Journal of
ISEIS Environmental
- Informatics

Journal of Environmental Informati&9(2) 81-96 (2022

www.iseis.org/jei

Improving Soil Salinity Simulation by Assimilating Electromagnetic Induction
Data into HYDRUS Model Using Ensemble Kalmartfilter

R.J.Yaé, J. S. Yany', X. P. Wang, Y. Zhad, H. Q. Li2, P. Gad, W. P. Xié, and X. Zhan

1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 988jiChtD
2University of Chinese Academy of Sciences, Beijing 100049, China
3College of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
4Department of Earth and Ocean Sciences, University of North Carolina, 601 South College Ruoautdv, NC 28403, USA

Received3 April 2020; revised? July 2020; accepted 2 January2021; published onlin@4 March 2021

ABSTRACT. Assimilation of proximally and remotely sensed information on soil salinizaélaied attributes into a hydrological
model is essential to improve the forecast performance of the profiled soil salinity dynardiegdlopingappropriate soil amendment
practices. Although the family of ensemble Kalman filters (EnKF) is widely used in data assimilation, their applicabittiaailitly

for soil salinization estimation requires further experimental validation. Here, we evaluated the assimilation pezfofrapparent
electrical conductivity (E€} data obtained from an electromagnetic induction meter (EM38) into the HYDRUS hydrological medel. Re
sults showed that the EnKF method improved the simulation accuracy of soil salinityl@0@m soil depthss indicated by the de
creased roemeansquare error of 32.676.7% and increased NasButcliffe efficiency of 9.6-71.2%. The HYDRUSimulated values

with EnKF were closer to the measured values than the values simulated by the HYDRUS modelbanéfitiesd from updating the
running trajectory of the HYDRUS model. The EnKF values derived from measukethBGvere better than HYDREmulated val

ues with EnKF. Soil salinity simulation was sensitive to ensemble size, error level, addt&@epth. Considering the ensemble repre
sentativeness and computational efficiency, the optimal ensemble size was judged to be 50. The maximum aloseptatiteerror

was 10%, and observation data to a depth of 100 cm was suggested in EnKRté@sitniminimize the roetneansquare error. It was
concludedhat proximally sensed EM38 data coupled with the EnKF algorithm is promising for improving the simulation performance
and providing a prospective method for simulating lesgale ecologicalra hydrological processes by coupling mslurce data and
hydrological models.
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1. Introduction growth and energy exchange between the land surface-and at
mospherde.g., Zhou et al., 2017; Wu et al., 2018). Therefore,

Understanding the spattemporal dynamics of soil satin  the development of measurement and estimation approaches
ity in the root zone is essential for hydrologjcagricultural,  for reattime and accurate characterization of rpobe soil sa
and ecologicatesearch, as soil salinization is a constant threatlinity is urgently needed.
to soilsustainable development. This is particularly the case in During thepasttwo decades, proximal soil sensirsgch
the coastal area of East Chira, where soil salinization ia a5 electromagnetic induction meter (EM) tisee-domainreflec
keylimitation to crop production. Additionally, increasing op  tometry (TDR), frequencglomain reflectometry (FDR), and
ulation and cropland reduction have drawn growing public groundpenetrating radar (GPR) have become popularinon
concerns to thamendmenand efficient utilization of salaf- vasive techniques and have beeresivelyusedn manyfields,
fectedsoils as well as croplanekpansion (Li et al., 2014). In e g., soil characterization, hydrologicakearch, and precision
agriculture, obtainingeattime and accurate information on the agriculture (Aldabaa et al., 2015; Wallor et al., 2018). Among
root-zone soil salinity is crucial for determining optimalrri  them, electromagnetic induction (EMI)struments, including
gation and drainage practices to minimize salinization hazardg£m31, EM38, EM38DD, andEM38-MK2 meters (Geonics Lim
and naximize crop yieldgMetternicht, 2017)It is widely re ited, Mississauga, Canad®UJALEM-1 and DUALEM2 me
ported that soil salinity influences most important procestes ters (DUALEM Inc., Milton, OntarioCanada), and Veris 3100
hydrologicalcycles,such as root watemutrient uptakeand (Veris Technologies, Salina, Kansas, USA) (Doolittle Brelik,
2014), have been widely used to assess the nature, origin, and
evolution of soil salinization at multiple temporal and spatial
scales. The EM38 meter, by far the most widely used EMI sen
ISSN: 1726-2135print168487990nline sor in soil science, has been commonly employed (Ding and
© 2021 ISEISAll rights reserveddoi:10.3808/jei.202100451 Yu, 2014;Huang et al., 2016; Narjary et al., 2019). Further
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more, active research has been undertaken to improfie at the 0~ 100 cm depthand(ii) examinethe sensitivity of the

soil salinity estimatiomsing various combinations of operation simulation performance to the assimilation parameters, e.g.,
modes andlifferent measurement heights above the ground, in ensemble number, error level of obsion data, and the depth
cluding layereeearth modeling, multiple linear regression; lin  of the EGdata used in the assimilation.

