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ABSTRACT. Three ragweed species native to North America (Ambrosia artemisiifolia L., A. psilostachya DC, and A. trifida L.) that 

have been introduced into Asia are now spreading quickly in many regions. Predicting which specific areas may be vulnerable to the 

invasion of these allergenic Ambrosia species can provide valuable insights for early detection and for prioritizing preventive actions. 

Species distribution models, based on native and non-Asian occurrence records for these three Ambrosia species, were generated with 

the maximum entropy (Maxent) approach respectively. Spatial filtering and target-group background methods were used to address 

sampling bias. Models fitted with different levels of complexity under present conditions were compared and evaluated with independent 

Asian records. Models showing lower over-fitting and higher performance were then selected to assess their future distribution under 

two types of Representative Concentration Pathways (RCP4.5 and RCP8.5), using four General Circulation Models (GCMs). Predicted 

habitats for A. artemisiifolia in 2050 would contract in regions having been colonized, despite a limited increase in parts of China. This 

species may experience a southward range shift in China. Under all future climate scenarios, A. trifida was predicted to decrease its 

potential establishment while A. psilostachya would expand its range, especially in habitats being colonized currently. Special attention 

should be given to Hunan, Jiangxi Provinces and scattered along southeastern coastal regions of China as well as parts of Turkey and 

northwest Iran, Azerbaijan, considering that future potential distribution of A. artemisiifolia and A. psilostachya might increase in these 

areas respectively. The findings provide valuable information for assessing the risk that these three Ambrosia species pose to many Asian 

countries and for prioritizing early detection and prevention strategies. 
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1. Introduction 

There is growing evidence that anthropogenically-induced 

climate change and increasing atmospheric CO2 concentrations 

have the potential to transform almost all spatial and temporal 

aspects of plant-based aeroallergens (production, allergenicity, 

and distribution), with subsequent effects on aeroallergen ex- 

posure and the severity of allergic diseases (Hickler et al., 2012; 

Ziska and Beggs, 2012). Among the most troublesome and abun- 

dant allergenic plants are ragweed (Ambrosia) species that can 

severely impact public health via highly allergenic pollen (Os- 

walt and Marshall, 2008; Smith et al., 2013). In Asia, three spe- 

cies of ragweed have been recorded: Ambrosia artemisiaifolia 

L. (Common ragweed), A. psilostachya DC. (Perennial ragweed) 

and A. trifida L. (Giant ragweed). All three species are native 

to North America and have spread to many regions of continen-  
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tal Asia, resulting in serious negative effects on biodiversity 

and the structure and function of invaded ecosystems (Wan and 

Wang, 1990; Richter et al., 2013). Pollen from these wind pol- 

linated species and resulting allergies during continental range 

expansion in favorable regions has made them a great concern, 

especially under the context of climate change. Understanding 

and mapping the geographyic distribution and change in the po- 

tential range of these allergenic ragweed species are important 

for prioritising prevention and control actions as well as assess- 

ing climate impacts of allergy-inducing plant species on human 

health. 

Species distribution models (SDMs) are an important tool 

for identifying environmental factors affecting a species’ dis- 

tribution and for predicting its potential geographic range. This 

method has been successfully employed as a useful first ap- 

proximation to explore climate change impacts on range expan- 

sion of Ambrosia species in European countries (Cunze et al., 

2013), Australia (Dullinger et al., 2009) and Asia (Qin et al., 

2014). Of the 46 species in the genus Ambrosia, A. artemisiifo- 

lia is the most widespread species worldwide and by far most  
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studied. Although this species has recently colonized many ru- 

ral and agricultural habitats in several regions of Asia (Nagada, 

1972; Wan and Wang, 1998; Washitani, 2004; Lee et al., 2010; 

Kim and Kil, 2016), little research attention has been given to 

its invasive potential. Uncertainties regarding its spatio-tem-

poral spread pattern, potential distribution, and ecoregions that 

may be susceptible to this species in Asia remain. Several spe-

cies with high allergenic potential in the same genus, for in-

stance, A. trifidda and A. psilostachya have received attention 

from European ecologists and corresponding modeling studies 

have been published (Deák et al., 2013; Rasmussen, 2013), 

while in Asia, these allergenic plants were insufficiently inves- 

tigated by far. 

As an empirical approach that relates occurrence of a spe- 

cies to environmental predictor variables by formulating statis- 

tically or theoretically derived response surfaces, a series of in-

herent limitations to SDMs have been increasingly reported 

(Guisan and Thuiller, 2005). Some constraints in using distri- 

bution models relate to ecological factors/processes (i.e. disper- 

sal capacity, adaptability) that determine species’ distributions 

and abundances, whereas others are methodological and con- 

cern the manner in which data are used in SDMs (i.e. occur- 

rence records, climatic predictor variables, modeling algori- 

thm). There have been substantial efforts and achievements in 

improving the statistical bases of SDMs (i.e. Zimmermann et 

al., 2010). For instance, species distribution models and inter-

acting particle systems were integrated into one framework to 

achieve improved predictions of the spatio-temporal dynamics 

of invading species. This combined modelling framework has 

been used to simulate the invasion of A. artemisiifolia in Aus- 

tria successfully (Smolik et al., 2010). Considering the non-

equilibrium between the distribution of A. artemisiifolia and its 

ecological requirements during range expansion, accuracy of 

SDMs was enhanced by taking account of propagule pressure 

and restricting model calibration to naturalized populations 

(Dullinger et al., 2009). In Europe, the potential range of A. ar- 

temisiifolia was estimated with a species distribution model 

that correlates native North America distributions and environ- 

mental variables (Cunze et al., 2013). These studies provided 

essential contributions in producing various distributional pat- 

terns of A. artemisiifolia under climate change. Nonetheless, 

the choice of what is the most appropriate technique to use for 

modelling distributions (Elith et al., 2006) is not always agreed 

upon. This is especially the case when interpreting predictions 

of species distributions across space and time and when as- 

sessing the uncertainty of such predictions. Specific knowledge 

on the selection of climatic predictors, filtering of occurrence 

data, levels of complexity fit, and variation in the results asso- 

ciated with the modelling technique are needed to produce more 

realistic and effective management frameworks. 

Among the various correlative species distribution mod-

els, maximum entropy (Maxent, Version 3.3.3k, Princeton Uni- 

versity; Princeton, NJ, USA) is a most widely used machine 

learning approach based on presence-only data. This method 

has been successfully employed to estimate probability of dis- 

tributions from incomplete information or raw environmental 

data (Phillips et al., 2006), and showing comparable perfor- 

mance to that of several traditional techniques that use pres- 

ence/absence data, including general linear models and gener- 

al additive models (Elith et al., 2006; Tsoar et al., 2007). How- 

ever, Maxent was found to be overly sensitive to modeling pa- 

rameterizations, and its output depends highly on model com-

plexity and how closely data match assumptions (Phillips and 

Dudík, 2008). Recent efforts addressing these issues, for in- 

stance, decreasing sampling bias and complexity tuning, pro-

vide very helpful approaches in preventing Maxent from over- 

fitting (Anderson and Gonzalez, 2011; Bystriakova et al., 2012). 

