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ABSTRACT. In this study, an integrated method (abbreviated as MGCMs-SCA-FER) is developed for assessing the impacts of climate
change, which incorporates multiple global climate models (MGCMs), stepwise cluster analysis (SCA), and fixed-effects regression
(FER) within a general framework. MGCMs-SCA-FER is capable of (i) dealing with the uncertainty in climate change projection caused
by heterogeneity of structures and parameters of GCM,; (ii) capturing nonlinear relationship between input variables and outputs without
assumption of their functions; (iii) identifying interaction of different units and quantifying the effects of climate change on electricity
demand. MGCMs-SCA-FER is then applied to Jing-Jin-Ji for assessing the impacts of climate change on single-city and entire-region
electricity demands. Results demonstrated that climate change projections and electricity demand predictions varied significantly across
different GCMs and RCPs. Results disclose that (i) Jing-Jin-Ji region would experience a warmer climate in the next 80 years of 2021 ~
2100 (For every decade, temperatures would increase by [0.17, 0.23] <C under RCP4.5 and [0.35, 0.54] <C under RCP8.5); (ii) For 1 <C
increase in temperature, annual electricity demand would rise by 4.5%; (iii) electricity intensity has the most significant impact on
electricity demand for Jing-Jin-Ji region; (iv) electricity demand would increase under all scenarios, and the electricity demand under
RCP8.5 would be higher than that under RCP4.5. From a long-term perspective, analyzing the climate change impacts on electricity
demand and making adaptive management strategy are important for the regional sustainability.
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1. Introduction

Due to a large amount of greenhouse gases (GHGSs) emis-
sion, climate change has been evident worldwide with 0.85 <C
increase of an average surface air temperature from 1880 to
2012 (IPCC, 2013). As one of the most pressing issues in the
world, climate change has caused evident impacts on natural
and human systems (e.g., agriculture, forestry, mining, manu-
facturing, transportation and energy). For energy systems plan-
ning, electricity demand has obvious response to climate change
since global warming can affect heating and cooling loads such
as air conditioner, refrigerator and water heater (Jylh&et al.,
2015; Invidiata and Ghisi, 2016; Ji et al., 2020; Dong et al.,
2021). The rising temperature can result in increased demand for
cooling in hot weather but decrease demand for heating in cold
weather (AL-Musaylh et al., 2019; Mukherjee et al., 2019). Cli-
mate change is likely to be predictable over the next century,
due to consistently growing GHGs emissions. The global tem-
perature would increase 0.3 ~ 4.8 <C (relative to 1986 ~ 2005
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level) by the end of 21th (Ang et al., 2017). As the leading
contributor of GHGs, electric-power sector is largely driven by
thermal technology throughout the world, generating over one-
third of the global energy-related carbon dioxide (CO2) emis-
sions (Zeng et al., 2011; Jin et al., 2017). On the other hand,
electricity demand is expected to increase in the future due to
the rapid development of economy and the significant improve-
ment of people’s living standards, particularly for some devel-
oping countries (e.g., China and India) (Fan et al., 2019; Lv et
al., 2020; Fu et al., 2021). Therefore, it is essential to assess the
effects of climate change on electricity demand and understand
the response of electric power system to future climate change.

Previously, a number of research works were conducted
for investigating the impacts of climate change on electric pow-
er system (especially for electricity demand) (Zeng et al., 2011;
Dong et al., 2012). Emodi et al. (2018) employed an auto-re-
gression distributed lag model to analyze the short- and long-
term impacts of climate change on electricity demand in Aus-
tralia; results indicated that electricity consumption would in-
crease due to rising temperature. Alberini et al. (2019) adopted
a fixed-effects regression (FER) model with hourly electricity
demand in Italian to examine the sensibility of residential ele-
ctricity demand to temperature; results discovered that the ele-
ctricity demand would increase sharply with temperature rising
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when temperature exceeds 24.4 <C. Burillo et al. (2019) fore-
casted peak electricity demand for Los Angeles County under
RCP4.5 and RCP8.5 (i.e., representative concentration pathway
scenarios 4.5 and 8.5, respectively); results showed that the peak
demand will increase 25.5% by 2060 and 6.0% of the growth
is caused by climate change. Mei et al. (2020) incorporated dif-
ferent GCMs within a support vector regression model to pre-
dict future electricity demand in China; results revealed that the
national electricity demand would increase about 58.6% from
2021 to 2050. Zheng et al. (2020) quantified the effects of cli-
mate change on total electricity consumption (TEC) and resi-
dential electricity consumption (REC) for Guangzhou (in China)
based on different GCMs and emission scenarios; results show-
ed that city’s TEC and REC would respectively increase by 3.2
~10.4% and 1.1 ~ 3.5%, compared with the baseline period of
1986 ~ 2005. In general, the previous studies mainly focused
on establishing the response relationship between climate change
and electricity demand, some of which can further predict the
future electricity demand directly based on the outputs of GCMs;
downscaling techniques for acquiring high-resolution climate
scenarios during the impacts assessment of climate change on
electricity demand at regional scale were rarely conducted.