ear mixedeffects modeling, nofinear Tikhonovregulariza

tion, and the joint inversion method (Triantafilis and Monteiro :

Santos, 2010; Huang et al., 2015). However, the limitation of 2. Materials and Methods

EM38 application is thait does not work well in areas where 2 1. Experimental Site Description

soil salinity is mostly homogeneous and other soil attributes,

such as soil moisture, texture, bulk density, and clay mineralo Farm is situated in the mariterrestrial interlaced area in the

gy, are heterogeneous (Corwin and Lesch, 2014). DongtaiPrefecture3 2 A38 Nj ~ 32A39N N, 120A
With the development of data assimilat&pproaches, fe  North Jiangsu Province, China. The land on this fams er
mote and proximal soil sensing data have been continuously|osed and reclaimed from coastal mudflats in 1999 and 2004,
adapted to improve soil and crop parameter prediction (Tran efespectivelyanddivided by dikes irthe north-south direction
al., 2013; Huang et al., 2016). Data assimilation methods wergynich were builtat different ages(Figure 1(a)). The experi
initially developed to improve weather forecasts and ocean dy mertal site is 7 km away from the China Yellow Sea coastline
namics pediction in meteorology and oceanography and haveang has a nearly flat topography with an elevation of 1.1 ~ 1.5
been used in hydrology and ssitience for over two decades m apove sea leveF{gure 1(b)). The climate is characterized
(Houser et al.1998; Bauser gtl., 201_8): Asslml|<’:¢|0_n methods by a subtropical zone with a cold, dry season from November
are ascribed to two categories: variatictfeetia assimilation and {5 March and a hot, wet season from June to September. The
sequential datassimilation. Variational data assimilation aims mean annual rainfall is,048.5 mm, with over 70% occurring
to find the most likely state and mode of the analysis proba ;o May to September. Soils are developed on Yangtze allu
bility density function by minimizing the nelinear cost fune 5 sediments ahmarine sediments, and the predominant soil
tion. In contrast, sequential data assimilation is based on-an ARype is classified as a loamy, mixed Typic Halaquepts group of
proximation ofthe mean of the analysis distribution (Rawlins Aquepts in Inceptisols based on soil taxonomy (Soil Survey
et al., 2007). Currently, Kalman filter methods are the mostgiaff. 2010). A shallow saline watéable (average ground

widely used assimilation approaches, including the ensemblg, i, EG of 8.01 d$m and waer tableat 1.44 m) results in
Kalman filter (EnKF) (Wang et al., 2018), extended Kalman |arge areas of sadiffected land and poarop growth anaoil
filter (Sun et al., 2016), agéive ensemble Kalman filter productivity.

(Reichle et al., 2008), and maximum likelihood ensemble filter . ' . .
(Tran et al., 2013). In soil science, Kalman filters have been A Section of the field between Dike999 and Dike2004,

extensively used to assimilate remotely and proximally sensed@PProximately 60 m in width and 160 m in length, was chosen
data into models to improve the estifoatof the soil moisture 07 the experimentHigure 1(b)). This selected field had no

profile and crop yield (Wu et al., 2012). For instariben et docum_ented history _of cultivation until April 2007, and after
al. (2013) assimilated proximally sensed gropesetrating Ward.rice Oryza satival.)/barley (Hordeum vulgare..) ro-
radar (GPR) data into a hydrodynamic model to improve SOntayon was initially implantedDue to freshwater scarc!ty, a
moisture profile reconstruction. Brandhorst kt(8017) inte rainfed cornZea mays..)/barley HordeumvulgareL.) rotation
gratedtime-domain reflectometry (TDR) data with unsaturated Was adopted in 201Because of the lodying terrain and
zone models to improve soil moisture prediction and handle soifféShwater shortage for salt leaching, soil salinization has been
hydraulic conductivity uncertainty. In addition to soil moisture, "€cognized as the most significant constraint to agricultural
de Wit and van Diepen (2007) assimilated satefl#ggved vari ~ Production in this field.

ables (such as leaf area index and soil water index) into the crop

model WOFOST to improve regional crop yield forecasts. 2.2. Field Observatims and Data Collection