Additionally, the use of independent evaluation datasets was 

also recommended as a way to obtain reliable estimates of mod- 

el performance (Radosavljevic and Anderson, 2014). 

In this study, we generated correlative species distribution 

models based on native and non-Asian occurrence records for 

the three allergenic ragweed (Ambrosia spp.) species using the 

Maxent approach. For each species, target-group background 

and spatial filtering were used to account for sampling bias, and 

optimal model complexity was identified. Predictive perfor- 

mance of each model was evaluated using independent Asian 

records, and models showing lower over-fitting and higher per- 

formance were selected for assessing their future geographic 

distribution in Asia. Our goals were (1) to provide more realis- 

tic predictions of which areas are most susceptible to invasion 

by the three allergenic ragweed species, and (2) to assess their 

further spread in Asia under various climate change scenarios. 

We focused on reducing over-fitting and improving model per- 

formance in predicting independent evaluation data via com- 

prehensive data filtering and species-specific tuning experiments. 

2. Materials and Methods 

2.1. Study Species 

Ambrosia artemisiifolia L. (common ragweed-Asteraceae) 

is an invasive herbaceous annual native to eastern North Amer- 

ica that has spread to parts of Asia (Fumanal et al., 2008; Gau- 

deul et al., 2011) and has become troublesome as an aeroaller- 

gen and agricultural weed. This species was introduced in Ja- 

pan at the beginning of the Meiji Era of 1860 ~ 70s (Okuda and 

Takeda, 1985) and was widely distributed throughout the Japa- 

nese islands by the 1950s (Numata and Kotaki, 1975). Allergies 

caused by A. artemisiifolia pollen are second only to those 

caused by the conifer tree Cryptomeria Japonica (L.f.) D. Don 

(Kazinczi and Novák, 2012) in Japan. A. artemisiifolia was first 

introduced into China in the 1930s and has extended its range 

from northern to southern China, covering more than 20 pro- 

vinces during the past three decades (Wan and Wang, 1998). 

The successful invasion of A. artemisiifolia into Asia was sug- 

gested to be facilitated by repeated introductions from multiple 

source populations in the native range creating a diverse gene 

pool within Chinese populations (Li et al., 2014). The increas- 

ing spread of A. artemisiifolia in Turkey and India is also a se- 

rious human health and environmental issue (Kaplan et al., 2002; 

Zemmer et al., 2012). 

Ambrosia trifida L. (giant ragweed), a herbaceous summer 

annual species characterized by rapid growth and strong com- 

petitive ability (Abul-Fatih et al., 1979), is also known as inva- 
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ders with high allergenic potential in Asia. This species was in- 

troduced into Japan in the 1970s or 1980s (Washitani and Ni- 

shiyama, 1992) and colonized (semi-) natural habitats. In Japan, 

this species has been classified as a Rank A species (i.e. one of 

the 16 most invasive species) because of its substantial deleteri- 

ous effects on biodiversity and ecosystem function and stability 

(EFSA Scientific Committee, 2011). The first A. trifida popula- 

tions were observed in northeast China around 1935. The in- 

creased occurrence of A. trifida has been reported mainly in 

Beijing, Hebei since the 1950s.The distributional range of this 

species has now expanded into the central and northern parts of 

the country (Yin et al., 2010). A. artemisiifolia and A. trifida 

are thought to have been introduced to Korea during the Korean 

War (Park et al., 2002; Lee et al., 2011) and their serious ad- 

verse effects on ecosystems were ultimately recognized in South 

Korea (Republic of Korea) in the 1970s. Both species are now 

legally designated as “Invasive Alien Plants” in South Korea, 

where their import, cultivation and use are banned (Kil et al., 

2004). Interestingly, A. artemisiifolia was reported to have spread 

into North Korea from South Korea through natural means (Pak 

and O, 2006). 

Ambrosia psilostachya DC (perennial ragweed), is an erect, 

coarse herbaceous perennial with horizontal running rootstocks 

that is less common in Asia relative to the other two ragweed 

species. This perennial was introduced into Japan in the 1970s 

(Nagada, 1972) and is also responsible for increasing the inci- 

dence of allergies in the country. A. psilostachya has also been 

reported in Kaohsiung County, Taiwan (Tseng and Peng, 2004) 

and recently was reported to have established and spread to vast 

agricultural areas in Karnataka, India (Prasad et al., 2013). 

When using SDMs to predict the potential distribution of 

invasive species, models trained primarily on occurrence data- 

sets from the species’ native range need to be transferred to the 

region where it has been introduced. Models calibrated using 

combined occurrence records from the native and invaded re- 

gions have been recommended for a more complete under- 

standing of species’ climatic requirement. While for SDMs train- 

ed in the native range, model transferability could be improved 

by a set of procedures including reducing geographic sampling 

bias, using fewer environmental dimensions and limiting the 

model complexity. To examine the strategies that may helpful 

to improve the predictive power of SDMs for Ambrosia species, 

two SDMs calibrated on two occurrence datasets (native vs. non- 

Asian range) for each Ambrosia species were generated. For 

each SDMs, species-specific tuning strategies were conducted 

to obtain the best performing model for the species studied. 

 

2.2. Species Occurrence Data 

Occurrence records for the three Ambrosia species were 

sourced from the Global Biodiversity Information Facility Data 

Portal (www.gbif.org, 2016) and three databases mainly from 

Asia: (1) Chinese Virtual Herbarium databases (www.cvh.org. 

cn, 2016), (2) Plants of TAIWAN (http://tai2.ntu.edu.tw), (3) 

Natural History Collection Database, Tokyo (http://www.kaha 

ku.go.jp). Occurrence records retrieved from published scien- 

tific research literature, museum collections, reports of field 

surveys, were integrated and checked. Duplicates (i.e., records 

of the same specimen sent to different collections; multiple re- 

cords of a species from a particular location; latitude/longitude 

equal to 0º) were removed from the datasets. Georeferenced re- 

cords from the years 1950 to 2000 in this dataset were selected 

to match with the time-scale of the climate data. Records with 

unknown date or lack of coordinate data were removed. To 

minimize spatial bias (i.e. clustering) of occurrence data, one 

record was randomly selected within each grid cell (9.3 × 9.3 

km). The taxonomic status of all Ambrosia species was check- 

ed and verified using The Plant List (http://www.theplantlist. 