In fact, the coarse spatial resolutions of large-scale simu-
lation outputs of GCMs are hundreds of kilometers, resulting
in it difficult to accurately reflect local-scale climate change
and further leading to deviations for the impacts assessment of
climate change on electricity demand at regional scale (Ayar et
al., 2016; Zhuang et al., 2018; Zhai et al., 2021). Stepwise clu-
stering analysis (SCA) has strongly flexibility in dealing with
discrete and nonlinear problems through describing the com-
plex relationships between inputs and outputs as clustering trees
rather than function expressions (Qin et al., 2007). Previously,
SCA was employed to some complex practical problems, such
as climate projection, runoff simulation, and environmental ana-
lysis. Wang et al. (2013) proposed a statistical downscaling tool
(based on SCA technique) to obtain 10 km daily mean tempera-
ture and monthly precipitation projections for Toronto, Canada;
results indicated that the observed temperature and precipitation
in the validation period can be well reproduced by SCA. Zhuang
etal. (2017) employed SCA technique to evaluate climate change
impacts on the hydrology of watershed in northwestern China,
implying that SCA is capable of downscaling climate projec-
tions for different stations and helping understand the spatial
heterogeneity of climate change. Zhai et al. (2019) utilized SCA
to investigate the plausible changes in daily maximum, mini-
mum, and mean temperatures in Ottawa under multiple scenar-
ios; results showed that the SCA method had excellent perfor-
mance in future climate change projections. Generally, the pre-
vious works showed that SCA is an effective tool for climate
scenarios downscaling; unfortunately, few of them extended
the downscaled results from SCA to analyze the impacts of cli-
mate change on regional electricity demand.

Another challenge faced by the impact assessment is in-
herent uncertainty of GCM. Due to the differences in driving
mechanisms and boundary conditions of GCMs, climate scenar-
ios vary among different GCMs (Perez et al., 2014; Mei et al.,
2020). Since one GCM cannot reflect such an uncertainty, mul-
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tiple global climate models (MGCMs) are desired to be incor-
porated in downscaling model framework to reflect the inherent
uncertainty of GCM and mitigate the influence of uncertainty
on electricity demand (Li et al., 2010; Souvignet and Heinrich,
2011; Zhuang et al., 2017; Su et al., 2021). Moreover, interac-
tion of different units exists in the process of accessing the ef-
fects of climate change on electricity demand at a regional scale.
Fixed-effects regression (FEG, based on panel data) has advan-
tages in dealing with such an interaction of different units during
quantifying the effects of climate change on electricity demand
(Asadoorian et al., 2008). Nevertheless, no previous study was
reported for analyzing the impacts of climate change on regional-
scale electricity demand, through incorporating techniques of
MGCMs, SCA and FEG within a general framework.

This study aims to develop an integrated method (abbre-
viated as MGCMs-SCA-FER) for assessing the climate change
impacts on regional-scale electricity demand, through incorpo-
rating multiple global climate models (MGCMs), stepwise clus-
ter analysis (SCA), and fixed-effects regression (FER). The no-
velty and contribution of this study are: (i) an integrated MGCMs-
SCA-FER method is firstly advanced for analyzing climate
change impacts, which is superior to the traditional approaches;
(ii) it can deal with the uncertainty in climate change projection
caused by heterogeneity of structures and parameters of GCM;
(iii) it is capable of generating high-resolution climate projec-
tions, investigating the impacts of climate change on electricity
demand and further predicting future electricity demand; (iv) it
is the first attempt at applying MGCMs-SCD-FER to analyze
the impacts of climate change on electricity demand in Jing-
Jin-Ji region under multiple scenarios; (v) results of future cli-
mate change projections, climate change impacts on electricity
demand, as well as future electricity demand prediction can be
generated, which will provide decision support for policymakers.