Despite the success of EMI in soil salinity delineation and The experiment was conducted from November 2015 to
extensive applications of the ensemble Kalman filter method inOctober 2016Meanwhile, the observation datacluding field
hydrological processes, few studies have coupled EMI meaEC, data,weather, sojland groundwater datavere periodi
surements and ensemble Kalman filters to improve soil salinitycally collected for EnKF assimilatiofiTable 1). The data of
estimation (Hiang et al., 2017). In the current study, linear three EMI measurement sites and three soil sampling locations
mixed-effects models relating soil salinity profiles with the near the central observation well were selected for EnKF as
bulk electrical conductivity (Eg data (Yao et al. 2016) were similation (Figure 1(b)), considering that a larger EnKF data
used as observation operators. First, we simulated theabil area resulted in higher spatial heterogeneityifsd ground
dynamics in theaot zone using the HYDRUS model. Then, water properties. Weather data were continuously recorded
we assimilated the E@ata into the HYDRUS model using the from the automatic weather station installed at the experimental
ensemble Kalman filter anelvaluatedheinfluence ofensem site Figures 2(a) and Zb)). Daily reference evapotranspiration
ble Kalman filteron soil salinity simulatioperformanceThe (ETo) was calculated based on daily meteorologiedh (Raes,
objectives of this study were t¢i) investigatethe effect of  2009). Daily crop evapotrapiration (ET) was determined from
EnKF assimilation on the simulation accuracy of soil salinity ETo using the singlerop coefficient approach (Alleet al.,

The experimental site of the Huanghai Raw Seed Growing
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(a) Geographical location of the experimental site
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(b) Field infrastructure and data source
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Figure 1. Geographical location of the experimental site and spatial distribution of field infrastructure, contour of ground
elevation, sampling sites, EMI survey sites as well as the data area selected for EnKF assimilation. (a) Geographic#l locatio
the experinental site; (b) field infrastructure and data source. D#&5, Dike1999, and Dik004 mean the reclamation dike

built in 1955, 1999, and 2004, respectively.

Table 1 Overview of the Observation Data and Their Sources in This Study

Source/method
Automatic Weather Station

Data type
Meteorological data

Mainindices Observation period/time

Precipitation, global radiation, relative 1s'Nov. 2015 ~ 3# Oct
humidity, wind speed, barometric pressure, . 2016

temperature, evaporation, sunshine hours
Groundwater properties Water table, groundwater electrical

1s'Nov. 2015 ~ 3# Oct CTD-Diver (type DI263)

conductivity 2016
Soil moisture and Soil EG, total dissolved salts TR&nd water 1% Nov. 2015 ~ 3% Oct Soil sampling and lab analysis
salinity content on the profile (8 20, 20~ 40, 40~ 2016

60, 60~ 80, and 80- 100 cm)
Soil physical properties  Bulk density, texture, field capacity, saturate Aug. 2015
hydraulic conductivity, saturated soil moistut
on the profile (0~ 20, 20~ 40, 40~ 60, 60~
80, and 80- 100 cm)
Proximally sensed EMI  Apparent electrical conductivity (EC 1s*Nov. 2015 ~ 3# Oct
datd obtained at 0, 20, 40, 60, and 80 cm above 2016
ground in the horizontal med
" Soil moisture and salinity data on 11 dates fréhiNav. 2015to 315 Oct 2016weredetermined using field soil sampling and lab analysis, and proximally

sensed EMI dateassimultaneously collected at each soil sampling site. The 11 soil sampling and EMI survey dates were Nov. 3, 2015, Beta®9, 201
9, 2016, Feb. 9, 2016, Mar. 24, 2016, Apr. 27, 2016, Jun. 3, 2016, Jul. 6, 2016, Aug. 11, 2016, Sep. 15, 2016, aRd1®ct. 27,

Core method, the Bouyoucos
Hydrometer method, the Wilcox
method, constant head method

Electromagnetic induction meter
(type EM38)

1998).The water table and groundwater salinity were automat over, soil profile samples were repeatedly collected on 11 dates
ically recorded using CTiDiver sensors (type DI263) installed during the experimental period (s&able 1) for model cak

in the observation well. The groundwater data were collected abration.The van GenuchteMualem (\G) model parameters
hourly intervals, and the daily groundeetiata were averaged of the soil water retention curve (SWRC) were estimated from
(Figure2(c)). the bulk density and sand, silt, and clay percentage values using
the Rosetta pedvansfer functions (Schaap et al., 2001). These
paramegrs were used as the initial values of the HYDRUS

2.3. Soil Sampling and Lab Analysis
model.

Core soil samples were collected at 0, 20~ 40, 40~
60, 60~ 80, and 80~ 100 cm layers for lab analysis to deter ) ) )
mine the bulk density, texture, field capacity, saturatgttau 2.4. Proximal Soil Sensing
lic conductivity, and saturated soil moisture. Disturbed soil An electromagnetic induction (EM38) meter was used to
samples at the same depths were also obtained by hand augssllect the EMI measurements (E@ata) EMI measurements
for soil salinity and water contemeasuremenfThe measured at the same locations were repeateddeon 11 dates from
basic soil properties are givenTable2. Soil salinity and ma- November 2015 to October 20{$eceTablel). At each loca
ture data of disturbed soil samples, collected in late October 2018pn, the EM38 meter in the horizontal operation dipole was po
were used as initial conditions of the HYDRUS model. More sitioned on the soil surface, and at heights of 20, 40, 60, and 80
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(a) Daily precipitation and reference (b) Daily air temperature range and daily wind
evapotranspiration (ET) speed
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Figure 2. Daily weather and groundwater data from Nov. 2015 to Oct. 2016. (a) Daily precipitation and reference
evapotranspiration (&J; (b) daily air temperature range and daily wind speed; (c) daily dynamics of water table and groundwater
salinity.