org) to ensure that the species names and corresponding syno- 

nyms were properly assigned. To reduce the effects of sampling 

bias, a spatial filtering method based on climate heterogeneity 

using the program SDMtoolbox (Brown, 2014) was employed 

to select optimal calibration data sets. This spatial filtering meth- 

od has been suggested to consistently improve model discrimi- 

natory ability independent of the initial biases (Procter et al., 

2015; Préau et al., 2018), and was expected to account for to- 

pographic and climatic heterogeneous across the studied Eur- 

asian continent. With this method, the first three principal com- 

ponents were calculated for all input climatic variables and then 

used to measure the spatial heterogeneity. The study area was 

split into areas of high and low climate heterogeneity, for which 

the occurrence records were filtered at a resolution of 5 and 25 

km respectively. The resulting dataset used to build Maxent 

models contained 644 locations for A. psilostachya (native range: 

572), 1282 unique occurrences for A. artemisiifolia (native range: 

556), and 386 locations for A. trifida (native range: 347). Con- 

temporary records of the three Ambrosia species in Asia not 

using spatial filtering (513, 468 and 26 for A. artemisiifolia, A. 

trifida and A. psilostachya), were used as independent datasets 

to evaluate model accuracy (Table 1). 

 

2.3. Background Points 

The selection of background values is an important issue 

when using presence-only modeling. MaxEnt by default uses 

randomly generated background locations and derives informa- 

tion from those locations for model development (Phillips et 

al., 2006). Random selection in this case, has been proved to 

largely affect the predictive performance of the models (Ferrier 

et al., 2002) and predictions of species distributions (Pokharel 

et al., 2016). A practical approach may be to select background 

data from points where similar taxa have been documented (the 

‘target group background’ method), so that similar sampling 

biases are present in the occurrence and background data sets 

(Phillips et al., 2009). This approach has been found to be more 

objective and realistic than taking the background sample from 

sites that have not been sampled and is likely to improve model 

performance (Marshall et al., 2015). In our study, the target 

group sample was produced using occurrence datasets for glob- 

al Ambrosia spp. available from the GBIF and supplied data- 

bases, which included 6639 unique sampling locations for 46 

species of this taxon (1950 ~ 2000). There were 6155 locations 

for A. psilostachya (native range: 3687), 4673 unique locations 

for A. artemisiaifolia (native range: 3718) and 6211 locations 

for A. trifida (native range: 4004) and within each 5-arcmin 
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Table 1. Performance Indicators of the Model with Lowest AICc Value for the Three Allergenic Ambrosia Species. 

Species Model β-multiplier Variables Samples 
Background 

points 
Parameters Loglikelihood 

A. psilostachya 
Non-Asian model 1 11 644 5142 106 -8320.57 

Native model 2.5 4 572 3687 33 -7600.15 

A. artemisiifolia 
Non-Asian model 0.5 11 1282 4153 146 -17590 

Native model 1 11 556 3718 70 -7771.32 

A. trifida 
Non-Asian model 1.5 11 386 5487 35 -4937.11 

Native model 1 5 347 4004 40 -4448.73 

Species AIC AICc BIC AUC. Test AUC. Train AUC. Diff  

A. psilostachya 16853.14 16895.38 17326.72 0.8485 0.8836 0.0351  

 15266.29 15270.46 15409.81 0.8090 0.8242 0.0152  

A. artemisiifolia 35472.03 35509.85 36224.84 0.8799 0.9009 0.0210  

 15682.63 15703.17 15984.96 0.8826 0.9083 0.0257  

A. trifida 9944.213 9951.413 10082.67 0.8715 0.8901 0.0186  

 8977.451 8988.17 9131.424 0.8678 0.8964 0.0286  

* Native and Non-Asian model were Maxent models created based on North America occurrences and global occurrences omitting those in Asia, 

respectively. 
 

grid cell in the background (Table 1). Based on these aggre- 

gated target-group datasets, the background space for each Am- 

brosia species in native North-American and non-Asian ranges 

was created respectively, from which a set of 10,000 points 

were randomly sampled for generation of Maxent model. 

 

2.4. Current and Future Climate Datasets 

The 19 bioclimatic variables reflecting aspects of tempera- 

ture, precipitation and seasonality, averaged over a 50-year time 

period (1950 ~ 2000) at 5-arcmin spatial resolution (9.3 × 9.3 

km) were downloaded from the WorldClim dataset (Hijmans et 

al., 2005). Based on assessments of local botanists and weed 

management specialists, eleven bioclimatic variables were se- 

lected as the most appropriate predictor variables for the enve- 

lope models and were projected the WGS84 geographical co- 

ordinate system. To avoid multicollinearity among these can- 

didate predictor variables and to reduce model overfitting, the 

R package “MaxentVariableSelection” (Jueterbock, 2015) was 

employed for the regularization multiplier (β) determination, 

environmental variable selection and model performance as- 

sessment by Akaike information criteria, AICc (Akaike, 1974). 

The variable selection process was performed for β values rang- 

ing from 1 ~ 5 in increments of 0.5. Higher β values penalize 

the inclusion of parameters, thus creating less complex models 

than the default (β values = 1). Bioclimatic variables with a 

contribution of less than 5% were eliminated, and all absolute 

pairwise correlations of the final variables selected for each 

model were less than 0.75 (Dormann et al., 2013). The best 

model parameters were selected according to the lowest AICc 

and were used for current and future distribution predictions of 

Ambrosia species. 

Future climate projections for the year 2050 were derived 

from four Global Climate Models: CNRM-CM5, HadGEMs- 

ES, MIROC5, and BCC-CSM1.1. The first three models proved 

to be among the best models in the global monsoon assess- 

ment (Lee and Wang, 2014) and are reliable for future projec- 

tions in typical monsoon domain region (i.e. Asia). The Beijing 

Climate Center Climate System Model (BCC-CSM) was used 

because this model performed well in simulating the concentra- 

tion and temporal evolution of atmospheric CO2 during the 

20th century with anthropogenic CO2 emissions. This last mod- 

el also contributed to the Coupled Model Inter-comparison Pro- 

ject phase five (CMIP5) in support of the Intergovernmental 

Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 

(Li, 2014). Two types of representative concentration pathways 

(RCP4.5 and RCP8.5) were used, in which the RCP4.5 is a sta- 

bilization scenario where total radiative forcing is stabilized at 

about 4.5 W m-2 after 2100, while RCP8.5 is the high emission 

scenario where the radiative forcing continues to increase until 

the end of the 21st century (Rogelj et al., 2012). 