2. Methodology

The MGCMs-SCA-FER method is consisted of (i) climate
data extracted from MGCMs, (ii) regional-scale climate scenar-
ios downscaled by SCA, and (iii) electricity demand predicted
by FER. The general flow chart is shown in Figure 1. In detail,
the daily gridded data are extracted from MGCMs (i.e., Can-
ESM2, CNRM-CM5 and NorESM1-M); the daily gridded data
are used to drive SCA downscaling model to generate regional-
scale synthetic daily time series of climate variables [i.e., maxi-
mum temperature (Tmax), minimum temperature (Tmin), and
mean temperature (Tmean)]; various climate scenarios are em-
ployed as inputs of FER to investigate climate change impacts
on electricity demand and then predict future electricity demand.

Climate scenarios projected by single GCM are subject to
significant uncertainty because of the various driving mecha-
nisms and boundary conditions in GCM experiments. MGCMs
can compared with each other for helping decision makers bet-
ter understand the uncertainties in climate change projections.
According to literature survey, three popular GCMs [i.e., Can-
ESM2 (CA), CNRM-CM5 (CN) and NorESM1-M (NO)] and
two climate scenarios (i.e. RCP4.5 and 8.5) are considered (Hou
et al., 2019; Sun et al., 2019). The National Centers for Envi-
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Figure 1. Framework of MGCMs-SCA-FER.

ronment and Prediction (NCEP) reanalysis data are employed
for assisting in establishing the relationship among GCMs out-
puts with the observed data. The spatial resolutions and institu-
tions of GCMs and NECP reanalysis data are listed in Table 1.

SCA is used for downscaling (converting the large-scale
atmospheric variables into the local climate variables) through
capturing discrete and nonlinear relationship (expressed as clus-
ter trees) between large-scale atmospheric variables (i.e., pre-
dictors) from MGCMs and climate variables (i.e., predictands)
from meteorological stations. The essence of SCA is to form a
classification tree through a series of cutting or merging proc-
esses based on a given statistical standard (Huang et al., 2006).
The detailed steps are: (i) selecting a set of predictors and pre-
dictands, (ii) cutting of clusters based on clustering principles,
(iii) merging of clusters, (iv) repeating cutting-mergence until
no cluster can be cut and merged, (v) establishing the cluster
tree from the training samples, and (vi) generating the local-
scale climate scenarios. The detailed principle of SCA method
is provided in the Appendix to this paper.

Table 1. GCMs and NECP Reanalysis Data

Grid resolution

GCM Institute (latitude =
longitude, deg)

CanESM2 Canadian Centre for Climate 2.79 x2.81
(CA) Modelling and Analysis, Canada
CNRM-CM5 Centre Europeen de Recherche  1.40 x1.41
(CN) et de Formation Avancee en

Calcul Scientifique, France
NorESM1-M Norwegian Climate Centre, 1.90 x2.50
(NO) Norway
NECP NOAA National Center for 2.50 x<2.50

Environmental Prediction, USA

In this study, five large-scale predictor variables (i.e., sur-
face temperature, near-surface air temperature, air temperature
at 700 hpa, air temperature at 700 hpa, and geopotential height
at 250 hpa) were screened out through correlation analysis be-
tween 30 predictors and the predictands (i.e., Tmax, Tmin and
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Tmean) (Mtongori et al., 2016; Zhou et al., 2018). The observ-
ed data for Tmax, Tmin and Tmean and NCEP reanalysis data
for five predictors (during 1976 ~ 1990) were employed for cal-
ibrating SCD model. The simulation outputs of three GCMs for
five predictors (in 1991 ~ 2005) were input into the calibrated
model to generate the simulated values of station-based Tmax,
Tmin and Tmean. The simulated values were compared with
the observed data for validation purposes, which can be evalu-
ated by determination coefficient (R?). The criteria are defined
as follows:

R? =
(nz;obsi ~pre,—> " obs,->" pre )2
[nzi"ﬂ(obsi ) - (Z;obsi )ZMHZL( pre,)’ f(zi":l pre, )2}

o))

where obsi is the observed data value on day i; pre; is the pre-
dicted data value on day i; and obs; is the mean observed data
value; n is the number of simulated days. The closer R? value
to 1, the model performance is better. Finally, the simulation
outputs of three GCMs in 2021 ~ 2100 were employed to drive
the calibrated model to project future climate scenarios.