Table 2.Soil Property Data, th€alibrated van GenuchtéNualem Model Parameterand Solute Transport Parameters at the
Experimental Site

Soil parameters Soil layers (cm)
0~20 20~40 40~ 60 60~ 80 80~ 100

Texture class Siltloam  Siltloam Siltloam Siltloam  Silt loam
Sand (%) 17.8 155 15.1 147 14.2
Silt (%) 70.6 71.8 74.0 73.8 72.5
Clay (%) 11.6 12.7 10.9 115 133
Soil salt contenTDSe (g/kg)” 2.49 2.26 3.25 2.84 3.45
Soil moisture (crifcn?)” 0.253 0.303 0.288 0.278 0.320
Bulk density (dcnr) 1.39 1.50 144 145 143
Field capacity (criicn?) 0.28 0.24 0.26 0.27 0.26
Saturated hydraulic conductivity (¢d) 18.55 9.25 18.16 9.73 9.53
The van GenuchtéMualem d: (cmP/cn?) 0.068 0.067 0.054 0.073 0.072
model parameters ds (cr/cr) 0.415 0.404 0.380 0.433 0.437

U(1/cm) 0.0053 0.0062 0.0059 0.0063 0.0063

n 1.657 1.601 1.632 1.604 1.602
Solute transport parameters Longitudinal dispersivitypL (cm) 2.46 1.12 3.99 0.74 0.68

Adsorption isotherm coefficierts (cm?/g) 0.35 0.39 0.29 0.41 0.38

" Soil moisture and salinity data measured ofi@6t 2015 were used as initial conditions of the HYDRLIS model.

cm above the ground, and the EMI data at the different heighten EMI meaurements. This work was simultaneously-per
were obtained. Each EMI survey was completed within two formed with soil sampling. During each EMI survey, an €lec
consecutive days to ensure homogeneous soil condiiods,  tronic thermometer was used to measure soil temperature in the
minimizethe influence of soil properties other than soil salinity 0 ~ 40 cm soil layer at hourly intervals for temperature-cali
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bration of EMI measuremen(sa et al., 2011). 2.5.3. Observation Operators

The observatiooperators, relating the soil salinity (TS
2.5. EnKF Assimilation of EMI Measurements into the g/kg) profile with the EMI datafC,, mS'm) obtained at differ
HYDRUS Model ent heights above the ground, were dighbd using methods

of the linear mixeekffects mode(LME) and restricted maxi

mum likelihood (REML) (Yaocet al., 2015) For the observa

tion operator in each soil layer, the EMI data collected at differ
ent heights were used as independent variables to estimate soil
salinity. REML was adopted to determine the optimal indepen
dent variables byemoving some Iss important independent
2.5.1. Ensemble Kalman Filter (EnKF) variables, and LME wassed to relate the selected independent

In a data assimilation system, modeherated data are eor variables with soil salinityThis procedure was conducted for

rected toward observational estimates, and the extent of corre€ach soil layer, and the established miréfécts models were
tion is determined by the error levels between the simulation€MPIOyed as observation operators in tmE assimilation

and observations. The standard Kalman filter (i<@n optimal ~ SyStem. Using observation operators, the measured EMI data
sequential data assimilation method for linear dynamics andVere assimilated into the HYDRUED model to update the

measurement processes based on a Gaussian error distributicijate Of the soil salinity profile on different dates. More details
For nonlinear dynamics, Evensen (1994) and Burgers et al. Of the observation operators are described in Yao (2G6).