 

2.5. Model Development and Evaluation 

For each allergenic Ambrosia species, native and non-Asian 

calibrating models were created based on North America oc- 

currences and global occurrences omitting those in Asia respec- 

tively. The model having highest performance (lowest AICc, 

Table 1), optimal β-multiplier and sets of climatic variables were 

used to project habitat suitability of each Ambrosia species un- 

der current and future conditions. Models were run using Max- 

ent software, with a default convergence threshold of 10-5 and 

a maximum of 5000 iterations. Feature type for the models was 

set to linear, quadratic, and hinge features, which has been used 

to keep the models simple and to avoid over-fitting (Kumar et 

al., 2014). Quadratic responses are suitable for unimodal curves, 

as expected for fundamental niches (Austin, 2017), and hinge 

features could allow simpler and more succinct approximations 

of the true species response to the environment (Phillips, 2008). 

The 10-fold cross-validation was implemented to assess model 

fit. The logistic output format with suitability values ranging 

from 0 (unsuitable) to 1 (optimal) was used (Phillips and Dudík, 

2008). The output of Maxent was imported into ArcGIS ver- 

sion 10.0 (ESRI; Redlands, CA, USA) for spatial representa- 

tion and calculations. 

The area under the receiver operating characteristic (AUC) 

estimated from the independent Asia range testing dataset (Field- 

ing and Bell, 1997) was used to evaluate model discriminatory 
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Note: The Maxent model was built with native (solid triangle) and non-Asian (solid circle) occurrence records. Each combination of β-multiplier and set of 

occurrences was simplified through an iterative process variable selection test. The number of variables in each model is indicated by color and size. 

Models having the lowest Akaike information criterion (AICc) are marked in red for two occurrence datasets. 
 

Figure 1. Model performance evaluated by AUC.Test values (the area under the curve of the receiver operating characteristic 

estimated from the test data) (Fielding and Bell, 1997) for (a) Ambrosia psilostachya, (b) Ambrosia artemisiifolia, and (c) 

Ambrosia trifida. 

 

 
 

Note: Procedures and symbols for each panel are the same as these in Figure 1. 
 

Figure 2. Model performance evaluated by the sample-size-adjusted Akaike information criterion (AICc) (Akaike, 1974) for the 

three Ambrosia species. 

 

power. To further assess model over-fitting, the difference be- 

tween AUC values from calibration and evaluation data (i.e., 

AUC.Diff) was calculated. The smaller the difference between 

the two, the lesser the over-fitting present in the model (Warren 

and Seifert, 2011). Another way to quantify model over-fitting 

was by comparing threshold-dependent omission rates with the- 

oretically anticipated levels of omission. Using the method in- 

terpreted by Boria et al. (2014), the lowest presence threshold 

(i.e., minimum training presence threshold of Maxent, Pearson 

et al., 2010) and the 10th percentile presence threshold (i.e.,10 

percentile training omission threshold of Maxent) were calcu- 

lated and averaged as for AUC. The lowest presence threshold 

has an expected omission rate of zero for evaluation localities 

and indicates the least-suitable environmental conditions for 

which a locality was available in the calibration data set. The 

10th percentile presence threshold has an expected omission 

rate of 0.10 and generally leads to a smaller geographical pre- 

diction (Radosavljevic and Anderson, 2014). 

To determine whether predicted suitable habitats for each 

Ambrosia species would expand or contract in the future in re- 

lation to current potential habitats in full Asian range, a thresh- 

old of 0.5 representing a 50% probability for the presence of 

conditions considered suitable for the species was used to con- 

vert the logistic model outputs to binary grids for each Ambro- 

sia species (Elith et al., 2010) firstly. Using the methods pro- 

vided by Hu et al. (2010), potential future range loss and gain 

respectively were summed, then related to the predicted current 

range by pixel and calculated the percentage of predicted range 

change. 

3. Results 

3.1. Model Performance and Variable Contribution 

For all three Ambrosia species calibrated on non-Asian oc- 

currences, the average AUC.Test values from 10 replicate runs 

varied between 0.821 ~ 0.880 (Figure 1). Maximum AUC. Test 

values for each species were greater than 0.85, suggesting that 

these models had strong predictive ability and could be used to 

(c) 

(c) 
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Table 2. Performance Indicators of the Highest Performance (Lowest AICc) for Ambrosia. Psilostachya. 

 Non-Asian model Native model 

Variables Contributions Correlation coefficients Contributions Correlation coefficients 

Model 6 6 22 22 

β-multiplier 1 1 2.5 2.5 

bio1 10.1507 -0.0606 15.8609 0.6598 

bio2 8.4103 -0.4810 / / 

bio3 2.8756 / / / 

bio5 16.672 -0.3866 7.3122 1 

bio7 3.4572 / / / 

bio8 4.9497 / / / 

bio9 0.9054 / / / 

bio12 28.0920 1 60.2830 -0.4925 

bio14 18.6229 0.7391 16.5438 -0.4481 

bio15 2.1408 / / / 

bio19 3.7234 / / / 

* Two subsets of bioclimatic variables (contribution greater than 5%) were selected for native and non-Asian models respectively, based on Maxent model 

runs and evaluation of correlation coefficients for these predictor sets. The native model of highest performance was a combination of β-multiplier (1) and 

five bioclimatic variables. The non-Asian model of highest performance was a combination of β-multiplier (2.5) and four bioclimatic variables. 

** Variable definitions: bio1: annual mean temperature (°C * 10); bio2: mean diurnal range (°C * 10); bio3: isothermality (* 100); bio5: max temperature 

of warmest month (°C * 10); bio7: temperature annual range(°C * 10); bio8: mean temperature of wettest quarter (°C * 10); bio9: mean temperature of driest 

quarter (°C * 10); bio12: annual precipitation (mm); bio14: precipitation of driest month (mm); bio15: precipitation seasonality; bio19: precipitation of 

coldest quarter (mm). 
 

Table 3. Performance Indicators of the Highest Performance (Lowest AICc) for Ambrosia. Artemisiifolia. 

 Non-Asian model Native model 

Variables Contributions Correlation coefficients Contributions Correlation coefficients 

Model 1 1 5 5 

β-multiplier 0.5 0.5 1 1 

bio1 13.5584 -0.1419 3.2347 / 

bio2 4.0562 / 3.4858 / 

bio3 12.3695 0.02245 19.9199 -0.2701 

bio5 6.5446 -0.3540 9.9143 -0.2837 

bio7 4.1478 / 4.0208 / 

bio8 0.365 / 0.2904 / 

bio9 1.2524 / 1.3799 / 

bio12 3.5871 / 4.3166 / 

bio14 47.8078 1 45.6258 1 

bio15 5.1971 -0.5980 6.2096 -0.5611 

bio19 1.1140 / 1.6022 / 

* For native model, a combination of β-multiplier (0.5) and five bioclimatic variables has the highest performance. The non-Asian model of highest 

performance was a combination of β-multiplier (1) and four bioclimatic variables. 