In this study, five factors are selected for predicting elec-
tricity demand, including two climatic variables [i.e., cooling
degree day (CDD) and heating degree day (HDD)] and three
socioeconomic variables [i.e., gross domestic product (GDP),
ratio of the output value of the secondary industry to the GDP
(RSI), and electricity intensity (EI)] (Ahmed et al., 2012; Zheng
et al., 2020). CDD and HDD are employed to quantify heating
demand and cooling demand, respectively, calculated by the
downscaled Tmax and Tmin (Craig and Feng, 2016). The an-
nual CDD and HDD are defined as follows:

n 1 ifT-T.>0

CDD = —T), o = P 2
;ac(Tl b) ac {0 |f -l—I _Tb <O ( a)
n 1 ifT-T.>0

CDD = —T), a = P 2b
;aca—l b) ac {0 |f -l—I _Tb <O ( )

where n is the total number of days in a year; Ts is balance point
temperature and 18 <C is regarded as the point temperature in
this study (Fan et al., 2019); Ti is the daily average temperature
on day i. RSI can be calculated by GDP and output value of sec-
ondary industry. El can be calculated by electricity consump-
tion and GDP.

Then, panel data are employed to establish regression rela-
tionship between electricity demand and influencing factors (i.e.,
CDD, HDD, GDP, RSI and El). Panel data can combine time
series with cross-sections to enhance the quality and quantity
of data, better than using only one of these two dimensions; pa-
nel data can also reduce the collinearity among multiple vari-
ables, leading to estimation results more effective, stable and
reliable. The mixed regression (MR), fixed-effects regression
(FER) and random-effects regression (RER) method are com-
monly employed for panel data analysis (Yaffee, 2003). In this
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study, the null hypothesis is rejected at the 1% significance lev-
el according to the results of the F-test, representing that FER
is appropriate to be used rather than MR; the null hypothesis is
rejected at the 1% significance level based on the results of the
Hausman test, meaning that FER should be chosen rather than
RER. FER have constant slopes but different intercepts. The
intercepts would differ with individuals and with time. FER can
estimate the effects of cross section and time series separately,
and thus more accurate interpretations of the dependent vari-
ables can be obtained. Based on the panel data, a fixed-effect
regression (FER) model is constructed to analyze the impacts
of climate change on electricity demand. The FER model is de-
fined as:

In(EC,) =c+ 4, - HDD, + p, -CDD, +
B;-GDP + B, -RSI + f, -El +o; + 4 + ¢, (3)

where i is the city (or province); t is the time series; In(ECit) is
the logarithmic variable of electricity consumption at region i
and time t; c is the intercept term. HDD and CDD are climatic
variables; GDP, RSI and El are socioeconomic variables; gi (i
=1,2 ..., 5) are regression coefficients for each variable; i is
the regional fixed effect, reflecting the regional individual dif-
ferences; At is the temporal point fixed effect, reflecting the tem-
poral difference; eit is the random error term.