(1998) developed the ensemble Kalman filter (EnKF) to-over
come the shortcomings of the KF, including instability of the 2.5 4. Assimilation Scheme of HYDRWUE Model and
state error covariance matrix and error information propagatiorproximally Sensed Data Using EnKF

for largescale environmeal progress. The idea behind the

EnKF is that an appropriate ensemble of model trajectories The flowchart inFigure3 shows the assimilatigorocess
captures the relevant parts of the error structure. The EnKFOf theHYDRUS-1D model and the proximally senséd. data

representative of a Monte Carlo variant of the Kalman filter, l(E'.V” measudremgnts)_ l;lsmg tlhe Erélé:gor.nhm. The assimi
uses an ensemble of the Horearmoa& | 6 s tr aj ec tagorn Precs -ur_F '§ PM1E g%utme egw. - )
ture the error covaryances and propagate the ensemble statds Usea priori knowledge on the soil conditions to specify
It has found wide applications in land data assimilation formod ~ the initial soil salinity state and initial state ensemble.
estly nonlinear problems in recent yegfBhiboult and Anctij These values will work as the analysis st¢fend its en
2015; Wang et al., 2018). For the basic principles and detailed ~ SembleX; at timet = 0.
descriptions of the EnKF algorithmefer toHoutekamer and 2. Based on thé_(ta andX, values at time, run theHYDRUS-
Mitchell (1998) and Reichle et al. (2008). 1D model to simulate the temporal dynamics of soil sa
linity from timet to t + 1 andobtain the forecast sta€’,

. ¢ .
252 HYDRUSLD Model and its ensembl¥;’ ,, at timet + 1.

The HYDRUS1D model is a ondimensional finite ele Examine whether the EMI measurements are available. If

H s f f v a a

ment modethat incorporates physicallyased modules to sim uné\f/a”?blg'a aSS|gX}+1 andx;,., 10 X;,, andX;,.,, name
; ! ly X,y = XiandX

ulate the movement of soil water, heat, vapor, multiple solute

In the presenstudy, the assimilation system used the ensem
ble Kalman filter (EnKF) to integrate proximally sensed EMI
measurements (E@ata) and observation operators into a water
flow and solute transport model (HYDRUS).

1 o s = Xii,, attimet+ 1. If available,
transport, and major ion movement in variably saturated porous AKE allq%)r(iethm to estimaﬂﬁl andx® . and then
flow and salt transport in u ngl%llarrsl?n@?mg +1e'sdusmzj %eﬁeéosur)d?t%tperﬁtftﬁ 8fIEhe et &

it+1
employ the EMI measurements, observation operators,
media (Gi mBne& relnal . cHYDRUS , 2 ofg%aie' the ‘soil “salinity state with thosgﬂéstimates The
1D model waswidely adopted to simulate vertical soil water P y )
2012). In the HYDRUS model, water flow and solute transport . a_ILnlty proalle. . . .
modules are included, and soil water flow and salt transport ir-  With X7, and XX, ,obtained from step 3 as initial condi

the 0~ 1.0 m layer wersimulated at G- 20, 20~ 40, 40~ 60, tions run the HYDRUSLD model for the forecast or EnKF

60 ~ 80, and 80~ 100 cm layers. Root water uptake and root update at the next time.

growth werenegligibledue to excessively high soil salinity and During the assimilation procedure, four different soH sa

poor crop growth. For water flow simulation, the upper beund linity values were obtained when soil sampling and the &M

ary condition wasiatmospheridoundary conditionwithasur vey were conducted, i o0dlDRUSBg 1)

face runofb, and the lower boundary condition wi&riable simulated valued,0RBYDRIEBIKeH v al ue
pressure headdue to the shallow groundwater. No irrigation val ue with EnKFo6soiHersammwlees® nsa
occurred during the experimental period, as the experimentat er mi ned from | ab analysis as tF
site was rainfed. For salt transport cadtidn, the salt concen  linity simulated by the HYDRUS modetas determined as the

tration of precipitation was used as the upper boundary condi6 HY DRJiSmu | at ed v aérived frolh H®RUSc h wa s
tion, and the measured tirvariable groundwater salinity (§C  simulations without state variabledatesThe OEnKF val
dSin) was used as the lower solute boundary condition. was defined as the simulated soil s@ify assimilatingnea

85



R. J. Yaoet al./ Journal of Environmental Informatic39(2) 81-96 (2022)

t=0 Initial state and ensemble
Xo?, Xio? (F1, 2, -, N)
v =t
i= b Analysis state and ensemble | t=t+1 |Analysis state and ensemble |
r > X2, X,& (F1, 2, -, N) < Xut?, Xins® (F1, 2, -, N)

[ Boundary conditions ]—N—[State error p;~ N(X2, P,a)]
\ 2 [Kalman gain K4 ]_>
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Model error Iy nr'thm
algori
A
J [ Observation operators h(-) }—»
Forecast state and ensemble Observation data (EMI)
X, Xipea” (F1, 2, -+, N) Yeym