** Definitions for bioclimatic variables are the same as Table 2. 

 

discriminate between presence and absence of habitats. When 

calibrated on native-range datasets, average AUC.Test values 

remained high (above 0.80). Maximum AUC.Test values for A. 

artemisiifolia reached 0.889. While these values declined for 

A. trifida and A. psilostachya, they can still be used for species 

suitability predictions (maximum AUC.Test value greater than 

0.82). 

Variation in AUC.Test values were related to the number 

of variables and regularization multiplier. For instance, AUC.-

Test values in native-range A. artemisiifolia model varied from 

0.878 to 0.890 (Figure 1 b). The highest AUC Test values were 

observed in the most complex model set with regularization pa- 

rameter 0.5 and the full set of 11 climatic variables, while the 

 lowest AUC values were observed in the simplest model set 

with regularization parameter 1.5 and 4 climatic variables. Per- 

formance of models for each Ambrosia species evaluated on 

the basis of AICc values is provided in Table 1. Models built 

on native-range datasets encompassed fewer most important 

climatic predictor variables, and had lower AICc values when 

compared with those from non-Asian datasets (Table 2 ~ Table 

4). For instance, the native-range model of A. trifida, with a β-

multiplier of 1.0, had the lowest AICc (8988.17, Figure 2c). Out 

of the five climatic variables (contribution greater than 5%), 

isothermality (bio3) had the highest contribution (31.45%) to 

the model in discriminating climatic suitability, followed by 

mean temperature of driest quarter (bio9), and precipitation of 

the driest month (bio14). When implemented on non-Asian data- 
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sets, the model built with regularization parameter 1.5 had the 

lowest AICc (9951.41, Figure 2c). Isothermality (bio3) was still 

the most influential variable (with a contribution of 33.50%) 

among the same five most important set of variables. Annual 

temperature range (bio7) was introduced as a major climatic 

factor for model performance (21.51%) (Table 4). Similar pat- 

terns in the identification of influential variables using different 

range datasets were detected for A. artemisiaifolia and A. psilo- 

stachya. Interestingly, maximum temperature of warmest month 

(bio5) and precipitation of driest month (bio14) were observed 

to be generally the most important range expansion factors for 

the three Ambrosia species (Table 2 ~ Table 4).  

All the models had an expected omission rate (minimum 

training presence threshold) of zero and the 10% calibration 

omission rate close to 0.1 for evaluation localities, suggesting 

that no over-fitting occurred when using different calibration 

datasets (Table 5). Models based on native-range datasets had 

slightly lower 10% calibration omission rates and AUC.diff, 

showing comparable performance to the non-Asian models. 

Native-range models for A. artemisiifolia had a significantly 

higher AUC.eval value (AUC.eval =0.8532, P = 0.008, Mann- 

Whitney U test), while models for A. psilostachya and A. trifida 

had lower values for this measure, compared with those of non-

Asia models. No statistically significant differences in four eva- 

luation metrics (AUC.diff, AUC.eval, and two omission rates) 

were found between the two range models, except in the AUC.-

eval value for A. artemisiifolia. 

 

3.2. Current Distributions 

Distribution maps for each Ambrosia species were gene- 

rated based on native models of lowest AICc in Table 1. Model 

predictions of the current distribution of these Ambrosia spe- 

cies corresponded well with their observed distribution in Asia. 

Averaged percentage of suitable area for A. psilostachya, A. 

artemisiifolia, and A. trifida was 10.67, 31.42, and 19.52% re- 

spectively (Figure 3). The potential distribution of A. psilosta- 

chya included parts of the Korean peninsula, north-eastern China, 

large regions of Turkey and its eastern bordering countries (i.e., 

Armenia, Azerbaijan, and northwestern Iran). More scattered 

habitats in northern Mongolia, south-eastern-most Kazakhstan, 

Kyrgyzstan, Tajikistan, and Afghanistan were also identified as 

favorable based on the non-Asian model (Figure 3a). 

The current estimated range with high occurrence prob- 

abilities of A. artemisiifolia extended from north-eastern China 

in the north to the south-eastern coastal areas and as far south 

as Taiwan. A latitudinally broad potential distribution covering 

most of the Korean peninsula and Japan as well as Georgia and 

its southern border areas with Turkey, Armenia and Azerbai- 

jan, eastern Mongolia, were also detected. Small areas of north- 

ern Kazakhstan, long zones extending from eastern most Kaza- 

khstan, towards the southeast to northern-most Myanmar, parts 

of Indonesia, the Philippines and India were identified as being 

potentially suitable regions, although there are no occurrence 

records for these regions currently (Figure 3b). The projected 

distribution of A. trifida matched occurrence records in East 

Asian countries including Japan, the Korean peninsula, and the 

north-eastern part of China. Additional suitable areas identified 

by the model included the border regions of Mongolia, Kaza- 

khstan, and small areas across northern Georgia and Turkey 

(Figure 3c). 

 

 
 

Note: Higher Maxent values in these maps suggest a higher climatic 

suitability for the species. 
 

Figure 3. Predicted potential distribution for (a) Ambrosia 

psilostachya, (b) Ambrosia artemisiifolia, and (c) Ambrosia 

trifida in Asia under current climate conditions, with known 

records shown as dark filled circles, squares and triangles 

respectively.  
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Figure 4. Projected future distribution for Ambrosia psilostachya under the two representative concentration pathways RCP4.5. 

Maps from left to right (Figure (a) to Figure (d)) show the probability of the spatial distribution in 2050 predicted by four global 

climate models (BCC-CSM1.1, CNRM-CM5, HadGEMs-ES, and MIROC5). Figure (e) shows modeled agreement in climatic 

suitability for A. psilostachya among the four GCM combinations by 2050, with blue and red color indicating two-GCM 

agreement and full agreement in suitability respectively. Figure (f) shows projected distribution change in A. psilostachya 

suitability by 2050, showing agreement among a four-GCM ensemble. Areas with current suitability that decreases are indicated 

in green (four GCMs agreement), whereas areas not suitable in the current time period but suitable in the future are shown in red. 

 

3.3. Future Distributions 

The selected GCMs and RCPs displayed different varia- 

tions in area of future suitable climate relative to current con- 

ditions for the three Ambrosia species (Figures 4 ~ 6). A. psilo- 

stachya was predicted to spread to areas adjacent to where it is 

currently present. Future projections of the potential distribu- 

tion under the two RCP scenarios suggested an overall contrac- 

tion of A. artemisiifolia and A. trifida in Asia, despite some areas 

becoming suitable by 2050.  

