (see closed circles of 
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pink tone, Figure 3i). The cluster of the largest group changed 

to the bottom left corner of the map in 2017 (Figure 3d), cor- 

responding to the western part of the survey area (see closed 

circles of purple tone, Figure 3i). In the N population, the 

cluster showing the highest level of spraint density was sepa- 

rately grouped in 2016 and 2017. These clusters were white 

hexagons outlined with light and deep purple colour (Figure 

3c (bottom right) and 3d (top right), respectively) on the com- 

ponent plane, and also correspondingly represented as open 

circles in the bottom-right and top-right corners of geographic 

maps in 2016 and 2017, respectively (Figure 3i). These results 

indicated variations in population dispersal were observed to a 

greater extent in the eastern area for the N population. 

The U-Matrix in the Geo-SOM further exhibited overall 

data variation during the survey period. In both populations, 

significant changes in data variation occurred during 2016 

(Figure 3). In the N population, the levels of variation were 

low overall in 2014 ~ 2015, but demonstrated the highest vari- 

ation the following year in 2016, and decreased again the next 

year in 2017, according to the overall variation of U-Matrix 

values (see ‘Application of Geo-SOM to identify spraint den- 

sity relationships’ section in Materials and Methods; Figures 

3a ~ d). Similarly, data variation in the S population was rela- 

tively low in 2014 ~ 2015 and increased significantly begin- 

ning in 2016 (Figures 3a ~ c). Notably, the data variation was 

relatively high in the bottom area of the SOMs during the 

early period of 2014 ~ 2015 but did not increase in the upper 

area until the late period of 2016 ~ 2017 for the S population 

on the ordination map (Figures 3e ~ h). These results highly 

correlated with the change in environmental associations dur- 

ing the dispersal.  

The associations between spraint densities and environ- 
mental factors are presented on the SOM component plane, 

which visualises the effect of environmental factors used in 

this study (Figure 4). According to the Geo-SOM training, 

position information at the sample sites are provided in 

Figures 4a ~ h, matching actual locations shown in Figure 3i 

and Figure 3j for the N and S populations, respectively. In the 

N population, through comparison of the sample positions, 

longitude (LON) and latitude (LAT), with the otter popula- 

tions (OTT), the maximum density areas were found to be 

approximately consistent with the northern area, high LON, in 

2014 and 2015 (vertical arrows in Figures 4a ~ b). However, 

the highest spraint density area matched exactly with the high 

LAT (vertical arrow in Figure 4c) and partially with the low 

LON (oblique arrow in Figure 4c) in 2016. This area also 

corresponded with the location of highest spraint density ob- 

served on the Geo-SOM component plane (white hexagons 

outlined in light purple in Figure 3c) and was presented in the 

actual map (open circle outlined in light purple in Figure 3i). 

Similarly, in the following year (2017), the maximum spraint 

density area corresponded to both high levels of LAT and 

LON (Figure 4d), consistent with the Geo-SOM ordination 

map (open hexagon outlined in deep purple in Figure 3d) and 

actual geographic area in the north-east region (Figure 3i). In 

the S population, high spraint densities continuously corre- 

sponded with low LAT and high LON except in 2016 (verti- 

cal (close association) and oblique (partial association) arrows 

in Figures 4e ~ h), consistent with the north-west region on 

the ordination map (Figures 3e ~ h) and the actual geographic 

area (Figure 3j). 

Data variation displayed in the U-Matrix of Figure 3 was 

reflected by the changes in association patterns observed in 

the component map between the spraint densities and environ- 

mental factors during the survey period (Figure 4). Notably, 

the association patterns substantially differed before and after 

2016, as outlined in Figure 4. In the N population, OTT was 

primarily positively related to DFA and BMI, and negatively 

to POP and DFO in 2014 (Figure 4a). This trend similarly 

continued until 2015, with the exception of BMI (Figure 4b). 

The observed associations, however, differed in 2016; OTT 

was highly correlated with food sources, positively with NFI 

and CAN, indicating that the otter population was more con- 

centrated on the food sources than anthropogenic factors in 

this year (Figure 4c). In the last year of 2017, otter popula- 

tions were characteristically associated with most of the envi- 

ronmental factors, positively with BMI, FAI, ALT, and ZFO, 

and negatively with POP, DFO, and ZWA (Figure 4d).  