[ Observation error ]—»
Y

EMI measurement ensemble

Yitts Ui ~N(O, Rpeq)
Figure 3. Flowchart of the EnKF algorithm assimilating proximadignsed EQdata into the HYDRUS model. The salt content in
the soil solution, calculated from soil salt contéf&, g/kg), soil moistured, cm?/cnm®), and bulk density ¢, g/cn?), using the
equationTDS 2 r,/ ¢, was used as soil salinity in the assimilation proced@is initial value of soil salinity, g/LX?,is
initial state ensemble of soil salinity in tH&layer, g/L; X? and X2, are analysis values of soil salinity at titrendt + 1,
respectively, g/LX/, andX?,,, are analysis state ensembles of soil salinity iri'thayer at timet andt + 1, respectively, g/Lpi,
is the state error of soil salinity at tihevhich is normally distributed with mean of? and variance d@® ; g .., is the HYDRUS
model error at timé+ 1, which is normally distributed with mean ofadd variance oQ.1; X', is the forecast soil salinity at
timet+ 1, g/L; X{Hl is the forecast state ensemble of soil salinity at timé, g/L;Y,}; is the observation of E@ata at time + 1,
mS/m;Yi;+1 is the observation state ensemble of apparent electrical conductivity, ;mS/nis the observation error disturbance,
following a normal distribution with mean of 0 and standard deviatid® «of h(} is the observation operator relating apparent
electrical conductivity to soil salinity profile& .1 is the Kalman filter gain

f= a
W=
=
f= a
X:.1+1 "Xi.1¢1

suredEMI measurements and observation operators into thesystem is static during the assimilation procedure, and 3) soil water
OHYDRIWBlated al ued, and t he 06 En Kiéw iviadépandedt ofitiee simwatioa ant BniKF wepdates of the
only on the date when EMI measurements were made. Theemporal soil salinity state.

OHYDRYISmul ated value with EnKF®& was considered as the
simulated soil salinity by the HYDRUS model, which used the - .

updated state variabl e, i e_2.§.8tgt|§t|ﬁqj<®aly\§|§| ued on the previous
as input data.-sThhwd attelde vaH uRRweperfermagaoe &f EBF assimilation during the simula
incorporated the state error and model error, which propagatetion period was statistically evaluated using the following four
forward n time. The same calibrated parameter system andjuality criteria (Feng et al., 2017): (1) the mean relative error,
boundary conditions were used in the HYDRUS model for theMRE; (2) the rootmeansquare error, RMSE; (3) the determi
OHYDRWYISmul ated valuebo, 0 E-n K matian acoefficiedt,r? andn(4) thé NagBURcliffe efficiency
simul ated value with EnKFO®. coeffident, NSE.

It must be noted that the assimilation procedure shown in

Figure3 isbased on the following prerequisites: 1) the soil water 1N P-M)
flow process is fitted well using the HYDRU® model withthe  MRE=—@g T 3.00% (1)
calibrated soil hydraulic parameters, 2) the specified parameter = i
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1N persivity O.) and adsorption isotherm coefficiei for each
RMSE:Jﬁa( P - M)? (2) soil layer, were also optimizedsing the inverse algorithm.
= Determination of the dimensionless fraction, immobile water
content €im), and molecular diffusion coefficienDg) at the
. areE-m)? experimental site were based on Wan@l. (2014)The calk
r=1 A(P- P2 &M -M)? 3) bratedsoil hydraulic and solute transport parameterspaes
' ' ented inTable2. For soil moisture simulation, the MRE values
y were all within 5%, the RMSE values ranged between 0.018
A (M. - P)? and 0.024 crfcm®, and ther? values varied from 0.73 to Q.94,
NSE=1 —i=L @) whereas the NSEalues were all > 0.7T@ble3). Concerning
N M. - M)z soil salinity simulation, some discrepancies were observed in
ia=1( i deeper soil layers of the root zone, especially in the@®and
60~ 80 cm layers, in which 4 1.5 cm thin clay layers appeared
due to differenalluvial sediments produced during the goil-
mation processMoreover the groundwater table can some
times rise into these layers after considerable precipitation, i.e.,
the water table rose to 0.47 m after continuous rainfafim
12,2016 (day 28§ which was also shown by the simulated
soil moisture at the corresponding time. Generally, the -good
nessof-fit criteria for salinity simulation were satisfactory with
10.24% < MRE < 6.97%, 1.124 < RMSR<088 gL, r>>0.56,
and NSE >0.52 (Table3).

whereN is the number of observed values of soil salinity in the
profile; M; is the individual measured soil salinity value at the
soil depthi, g/L; P; is the individual simulated soil salinity at
the soil depth, g/L; P is the average of simulated soil salinity
in the profile, dL; M is the average of meared soil salinity in
the profile, dL. For a perfect prediction, the values oRE
and RMSE should be close to 0 arfdNSE shouldapprox
imate to 1, and NS#alues ranging between 0.5 and 1.0 are con
sidered preferable.