Almost all of the current suitable areas for A. psilostachya  

remained favorable and showed a possible expansion under fu- 

ture climate scenarios, with comparable levels of range gain 

(1.35 ~ 2.49%) and loss (less than 0.05%) across the models 

and RCP scenarios (Figure 4). Major habitat gains were expect- 

ed to occur in areas currently suitable for this species, especial- 

ly parts of Turkey and northwest Iran, Azerbaijan, parts of cen- 

tral and northern China as well as some scattered locations 

stretching from southern-most Kazakhstan to northern Afgha- 

nistan. Under the RCP8.5 scenario, new habitats loss was less 

when compared to those in RCP4.5, whereas the habitats gain 

was slightly expand.  
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Table 4. Performance Indicators of the Highest Performance (Lowest AICc) for Ambrosia. Trifida 

 Non-Asian model Native model 

Variables Contributions Correlation coefficients Contributions Correlation coefficients 

Model 13 13 9 9 

β-multiplier 1.5 1.5 1 1 

bio1 0.927 / / / 

bio2 1.4447 / / / 

bio3 33.4957 1 31.4693 0.0388 

bio5 5.7746 0.1170 5.6773 -0.4703 

bio7 21.5053 -0.5967 / / 

bio8 0.3242 / / / 

bio9 18.0684 0.6009 27.4803 -0.2793 

bio12 8.5884 0.1386 8.7260 1 

bio14 8.7897 -0.2707 26.6471 0.7203 

bio15 0.4904 / / / 

bio19 0.5916 / / / 

* The native model of highest performance was a combination of β-multiplier (1.5) and six bioclimatic variables. The non-Asian model of highest 

performance was a combination of β-multiplier (1) and five bioclimatic variables. 

** Definitions for bioclimatic variables are the same as Table 2. 

 

Table 5. Performance Evaluation of the Three Allergenic Ambrosia Species Using Independent Asian Records 

Species Models AUCeval AUCdiff lowest presence threshold 10% calibration omission threshold 

A. psilostachya 
Non-Asian  0.7975 0.0687 0 0.0962 

Native  0.7890 0.0221 0 0.0962 

A. artemisiifolia 
Non-Asian  0.8323 0.0956 0 0.0967 

Native  0.8532 0.0419 0 0.0940 

A. trifida 
Non-Asian  0.8516 0.0260 0 0.0962 

Native  0.8307 0.0173 0 0.0932 

* Overall performance (AUCeval) and three measures of over-fitting, i.e. AUCdiff (AUCcalib − AUCeval), and average omission rates (lowest presence 

threshold and 10% calibration omission threshold) on averages of 10-fold cross-validation were provided for the native and non-Asian model, respectively 

(Boria et al., 2014).  

** Note that the native model for A. artemisiifolia showed a significantly higher value for the measure of overall performance and a lower value for 

measurements of over-fitting compared with the non-Asian model. 

 

Based on the four GCM predictive maps overlapped for 

showing the agreement between the models, estimated climatic 

suitability for A. artemisiifolia increased 0.243% and 0.257% 

under the RCP4.5 and RCP8.5 scenarios by 2050 (Table 6). 

These gained areas were mainly located in Hunan, Jiangxi pro- 

vinces and partially scattered along southeastern coastal regions 

of China. Meanwhile, all the models predicted 1.122% and 

2.178% of suitability loss under the two RCPs, within northern 

and northeastern China, the central and southern Korean penin- 

sula as well as scattered areas in Japan. Compared with the 

RCP4.5 (Figure 6), the RCP8.5 scenario resulted in a larger 

habitat suitability loss when predictions were based on the 

CNRM-CM5 and MIROC5 models (Figure 7). 

All the GCMs predicted apparently contractions of clima- 

tic suitability areas in Asia for A. trifida in future scenarios 

(Figures 8 ~ 9). Suitable area (probability of presence greater 

than 0.5) for this species was predicted to loss by 1.84 ~ 4.80% 

and 4.77 ~ 5.34% under RCP4.5 and RCP8.5 scenarios respect- 

tively, despite a suitability gain of 0.02 ~ 2.28%. Models indi- 

cated that most regions colonized by A. trifida would become 

unfavorable in the future and tend to decline with increasing 

RCP levels. This decline was most notable in most northeast 

North Korea, scattered habitats across the central region of the 

Korean peninsula, eastern China and Japan under RCP4.5 sce- 

nario. Under the RCP8.5 scenario, there was less retained and 

new habitats gain whereas more suitable habitats loss, when 

compared to those in RCP4.5. 

Under both RCP scenarios, predictions using different 

GCMs under the selected RCPs produced very different out- 

comes. For A. artemisiifolia and A. trifida, the highest habitats 

loss and the consequent narrowest suitable distribution area 

were predicted by the BCC-CSM and MIROC5 model respect- 

tively. For A. artemisiifolia, the highest habitat gains and the 

consequent largest suitable distribution area were estimated by 

the MIROC5 model. The greatest habitat loss for A. psilosta- 

chya under the RCP4.5 and RCP8.5 scenarios were obtained 

from the HadGEMs-ES and MIROC5 models respecttively. 

Notably, A. artemisiifolia was predicted to experience a small 

increase in habitat suitability under RCP4.5 scenario and 

MIROC5 model, owing to the highest habitat gains. 

4. Discussion 

4.1. Potential Distribution and Prospects for Management 

The current distribution of A. artemisiifolia matched the 

known occurrence records and indicated that this species had  
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Note: Maps from left to right (Figure (a) to Figure (f)) present similar information for A. psilostachya as illustrated in Figure 4. 
 

Figure 5. Projected future distribution for Ambrosia psilostachya under the two representative concentration pathways RCP8.5. 

 

considerable potential for successful invasion in Asia. Under 

future climate conditions, considerable contraction of distribu- 

tion of A. artemisiifolia was expected to occur in most regions 

having being colonized. Meanwhile, a southwards shift of po- 

tential range in China was identified in our study. Contrastly, 

the potential range of A. artemisiifolia in a recent study was 

predicted to expand and shift northward in Central and North- 

ern Europe by 2080 (Cunze et al., 2013). Plant species are ex- 

pected to experience spatial (poleward and elevation) shifts in 

their ranges (Parry et al., 2007) that will influence the abun- 

dance and distribution of allergenic plants (Cecchi et al., 2010). 

The opposite outcome of invasion potential for A. artemisiifolia 

in the two continents provides the evidence of its remarkable 

adaptive flexibility for range expansion, and raised the concern 

of whether A. artemisiaifolia occupy different environmental 

niche spaces in the two continents. The results also suggested 

that recommendations of control measures to prevent A. arte- 

misiifolia’s further invasion and the management of potential 

danger may be different for the two continents.   