3. Case Study

3.1. Statement of Problem

Jing-Jin-Ji region is the capital circle of China, including
two municipalities (Beijing and Tianjin) and one province (He-
bei), as shown in Figure 2. This region covered an area of 216
x10° km? and hosted a population of 112.8 million in 2018. In
the past twenty years, the regional gross domestic product (GDP)
increased rapidly with an annual growth rate of 12.9%, reach-
ing 8,514 billion RMB¥and occupying 9.5% of total national
GDP in 2018 (CSY, 2018; Cai et al., 2019). Due to the rapid
industrialization and urbanization, the regional electricity con-
sumption has risen sharply. From 2009 to 2017, Electricity con-
sumption of Beijing, Tianjin and Hebei increased by 177.5,
240.6 and 325.3%, respectively (reaching 106.7 < 10°, 80.6 x
10° and 344.1 <10° kWh in 2017). In 2017, the electricity-gen-
eration capacities of Beijing, Tianjin and Hebei were 38.8 x
10° 61.1 x10° and 281.7 x<10° kwWh, respectively; this implies
that the domestic electricity generation cannot afford the local
electricity demand, especially for Beijing (HEY, 2018; TSY,
2018; BSY, 2019). More electricity was imported from surround-
ing provinces (e.g., Neimenggu, Shanxi and Jilin) to Jing-Jin-
Ji region. In addition, the per capita electricity consumption in
Jing-Jin-Ji region is still much lower than those in many devel-
oped countries. In 2018, per capita electricity consumption in
Jing-Jin-Ji region was 5025.8 kWh, while per capita electricity
consumptions in Canada and USA respectively were 17657.9
and 13634.5 kWh, which were 3.5 times and 2.7 times of that
in Jing-Jin-Ji region.

Accompanying with the further socioeconomic develop-
ment, electricity demand in Jing-Jin-Ji region will continue to
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increase in the future, imposing a great challenge of balancing
electricity demand and electricity supply. In order to alleviate
air pollution and mitigate climate change, electricity generation
from the renewable energy will gradually rise and transfer to-
wards a clean-production and low-carbon pattern. Jing-Jin-Ji re-
gion has implemented the policy of shifting from coal to elec-
tricity due to the short of raw materials and the pressure of en-
vironmental control. More and more electrification industries
(e.g., electric vehicles) are emerging; as a consequence, the share
of electricity consumption to total energy consumption will in-
crease with time. In addition, climate change is likely to be pre-
dictable over the next century, due to consistently growing GHGs
emission. In the future, Climate change will have more obvious
impacts on cooling and heating demands as climate warming
intensifies. The improvement of economy level will also pro-
mote people to increase the utilization rate of air conditioning,
refrigerator and electric water heater, which will further ampli-
fy the impacts of climate change on electricity demand. It is
nec-essary for decision makers to predict the future electricity
demand precisely under changing climate for meeting the re-
gional electricity demand and effectively avoiding excess capa-
city or loss of electricity transmission.
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Figure 2. The study area.

3.2. Data Collection and Processing

The observed daily data of three temperature variables (i.e.,
Tmax, Tmin and Tmean) of ten meteorological stations (as shown
in Table 2) from 1976 to 2018 were download from National

Meteorological Information Center (http://data.cma.cn/, accessed
January 15, 2020). In order to construct the relationship between
predictors (GCM outputs) with predictands (observed data), the
daily simulation outputs of the National Centers for Environ-
ment and Prediction (NCEP) Reanalysis Products from 1976 to
2005 were download from Physical Science Division of Earth
System Research Laboratory (https://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis.html, accessed January 24,
2020). Daily simulation outputs of GCMs were obtained from
Coupled Model Intercomparison Project 5 (CMIP5) dataset ar-
chive (https://esgf-node.lInl.gov/projects/cmip5/, accessed Janu-
ary 25, 2020). The historical period is 1976 ~ 2005 and the fu-
ture period is 2021 ~ 2100. Some socioeconomic data (i.e., pop-
ulation and GDP, out- put value of secondary industry) and the
amount of electricity consumption of Jing-Jin-Ji region in 2004
~ 2018 were collected from the National Bureau of Statistics
and related statistical yearbooks. According to Shared Socio-
economic Pathways, the data of population and GDP in 2021 ~
2100 of China were obtained and then that of Jing-Jin-Ji region
can be estimated by empirical formula (https://tntcat.iiasa.ac.at
/SspDb/dsd?Action=htmlpage&page=about, accessed February
12, 2020). RSl and El of Jing-Jin-Ji region in 2021 ~ 2100 were
estimated from governmental reports and literature references.