Table 3. Goodnes®f-Fit Test Criteria for Soil Water and

3. Results Salinity Simulation during ModeCalibration
3.1. FieldObservations and HYDRUS Model Calibration Soil layers MRE E:'\rgfrrﬁ 2 NSE
Soil water content fluctuated with the rainfall, evaporation, (cm) (%) or glL)
and redistributiorprocesseduring the simulation periodlarge Soil 0~20 4.94 0.021 0.94 0.91
rainfall events caused an increase in soil water cofganirat moisture 20 ~ 40 3.78 0.024 0.89 0.87
ed water content) dhe soil surface for several days, such as 40 ~ 60 1373  0.022 0.87 0.84
from days 284- 287, with 155.3 mm of rainfall recordefir- 60 ~ 80 1259 0.018 0.85 0.82
ing this period Figure4(a)). Contrary to soil moisture dynam 80 ~ 100 1232  0.019 0.73 0.71
ics, soil salinity content in the upper soil layers decreskatp Soil 0~ 20 6.97 2.015 0.56 0.52
ly with rainfall as the soil solution was diluted and salts were salinity 20 ~ 40 1.07 2.088 0.80 0.69
leached to deeper layers, and then gradually increased since 40 ~ 60 0.13 1.124 0.60 0.57
most of the leached salts could not be discharged in time and 60 ~ 80 1024 1.702 0.75 0.59
remained in the deeper soil lay€Fsgure4(b)). A possible ex 80 ~ 100 4.67 1.192 0.76 0.73

planaton is that the topsoil had a relatively higher water hold
ing capacity, whereas the 2010 cm soil layer was more cem 3 5 EnKE Assimilation Results
pact and had lower permeabilityable2). Meanwhile, the 40

~ 60 cm soil layer had significantly higher saturated hydraulic
conductivity Ksa) and permeability than the 6080 and 80~
100 cm layers, resulting in salt accumulatiormaily in the

20~ 60 cm soil layerAfter that, soluble salts transported- up lated values or HYDRUSimulated valugwith EnKF. In con

ward via capillary rise due to high evapotranspiration rates and Gast the HYDRUSsimulated values with EnKE had better

shallow groundvyater table, Ieao!lng t(? salt accumulation in theperformance than the HYDRUSMulated values. EofYDRUS.
upper layers until the next effective rainfall event.

simulated values with EnKEhe RMSE ranged between 0.708
The HYDRUS model sufficientlgapturedthe trends in - and 1.394y/L, and NSE varied from 0.67 to 0.86, and the cor

soil moisture and salinity concentratidngifferent soil layers  responding criteria for EnKF values ranged from 0.414 to 0.930

from November 201%0 October 2016. The hydraulic param  g/Land from 0.84 to 0.94, respectively. This result showed that

etersof HYDRUS model were calibrated using an inverse al the simulation performance for EnKfalues was better than

gorithm. The VG model parametetd n, andd; were the main ~ HYDRUSsimulatedvalues with EnKE It was not unexpected

parameters to be calibrated, wher€aandd; were only slight considering that EnKF values were derived from, B&a and

ly adjusted, a¥s andds weredeterminedrom field soil sam observation operators, whereas HYDRS&I®ulated valuewith

pling and lab analysis. Based on the goodiégi criteria, the EnKF were developed from HYDRUS simation using the

solute transport parameters, includeing the longitudinal dis EnKF values as updated state variables. dtive effects

EnKF assimilation performancsas evaluated by com
paring the four different soil salinity value&igure 5). As
indicated by the error analysi§able4), the EnKF values were
closer to the measured values than either the HY DBiUfG-
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Figure 4. The HYDRUSsimulated versus measured soil moisture and soil salinity in different layers. (a) Measured and
HYDRUS-simulated soil moisture in the-0100 cm layers; (b) measured and¥BRUS-simulated soil salinity in the €100 cm
layers. Vertical bars correspond to the standard deviation of observations.
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Figure 5. Soil salinity of HYDRUSsimulated values, HYDRUSimulated values with EnKF, EnKralues, and measured values
in different layers. (a) Soil salinity values in the-Q0 cm layer; (b) soil salinity values in the 2@0 cm layer; (c) soil salinity
values in the 46 60 cm layer; (d) soil salinity values in the 680 cm layer; (e) sbsalinity values in the 88 100 cm layer.
Where the solid line represents the dynamics of the HYDRioflated value, the dashed line represents the dynamics of the
HYDRUS-simulated values with EnKF, solid dots represent the measured values, and lotdloapdesent the EnKF values.
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Table 4.Error Analyses on Soil Salinity of HYDRUSmulated Values, HYDRUSimulated Values with EnKF and EnKF

Values
Soil layers(cm) HYDRUS-simulated values HYDRUS-simulated values with EnKF EnKF values