In the S population, the anthropogenic factors were also a 

main constraint for the otter populations (Figures 4e ~ f) ini- 

tially, positively associated with DFA and DRE, and negative- 

ly with POP and DFO, continuing this trend until 2015. Sub- 

stantial changes were observed in associations between spraint 

densities and environmental factors in 2016 onwards. In the 

later period of 2016 ~ 2017, spraint densities correlated with 

most of the environmental factors either positively or nega- 

tively for the S population, including food sources such as 

BMI, FAI, and NFI (Figures 4g ~ h). This close association 

with environmental factors was in accordance with the associ- 

ations observed in the N population during 2017 (Figure 4d).  

The associations between spraint densities and environ- 
mental factors were consistent with the data variation ob- 

served on the Geo-SOM ordination map in Figure 3. The sub- 

stantial change in the diffusion kernel exhibited during 2017 

was also reflected in association patterns between spraint den- 

sities and environmental factors. The combination of the two 

sub-populations in 2016 (Figure 2) corresponded with the 

characteristic associations of most environmental factors on 

the component plane (Figure 4). The associations occurred 

earlier for the S population in 2016 and later for the N popu- 

lation in 2017. The late appearance of the characteristic asso- 

ciation in the N population could be explained by the contin- 

uous population variability, including changes in associated 

environmental factors during 2016, over a broad area (Figures 

2a ~ b) and data variation observed in the U-Matrix between 

2016 and 2017 for the N population (Figures 3c ~ d).  

Correlations between spraint densities and environmental 

factors are provided in Appendix S5 for comparison of the 

Geo-SOM results. Correlation coefficients of landscape and 

food resources were high overall, as observed in the SOM 

results. In the N population, for instance, spraints exhibited a 

relatively strong correlation to the food source, including BMI 

and FAI, and the landscape, including altitude and a negative  
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Figure 4. Component maps for N population in (a) 2014, (b) 2015, (c) 2016, and (d) 2017; and S population in (e) 2014, (f) 2015, 

(g) 2016, and (h) 2017. Red and blue rectangles outside of the abbreviated environmental factors indicate positive and negative 

relationships with spraint densities, respectively. All arrows correspond to the coordinate information, latitude (LAT) and 

longitude (LON), with higher spraint density areas. The values of all variables on the component planes were normalized between 

0 (blue) and 1 (red). 

 

association with ZWA, although the levels were generally low. 

In the S population, spraints exhibited a relatively weak cor- 

relation with environmental factors, but relatively high posi- 

tive correlations with FAI and altitude, and a high negative 

correlation with ZWA. In the Geo-SOM map, however, asso- 

ciations with environmental factors were more finely addressed 

according to the N and S populations over the course of dis- 

persal, as stated above. The correlations generally confirmed 

the results between spraint densities and environmental fac- 

tors. 

4. Discussion 

Remarkably, over the last 30 years otter populations have 

been recovered across the southern peninsula of Korea (Hong 

et al., 2017). The current study presents the recent develop- 

ment patterns of otter populations during the last phase of full 

recovery for the survey period from 2014 to 2017. Although 

otter populations were prevalent, there were less invaded local 

areas, and otters continued to spread to the areas of low oc- 

currence probabilities during the survey period, as indicated 

by the diffusion kernel method (Figure 2).  

We portrayed changes in the dispersal patterns of otter 

populations using spraint data. First, we transformed the con- 

tinuous spraint data into binary data for application of the 

diffusion kernel method to minimise quantitative errors that 

may be caused by continuous spraint densities in representing 

population size (see ‘Dispersal patterns based on diffusion 

kernel’ section in Materials and Methods). The diffusion ker- 

nel method applied to binary data accordingly presented po- 

pulation dispersal patterns: two subpopulations disparately 

advancing towards the area of low occurrence probabilities. 

Notably, a substantial change in population dispersal was ob- 

served in 2016 (Figure 2), which was the same year N and S 

populations merged, as observed for both homogenous and 

heterogenous environmental conditions. This substantial change 

in population states was further reflected in the results ob- 

tained from Geo-SOM (Figures 3 and 4). In the merging year 

of 2016, data variation occurred extensively on the U-Matrix 

(Figure 3). The characteristic associations with most environ- 

mental factors were observed on the Geo-SOM component 

plane (Figure 4). Considering the supportive data variation 
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observed in the Geo-SOM, the results obtained by applying 

the kernel method to the binary data are reliable in addressing 

the dispersal patters during the last phase of full recovery.  