Projection of A. artemisiifolia in Asia showed that, despite 

the potential range contraction, this species continues to expand 

its range largely towards adjacent regions located in southern 

and south-central China, where it has not reached its full distri- 

bution potential. Shifts in potential habitats of A. artemisiifolia 

are supported by reports of new occurrences of this species in 

southeastern China during the last decade, especially in the 

Zhejiang, Guangdong, Fujian, and Guangxi regions (i.e. Zeng 

et al., 2010). However, regions in northeastern China including 

Heilongjiang, Jilin, and Liaoning were found to be barely suit- 

able for colonization both under current and future climate sce- 

narios. This was somewhat surprising given that these are the 

very regions where the species is generally acknowledged to  
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Table 6. Changes in Climatically Suitable Areas (%) for Three Ambrosia Species by 2050 in Asia Based on Estimations of 

Maxent Models under the Two Representative Concentration Pathways (RCP4.5 and RCP8.5). 

Species A.psilostachya 

Changes in climatically 

suitable areas (%) *  
Predicted percentage suitable area Habitat loss Habitat gain 

RCP4.5 

BCC-CSM1.1 1.821 0.02 1.35 

CNRM-CM5 2.261 0.011 1.78 

HadGEMs-ES 2.709 0.008 2.225 

MIROC5 2.468 0.023 1.999 

Scenario Average ** 1.304 0.002 0.863 

 BCC-CSM1.1 2.766 0.043 2.318 

RCP8.5 

 

CNRM-CM5 2.32 0.003 1.831 

HadGEMs-ES 2.796 0.04 2.345 

MIROC5 2.976 0.001 2.486 

Scenario Average** 1.495 0 1.084 

Species A. artemisiifolia A. trifida 

Changes in climatically 

suitable areas (%) *  

Predicted 

percentage 

suitable area 

Habitat loss Habitat gain 

Predicted 

percentage 

suitable area 

Habitat loss Habitat gain 

RCP4.5 

BCC-CSM1.1 1.871 5.966 0.303 4.967 1.84 1.367 

CNRM-CM5 6.527 3.125 2.119 5.209 1.8 1.569 

HadGEMs-ES 5.152 3.711 1.33 5.319 2.397 2.276 

MIROC5 8.708 1.667 2.842 0.934 4.8 0.293 

Scenario Average ** 1.561 1.122 0.243 13.605 0.968 0 

 BCC-CSM1.1 3.038 5.017 0.522 0.719 4.771 0.05 

RCP8.5 

 

CNRM-CM5 5.245 3.431 1.143 0.603 4.859 0.022 

HadGEMs-ES 5.581 3.264 1.312 0.134 5.323 0.016 

MIROC5 6.128 3.212 1.806 0.121 5.335 0.015 

Scenario Average** 2.232 2.178 0.257 6.797 4.287 0 

* Calculation of area based on grid squares identified as ≥ 50% suitable (Sobek-Swant et al., 2012).  

** Calculation of area based on ensemble RCP4.5 and RCP8.5 scenarios using CNRM-CM5, HadGEMs-ES, MIROC5 and BCC-CSM1.1. 

 

have been first successfully introduced (Qi et al., 2011). Whe- 

ther the pattern in range shift in China contributed to the pre- 

dicted reduction of climatic suitability for A. artemisiifolia in 

Asia was not assessed in this study. 

As an early successional annual plant in the Asteraceae 

family, the presence of A. artemisiifolia in a particular region 

was positively correlated with the length of time since its intro- 

ducetion (Chauvel et al., 2006). The ability of this ruderal spe- 

cies to successfully colonize new areas has been attributed to 

its potential to produce viable seeds via self-pollination (Bas- 

sett and Crompton, 1975). The species is already widespread in 

western Europe, occurring more commonly in warmer southern 

regions. In Asia, this species can establish successfully in rela- 

tively warmer and wetter conditions owing to its high adaptive 

ability (Sang et al., 2011). At present, A. artemisiifolia may not 

have occupied all possible suitable regions in Asia, although 

predictions from our work suggest that it is likely to undergo a 

range contraction in the future. Nonetheless, over the short-term 

at least this species is likely to continue to expand its range fur- 

ther south (Figure 5) and as such remains a serious concern from 

a human health perspective as well as an increasingly proble- 

matic weed in cropping systems. Early detection and strategic 

management plans should thus be put in place for this species, 

especially in areas with high climatic suitability or recently 

colonized. 

The current climatic suitability for A. psilostachya in Asia 

appears limited, and is primarily confined to Japan. Future pro- 

jections are for suitable areas to continue to decline for this spe- 

cies due to climate change. The predicted distribution includes 

several areas (i.e., parts of the Korean peninsula and north- 

eastern China) that fall outside the ranges having been colo- 

nized. These inferred habitats are supported by reports that A. 

psilostachya has established a feral population in Kaohsiung 

County in southern Taiwan (Tseng and Peng, 2004) and is the 

second Ambrosia species to be found in India (Prasad et al., 

2013). The occurrence of A. psilostachya far beyond known re- 

cords suggests that these newly colonized regions may poten- 

tially be susceptible to negative ecological impacts and the hu- 

man population to increased allergy risk from this species. De- 

veloping habitat-specific monitoring and control plans to pre- 

vent its further spread is important since there is still the poten- 

tial of a slight gain in suitable habitats under future climate pro- 

jections. 

A. trifida remained largely restricted to regions already 

colonized and showed a potential of substantial range contrac- 

tion with the radiative forcing level, despite a very limited suit- 

able habitat gain. Results from the four GCMs under RCP8.5 

indicate that A. trifida might attain its range limit by 2050, 

highlighting the potential unfavorable effects of climate change 

for this species. Most of the unsuitable areas were concentrated 
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Note: Figure (a) to Figure (f) in the two RCP scenarios present similar information for A. artemisiifolia as in Figure 4. 
 

Figure 6. Projected future distribution for Ambrosia artemisiifolia under the two representative concentration pathways RCP4.5. 

 

in northeast China, which is consistent with previous studies 

(Guo et al., 2004; Qin et al., 2014). In addition to the influence 

of changing climate on its spread, A. trifida has a relatively low 

fecundity, a transient seedbank and a high percentage of non-

viable seeds (Harrison et al., 2007), features which may have 

constrained its establishment and spread. 

Similar to findings in Europe (Smith et al., 2013), both A. 

psilostachya and A. trifida were less abundant in Asia than in 

other regions. A. psilostachya was considered to have less po- 

tential for spread and establishment than the other two Ambro- 

sia species, as it reproduces mainly by rhizomes and produces 

few seeds (Gerber et al., 2011). A. psilostachya has persisted 

primarily in Japan since the 1970s but has not spread extensive- 

ly to neighboring countries (Nagada, 1972; Auld et al., 2003). 