MRE (%) RMSE(g/L) r> NSE MRE(%) RMSE(glL) r> NSE MRE (%) RMSE(dL) r2 NSE
0~20 6.97 2.015 0.56 0.52 257 1.335 0.69 0.67 2.13 0.757 0.90 0.89
20~40 1.07 2.088 0.80 0.69 1.54 1.394 0.89 0.86 0.96 0.930 0.96 0.94
40~ 60 0.13 1.124 0.60 0.57 0.94 0.808 0.80 0.78 0.03 0.532 0.95 0.90
60~80 10.24 1.702 0.75 0.59 14.30 1.127 0.85 0.78 11.66 0.831 0.93 0.88
80~ 100 4.67 1.192 0.76 0.73 5.87 0.708 094 0.80 211 0.414 0.87 0.84

of EnKFassimilation on simulation accuracy were observed inserved from the average RMSE reduetrate that high EnKF

the whole soil profile, and this wasnfirmedby the decrease efficiency occurred when the ensemble size was below 30, and
in RMSE and increase of and NSE in all soil layers. the RMSE reduction rate varied little when the ensemble size
exceeded 50. Generally, the simulation accuracy was sensitive
to ensemble sizes of less than 30. An ensembteddiz0 was
quite satisfactory when considering both the RMSE value and
its reduction rate.

3.3. Effect of Ensemble Size on Simulation Accuracy

The optimal ensemble size of the EnKF algorithm @as
perimentally determined by comparing tbet-meanrsquare error
(RMSE) between EnKF values and measured values. For all ) ) )
soil layers, a sharp decreasing trend was observed for thd# Effect of Observation Data Error on Simulation
RMSE values of soil simity when the ensemble size was less Accuracy
than 30. The improvement was slight when the ensemble size In the EnKF assimilation procedure, the Flata is as
varied between 30 and 80, and no apparent improvement wasimilatedinto the HYDRUSsimulated value, and the blended
observed when the ensemble size was set to more than 8@formation of EGdata and HYDRUSimulated value is used
(Figure6(a)). For instance, the RMSE ebil salinity in the 0~ for state updates. Thus, the observation data quality directly im
20 cm layer decreased from 1.441 to 0.911 g/L when the enpacts the accuracy and reliability of the EnKF assimilatioen re
semble size increased from 5 to 30, whereas this value variedults. The obserti@mn data error, defined as the weight of each
between 0.819 and 0.911 g/L with the ensemble size ranging b ser vati on datads devi at-i on fr
between 30 and 80. The average RMSE at1D0 cm ato portant topic in data assimilation. In this study, error levels of
indicatedthat the improvementto simulation accuracy was 1.0, 2.5, 5, 10, 15, 20, and 30% were considered for the ob
negligible when the ensemble size exceeded-&fLife 6(a)). served EGdata. The RME of soil salinity between the mea
The RMSE reduction rate iRigure 6(b) exhibited the EnKF  sured and EnKF values increased with the observation error
algorithmdés efficiency, and lesel (fablebh WiR M&ERVISE ketivaen tnéasured valaes &d me a r
a considerablémprovement in the simulation accuracy. Sim HYDRUS-simulated values as a reference, significant im
ilar to the RMSE value, the RMSE reduction rate decreasegrovement was observed when the observatiar &vel was
with the ensemble size, indicating that an excessively highbelow 5%, and the improvement was negligible when the ob
ensemble size lowered EnKF efficiency.was further ob servation error level exceeded 10%. This reshtined that

(a) RMSE of soil salinity under different ensemble size (b) RMSE reduction rate under different ensemble size
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Figure 6. Rootmeansquare error (RMSE) and RMSE reduction rate of soil salinity as functions of different ensemble sizes for
the 0~ 100 cm layers. (a) RMSE of soil salinity under different ensemble size; (b) RMSE reduction rate under different ensemble
size. RMSEeduction rate is defined as the reduction in RMSE value with each increment of ensemble size, and the RMSE value
under ensemble size 5 is set as the reference.
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Table 5.RMSE between Measured Values and EnKF Values under Different Error bé@servation Data

Soil layers(cm) RMSE of soil salinity under different error levels of observation ddt3g (g

1.0% 2.5% 5% 10% 15% 20% 30%
0~20 1.030 1.691 1.897 1.957 1.970 1.975 1.980
20~40 1.151 1.996 2.222 2.306 2.319 2.323 2.328
40~60 1.072 1.945 2.189 2.255 2.269 2.274 2.279
60~ 80 1.188 2.184 2.569 2.690 2.719 2.732 2.740
80~100 0.582 1.047 1.198 1.254 1.263 1.269 1.273

Figure 7. HYDRUS-simulated values vs. HYDRUSImulated values with EnK&t different error levels of observation data. (a)
Soil salinity in the 0~ 20 cm layer; (b) soil salinity in the 2040 cm layer; (c) soil salinity in the 4060 cm layer; (d) soil
salinity in the 60~80 cm layer; (e) soil salinity in the 80100 cm ayer.
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