The issue of utilising quantitative spraint density data for 

the representation of otter populations is still debatable (Kruuk 

and Conroy, 1987; Mowry et al., 2011). Based on the results 

stated above, we are in the position to propose the possibility 

of using spraint densities to demonstrate population dispersal 

patterns. First, we use the binary data (presence/absence) of 

spraint densities and accordingly minimise the quantitative er- 

rors caused by spraint densities (e.g., reflecting activity rather 

than representing population densities). The binary data could 

be used as a means of relative density, and to effectively pre- 

sent the increasing population trend (i.e., not necessarily esti- 

mating absolute population densities). If a sufficient amount 

of presence and absence data could be observed over a broad 

area for a long period under the same protocol, the diffusion 

kernel method could be used to present the population disper- 

sal trend, as presented in Figure 2. Additionally, there is a re- 

port that the spraint data could directly represent otter popula- 

tions’ densities proportionally. Mowry et al. (2011) demon- 

strated that population densities are linearly proportional to 

spraint densities (r2 = 0.58), as stated above.  

We also observed the increasing trend of spraint density 

during the survey period. Figure 5 illustrates an increase in 

average spraint densities for different years. Spraint densities 

grew rapidly for two consecutive years in the latter part of the 

survey period, 2016 and 2017. The S population monotoni- 

cally increased from 2014 while the N population slightly 

decreased from 2014 to 2015, before rapid increase in spraint 

densities over the following years. Notably, continuous in- 

crease in spraint densities occurred concurrently with the merge 

of two subpopulations in 2016, according to the diffusion 

kernel method (Figure 2) and the change in relationship pat- 

terns between spraints and environmental factors in the latter 

period of the survey for both populations (Figures 3 and 4). 

Overall, the spraint densities adequately represented otter pop- 

ulations in Korea during the last phase of full recovery (Hong, 

2018).  

 

 
 

Figure 5. Spraint densities comparing the average (black line), 

S population (dotted red line), and N population (dotted blue 

line). Lightly coloured areas represent the standard error of 

each line. 

Assuming that spraint data are proportional to otter popu- 

lation densities (Mowry et al., 2011), we further tested appli- 

cability of the diffusion kernel to continuous spraint density 

data (Figure 6). Similar to the case of binary data, two sepa- 

rate populations were observed in the north and southwest 

areas. In general, dispersal patterns were more precisely ad- 

dressed in the continuous data. Specifically, the origin was 

obtainable in the continuous data with a single peak in the 

centre area due to high occurrence probabilities. The origins 

of both populations could be identified, located in river basins, 

near Mungyeong in the Naeseong river basin (128.392E and 

36.789N) for the N population and Geochang in the Hab- 

cheon dam river basin (127.645E and 35.583N) for the S 

population (two solid arrows on the left panel (2014) of Fig- 

ure 6a). Note, the origin of the N population was not identi- 

fied with the binary data (Figure 2a).  

Furthermore, the advancement trend was more precisely 

presented. Notably, a bud-shaped dispersal from west to east 

was located in the southeast area in 2016 over the course of 

advancement, indicating a partial intrusion eastward in the S 

population (solid arrow in 2016, Figure 6a). This area cor- 

responded with Yeongcheon (127.686E and 35.741N, arrow 

in 2016, Figure 6a). A bud shape was additionally observed in 

2015. The area was intruded again by the N population in 

2017 (dotted arrow in 2017, Figure 6a). Three local high 

-density areas were further located and connected to each 

other (dotted arrows in 2017; Figure 6a), which eventually 

indicated invasion from north to south. These areas corre- 

sponded with Bonghwa, Yeoungdeuk, and Yeongcheon (white 

circles in Figure 6c).  

When the cost of travel was accounted for in the diffu- 

sion kernel (i.e., higher cost associated with urban areas), as 

outlined in Figure 2b (see Materials and Methods), the general 

pattern was similar to the case of a homogeneous environment 

with eastward advancement (Figure 6a), followed by an over- 

all occupation of the survey area in 2017. However, the con- 

trast between low and high density in industrial and non 

-industrial areas, respectively, was clearer in the heterogene- 

ous environment. Spraint densities were low in the industrial 

areas located in the southeast corner of the survey area, in- 

cluding Masan, Changwon, and Busan on the southern boun- 

dary; and Ulsan and Pohang on the eastern boundary (red 

colour tones, Figure 6c). The intrusion of the N population to 

the south was more pronounced in the heterogeneous environ- 

ment. Spraint densities were highly connected to the local 

populations leading south compared with densities in the ho- 

mogeneous environment (dotted arrows in 2017, Figure 6b). 