A. trifida was first reported around 1935 in China (Yin et al., 

2010) and was widely distributed throughout the Japanese Is- 

lands by the 1950s (Makino, 1985). Despite the high competi- 

tive ability and rapid growth rate of this species, few newly 

established populations have been recorded since the 1970s. 

During its rather lengthy invasion process, A. trifida has spread 

slowly near previously colonized habitats, and its projected 

range expansion is likely to be limited especially under more 

severe climate change scenario. Nonetheless, at present, A. tri- 

fida still poses a serious threat for eastern Asia because of its 

high allergenic potential, hence intensive and effective preven- 

tive measures are needed in regions where it is expected to 

establish in the coming years. 

 

4.2. The Effects of Model Complexity 

Model complexity (defined as the number of parameters  
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Note: Figure (a) to Figure (f) in the two RCP scenarios present similar information for A. artemisiifolia as in Figure 4. 
 

Figure 7. Projected future distribution for Ambrosia artemisiifolia under the two representative concentration pathways RCP8.5. 

 

included in a model) has been suggested to affect transferability 

and uncertainty of models in recent studies (Warren et al., 2014; 

Moreno-Amat et al., 2015). We limited the complexity of Am- 

brosia models in this study through: (1) assessing bioclimatic 

variables and the correlations among them; (2) changing fea- 

ture classes and regularization multiplier in Maxent. Results in- 

dicated that the effects of model complexity on the predictive 

performance of models were different for the three Ambrosia 

species. This occurred despite the fact that the best model (in 

terms of AUC test values) was the one run with all climatic 

variables (11 variables) and LQH features, but differed in the 

optimal β-multiplier and calibration datasets. For A. psilosta- 

chya, higher AUC test values were obtained with the most com- 

plex model (106 parameters) using a relatively lower β-multip- 

lier (β = 1.0) in the non-Asian model. For A. artemisiifolia, the 

simpler native-model (70 parameters) using β-multiplier (β = 

1.0) resulted in the higher performance. For A. trifida, the sim- 

pler non-Asian model (35 parameters) using a higher β-multip- 

lier (β = 1.5) resulted in the higher AUC test values. The effects 

of model complexity were also reflected in current distribution 

predictions of the three Ambrosia species (Figure 3).The sim- 

pler model (based on native or non-Asian datasets) using a rela- 

tively higher β-multiplier predicted more potential suitability 

areas for both A. Artemisiaifolia and A. trifida, while the higher 

suitability values were estimated using the more complex non-

Asian model for A. psilostachya. That higher level of comple- 

xity models might not always result in the best model projec- 

tions is consistent with recent studies in which models of inter- 

mediate complexity offered the best trade-off for predicting 

species distributions across time (Moreno-Amat et al., 2015).  
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Note: Figure (a) to Figure (f) in the two RCP scenarios present similar information for A. trifida as in Figure 4. 
 

Figure 8. Projected future distribution for Ambrosia trifida under the two representative concentration pathways RCP4.5. 

 

However, Maxent models based on native-range datasets gene- 

rated the same level of overall predictive ability and slightly 

lower overfitting in predicting independent evaluation datasets 

from Asia. The findings confirmed that reducing the comple- 

xity of models is effective in enhancing overall performance 

and transferability. Thus, performing tuning practice on feature 

classes, the regularization multiplier, the number of environ- 

mental predictors, and sample size, are highly recommended 

for appropriate model complexity. This is especially important 

for studies on invasive species using predictive species distri- 

bution models for which high spatial transferability are require- 

ed. On the other hand, although the three Ambrosia species 

showed similar optimal parameters (relevant to model comple- 

xity) for best spatial transferability among them, which factors 

had the greatest effects still remains unclear. Predictive power 

of these models that depends on program settings involving sam- 

pling bias, parameters of model complexity, geographic back- 

ground, and size of datasets, should be evaluated using reliable 

and independent datasets in future studies. 

 

4.3. Uncertainties 

Previous studies indicated that species distribution model- 

ling techniques generally contributed the largest variation among 

of the sources of uncertainty in the projection of climate change 

impacts (Buisson et al., 2010). Ensemble forecasting approach- 

es as well as climate models, thus, were emphasized and widely 

used to enhance the reliability of projected future species dis- 

tributions (i.e. Araujo and New, 2007). The interpretation of re- 

sulting predictions does not consider the variability caused by 
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Note: Figure (a) to Figure (f) in the two RCP scenarios present similar information for A. trifida as in Figure 4. 
 

Figure 9. Projected future distribution for Ambrosia trifida under the two representative concentration pathways RCP8.5. 

 

different climate models and/or emissions scenarios (Porfirio 

et al., 2014), and may be affected by the methods which were 

used to combine a range of species distribution maps (i.e. Mar- 

mion et al., 2009). Using only the Maxent model in our study, 

high predictive ability was achieved by the fine-tuning of mod- 

el settings (i.e. occurrence thinning, predicted variables selec- 

tion, model complexity control, etc.) in future projections. De- 

spite the limitations of this approach having been illustrated, 

the predictive power of Maxent models was improved by oc- 

currence thinning, model complexity control, and background 

of dataset choice. Based on three robust evaluation statistical 

values, the resulting models having greatest AUC values and 

low over-fitting were selected and then employed to future pro- 

jections for each Ambrosia species. The study supports the ideas 

of overcoming the limitations of SDMs (i.e. Maxent model in 

this study) and using the best-performing models for more ef- 

fective prediction and in turn, helps to making management de- 

cisions for these three troublesome plant species (Anderson and 

Gonzalez, 2011). To facilitate a framework for risk assessment 

and feasible management strategies and options, uncertainty 

sources in sampling datasets, general circulation models, gas 

emission scenarios and their interactions should be partitioned 

out and quantified for each Ambrosia species. Moreover, spe- 

cies’ biological attributes should be considered for projecting 

the change in a species range, as has been suggested in some 

studies (Buisson et al., 2010; Clements and Ditommaso, 2011). 

Divergences in the magnitude of potential range changes of the 

three Ambrosia species also highlight the need for a more in- 
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sightful analysis of uncertainties and their patterns in future work. 

5. Conclusion 

The three most notorious Ambrosia invasive species shift- 

ing from their original locations to invade new regions has 

raised considerable concern in Asian regions. Species distribu- 

tion models are powerful in providing valuable insights on the 

geographyic ranges of these species, for which the maximum 

entropy (Maxent) approach was employed for this study. The 

results strengthen the correct interpretation of SDM outputs by 

seeking the best fit (i.e., the model with the best transferability 

and performance) for species occurrence datasets. The infor- 

mation thus provided a valuable perspective for exploring the 

impacts of parameters of a given method for projecting species 

distributions. It also provided a better understanding of the chal- 

lenges/uncertainties at different levels of the modeling process. 
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