Table 2. Description of Ten Meteorological Stations

Geographical

Meteorological coordinates

Province/city

stations (latitude, longitude)

Beijing (39.8N, 116.5F) Beijing
Yanqing (40.5N, 116.0E) Beijing
Baodi (39.7N, 117.3E) Tianjin
Tanggu (39.1N, 117.8E) Tianjin

Zhangjiakou
Qinhuangdao

(40.8N, 114.9F) Hebei
(39.9N, 119.5F) Hebei

Baoding (38.7N, 115.5F) Hebei
Huangye (38.4N, 117.3F) Hebei
Fengning (41.2N, 116.6E) Hebei
Nangong (37.4N, 115.4F) Hebei

4, Result and Discussion

4.1. Temperature Projections

Based on SCA technique, three temperature variables
(Tmean, Tmax and Tmin) were put together to build a training
model due to the same predictors (i.e., time series of surface
temperature, near-surface air temperature, air temperature at
700 hpa, air temperature at 700 hpa, and geopotential height at
250 hpa). After training a total of 27,395 calibration samples
(in 1976 ~ 1990), a cluster tree was generated for daily Tmax,
Tmin and Tmean of a meteorological station. In this study, ten
cluster trees of the selected ten meteorological stations were
obtained. Figure 3 shows the cluster tree for Beijing’s meteor-
ological station in the calibration period (1976 ~ 1990). The
criterion for cutting and emerging clusters is P < 0.01 and P >
0.01, respectively. The P values represent the significance lev-
els of F test, and P < 0.01 implies that there is a highly signifi-
cant difference between two clusters. When ten cluster trees
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Figure 3. The cluster tree for Beijing’s meteorological stations (1976 ~ 1990).

were generated, the simulation outputs of MGCMs could be em-
ployed for driving the downscaling models to generate future
climate change scenarios for Jing-Jin-Ji region.

Figures 4 and 5 present the monthly observed and simulat-
ed values (Tmean, Tmax and Tmin) of Jing-Jin-Ji region from
MGCMs during the validation period (1991 ~ 2005). The re-
sults show that all statistical values of R? would be no less than
0.92, most of which are between 0.95 and 0.97. This means that
SCA is capable of downscaling climate projections for the ten
stations. In detail, the minimum R? of 0.923 is associated with
the simulated Tmax for Nangong meteorological station (in
Hebei) from CNRM-CM5 (CN); the maximum R? of 0.974 is
associated with the simulated Tmin for Fengning meteorologi-
cal station (in Hebei) from NorESM1-M (NO). High R? values
indicate that there would be high agreements between observed
and simulated Tmean, Tmax and Tmin. Results reveal that SCA
can effectively capture the discrete and nonlinear relationships
between predictors and predictands.

Figures 6 to 8 present the results of monthly Tmean, Tmax
and Tmin (for Beijing, Tianjin and Hebei) projected from
MGCMs under different emission scenarios (2021 ~ 2100), re-
spectively. The results indicate that Tmean, Tmax and Tmin (for
Beijing, Tianjin and Hebei) under RCP4.5 and RCP8.5 would
increase in the next 80 years. For Beijing, Tmean, Tmax and
Tmin would increase by [0.18, 0.20], [0.18, 0.20] and [0.18,
0.20] <T per decade under RCP4.5, and rise by [0.40, 0.46],
[0.40, 0.46] and [0.42, 0.46] <C per decade under RCP8.5. For
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Tianjin, Tmean, Tmax and Tmin would increase by [0.18, 0.22],
[0.18, 0.20] and [0.18, 0.23] <C per decade under RCP4.5, and
rise by [0.40, 0.50], [0.38, 0.47] and [0.41, 0.50] <C per decade
under RCP8.5. For Hebei, Tmax, Tmin and Tmean would climb
by [0.19, 0.22], [0.17, 0.20] and [0.19, 0.23] <C per decade un-
der RCP4.5, and increase by [0.38, 0.52], [0.35, 0.47] and [0.41,
0.54] <C per decade under RCP8.5. Summarily, results indicat-
ed that the increase amplitudes of Tmean, Tmax and Tmin would
different. For Jing-Jin-Ji region, Tmin would have the largest
increase and Tmax would increase the least in the next 80 years.
This also means that climate change would have a more signifi-
cant impact on the cold weather compared with the hot weather.