The west-to-east intrusion of the S population, however, ap- 

peared less robust in 2016, and was weakly connected to both 

populations (solid arrow in 2016, Figure 6b). This indicated 

that the heterogeneous environment supported the intrusion by 

the N population southward, rather than the eastward intrusion 

by the S population.   

We observed strong associations between the majority of 

environmental factors during the course of dispersal, in 2016 

and 2017 for the S population (Figures 4g ~ h), and in 2017 

for the N population (Figure 4d). Habitat suitability was mainly  
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Figure 6. (a) Four maps using spraint densities data applying diffusion kernel estimations. (b) Four maps using diffusion kernel 

estimations with additive barriers (urban area densities). (c) Urban area densities. Red and green colours represent high and low 

levels of urbanisation, respectively. Arrows in the first map of upper panel (a) indicate the origin of each population, and third 

map of panel (a, b) indicate the combined area between the two populations. Dotted arrows in the fourth map of (a, b) suggest 

small regional populations. White circles in land cover map (c) represent the areas corresponding to all arrows of the third and 

fourth maps (a, b). 

 

constrained by anthropogenic factors during the initial advan- 

cement phase, and later correlated with all other factors, in- 

cluding food, as population stabilized (Figure 4). This con- 

firmed previous studies reporting that urban areas serve as 

barriers against otter population dispersal (Marcelli and Fusillo, 

2009). In our study, we further addressed that a complete re- 

lationship between spraint data and various factors, including 

food sources and environmental factors, could be demon- 

strated during the course of recovery. This substantial rela- 

tionship with environmental conditions over specific years in- 

dicates that the populations were further stabilized and close- 

ly related to food sources, even over a short period during the 

last phase of recovery. In the S population, stability was more 

apparent in the two years of 2016 and 2017. The stability was 

observed faster in the S population, which had a short range 

of dispersal, bounded by the industrial area (lower panels, 

Figure 2 and Figure 6). We observed that population develop- 

ment could be stabilized regarding close associations with 

environmental factors during the last phase of the dispersal.  

One of problems with field surveys was the change in 

sample sites in 2017 (see ‘Spraint density measurement’ sec- 

tion in Materials and Methods). In 2016, CAN was related to 

spraint densities in both N and S populations. In following 

year of 2017, the environmental variable, CAN, was neither 

measured due to research conditions (Figure 6). Although the 

sample sites and variable varied partially with the 2017 survey, 

the results regarding diffusion processes would be unlikely 

different. Considering that the diffusion kernel method is 

applied to the whole data set in order to address overall dis- 

persal patterns at the population level, the dispersal patterns 

delivered essential information in general and portrayed the 

trend of results from the previous years (Figure 2a).  

5. Conclusion 

Based on diffusion kernel and artificial neural networks 

(Geo-SOM), the dispersal patterns of otter populations were 

specifically characterized for the last phase of full recovery in 

Korea over a relatively short period, showing two geographi- 

cally separated populations. When the diffusion kernel meth- 

od was applied to both binary and continuous spraint data, 

dispersal patterns were accordingly addressed by the merge of 

the two subpopulations in 2016. While the north (N) popu- 

lation moved broadly eastward and southward, achieving preva- 

lence throughout the Nakdong River basin by 2017, dispersal 

of the south (S) population was limited by the industrial area 

located in the south-east region of the survey area. Under the 

condition of a heterogeneous environment considering travel 

costs, the occurrence probabilities were further constrained by 

the industrial and populated areas. The Geo-SOM revealed as- 

sociations between spraint densities and environmental factors, 

concurrently linking geographic locations of sample sites. 

Both populations were affected by anthropogenic factors, in- 

cluding distance to factory and human population density. But 

associations with all environmental factors, including land- 

nscape, food sources, and anthropogenic factors appeared 

more pronounced when populations further dispersed in the 

later period of the survey, demonstrating the changes in popu- 

lation states over the course of dispersal during full recovery. 

Overall, the associations with environmental factors could be 

determined according to the specific constraints in the places 

where otter populations were located (e.g., industrial area) and 

at the time when populations became stabilized. This study 

demonstrates that the combined use of the diffusion kernel 

method and Geo-SOM was effecttive in portraying temporal 

changes in population states in association with environmental 
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factors based on stationary spraint data in the last phase of full 

recovery.  
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