Figures 5 to 7 also show that different GCMs and RCPs
would lead to varied projections of future Tmean, Tmax and
Tmin. The rates of temperature (Tmean, Tmax and Tmin) in-
creases under RCP8.5 would be higher than those under RCP4.5.
This is due to the factors: (i) CO2 concentration in the atmos-
phere under RCP8.5 is assumed to be higher than that under
RCP4.5, and (ii) higher CO2 concentration can lead to faster
global warming. Projected Tmax, Tmin and Tmean from differ-
ent GCMs would vary. For Beijing, Tmean projected from Nor-
ESM1-M would be 1.40 <C higher than that from CNRM-CM5
and 2.45 <C lower than that from CanESM2. This can be attri-
buted to the uncertainty of climate models, which is related to
the fact that different physical and numerical formulations adopt-
ed by MGCMs can lead to different responses. Results also
demonstrate that it is necessary to utilize multiple GCMs and
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Figure 4. Validation results for monthly Tmean, Tmax, and Tmin of Beijing and Tianjin (1991 ~ 2005).

RCPs to generate future temperature projections.

4.2. Impacts on Electricity Demand

Figure 9 displays the results of annual CDD and HDD (for
Beijing, Tianjin and Hebei) during the historical period (1989
~ 2018) and the future period (2021 ~ 2100). The cooling de-
mand (expressed as CDD) mainly appeared from May to Sep-
tember (around 153 days in one year), and the heating demand
(expressed as HDD) mainly occurred from January to April and
from October to December (around 212 days in one year). Dur-
ing 1989 ~ 2018, annual CDD values for Beijing, Tianjin and
Hebei increased by 73.3, 58.9 and 35.1<C d per decade, respec-
tively; annual HDD values for Beijing, Tianjin and Hebei de-
creased by 66.8, 41.6 and 20.4 <C d per decade, respectively.

For Jing-Jin-Ji region, under RCP4.5 and RCP8.5, CDD would
continue to rise and HDD would keep dropping in 2021 ~ 2100.
The variation ranges of CDD and HDD under RCP8.5 would
be larger than those under RCP4.5; this is because the increase
of Tmean under RCP8.5 would be higher than that under RCP4.5.

Based on the panel data, the FER model was established
for analyzing the impacts of climate change on the electricity
demand in Jing-Jin-Ji region, and results are listed in Table 3.
Both CDD and HDD play a positive role in the regional elec-
tricity demand (at 1% significance level). Since electricity de-
mand is in natural logarithmic form, the regression coefficients
of variables (e.g., CDD, HDD and GDP) should be multiplied
by 100 to obtain their percentage effects on electricity demand.
One unit change in CDD and HDD can alter electricity demand
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Figure 5. Validation results for monthly Tmean, Tmax, and Tmin of Hebei (1991 ~ 2005).
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Figure 6. Projected monthly Tmean, Tmax, and Tmin of Beijing (2021 ~ 2100).
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Figure 7. Projected monthly Tmean, Tmax, and Tmin of Tianjin (2021 ~ 2100).
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Figure 8. Projected monthly Tmean, Tmax, and Tmin of Hebei (2021 ~ 2100).
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Figure 9. Annual CDD and HDD of Beijing, Tianjin, and Hebei during1989 ~ 2018 and 2021 ~ 2100.

by 0.031 and 0.001%, respectively. When daily Tmean is above
18 <C in one month (usually occurring in winter), 1 <C increase
of Tmean can lead to 153 units rising of annual CDD and 4.734%
augment of electricity demand; correspondingly, when daily
Tmean is below 18 <C in one month (usually occurring in sum-
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mer), 1 <C decrease of Tmean can bring about annual HDD de-
clining by 212 units and electricity demand decreasing by 0.212%.
Apparently, CDD has larger impact on electricity demand than
HDD, implying that the hot weather is more sensitive to elec-
tricity demand than the cold weather in Jing-Jin-Ji region. This
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can be attributed that, for Jing-Jin-Ji region, the heating demand
is satisfied by coal (natural gas is the main energy source in win-
ter) and the cooling demand is filled by air conditioning (a large
amount of electricity is consumed in summer).

Table 3. Results from the FER Model

Variable  Coefficient Standard t-Statistic Significance
error level (p)
HDD 9.87 x10° 3.01 x10° 3.28 0.0023
CDD 3.07 x10* 7.42 x10° 4.14 0.0002
GDP 1.31 x<10* 1.03 <10° 12.75 0.0000
RSI 9.21 x10°° 2.99 x10° 3.08 0.0039
El -1.05 x10*  8.56 <10° -12.23 0.0000
Constant  25.1 0.17 149.51 0.0000

According to results of the FER model as shown in Table
3, GDP and RSI would also play a positive role but EI would
play a negative role in the electricity demand (at 1% signifi-
cance level). For every 1% GDP growth, electricity demand
would increase by 0.013%, demonstrating that economic devel-
opment can promote electricity demand. Industry produce needs
a larger amount of energy, and the proportion of electricity con-
sumption in energy consumption is high in Jing-Jin-Ji region;
economy improvement can stimulate people to consume more
electricity (e.g., more air conditioning utilization). Besides, 1%
increase of RSI can bring about 0.922% increase in electricity
demand, indicating the significant pull-effect of secondary in-
dustry on electricity demand; this is attributed that the secon-
dary industry is a large consumer of electricity in Jing-Jin-Ji
region. On the contrary, every 1% decrease of El can cause
0.011% increase in electricity demand, revealing that energy
efficiency can gradually improve with technology progress and
thus lead to electricity demand dropping. Comparing with all
factors, the effect of El on electricity demand would be the
highest, indicating that electricity efficiency improvement is
important for reducing electricity demand.

4.3. Electricity Demand Prediction

In this study, three GCMs (i.e., CanESM2, CNRM-CM5
and NorESM1-M) and two emission scenarios (RCP4.5 and
RCP8.5) were examined, leading to six results for electricity
demand prediction. Figure 10 presents results of electricity de-
mand of Jing-Jin-Ji region in 2021 ~ 2100. Regional electricity
demand would increase with time under climate change. Com-
pared with the year of 2018, electricity demands of Beijing, Tian-
jin and Hebei would respectively increase by [108.7, 130.1],
[80.4, 114.8] and [206.5, 232.2]% in 2050, and increase by
[175.9, 206.6], [47.0, 72.1] and [444.3, 514.7]% in 2100. Among
them, electricity-demand increase for Hebei would be the high-
est, and electricity-demand increase of Tianjin would be the
lowest. For the entire region, compared with the year of 2018,
electricity demands in 2050 and 2100 would increase by [162.4,
191.6] and [334.9, 391.1]%, respectively.

Different GCMs would lead to varied electricity demand
predictions for Jing-Jin-Ji region, as shown in Figure 10. Under
RCP4.5, the regional electricity demands (for the future 80 years)

would be 142.5 x10% (CanESM2), 135.2 x10'° (CNRM-CMS5),
and 140.3 x<10% kwh (NorESM1-M). The largest disparity of
annual electricity demand under different GCMs can reach 7.3
> 10% kWh, about 12.8 times the electricity consumption in
2018. Results demonstrate that the uncertainty of GCMs has
significant effect on electricity demand prediction. In 2051 ~
2100, the electricity demand under RCP8.5 would be higher
than that under RCP4.5. For Jing-Jin-Ji region (2021 ~ 2100),
the annual electricity demand under RCP8.5 would be [2.3, 5.3]
x10% kWh, which is about [4.6, 9.4] times the total electricity
consumption in 2018. Results demonstrated that climate projec-
tions and electricity demand predictions varied significantly
across different GCMs and RCPs; projection from one GCM
may provide unreliable information for managers, and result in
decision-making misplay. Therefore, from a long-term perspec-
tive, analyzing the climate change impacts on electricity demand
and making adaptive management strategy are important for
the sustainable development of electrical power system.

5. Conclusions

In this study, an integrated method (named as MGCMs-
SCA-FER) has been developed through incorporating multiple
global climate models (MGCMs), stepwise cluster analysis (SCA)
and fixed-effects regression (FER) within a general framework.
MGCMs-SCA-FER can reflect the inherent uncertainty of GCM,
generate high-resolution climate scenarios, quantify climate
change impacts, and predict future electricity demand. SCA is
capable of handling discrete and nonlinear relationships between
predictand and predictor variables; it can downscale large-scale
atmosphere simulation outputs from GCMs (predictors) to finer-
scale climate projections (predictands). A case study for assess-
ing the impacts of climate change on electricity demand in Jing-
Jin-Ji region has been conducted to demonstrate the feasibility
of the proposed method. Various climate change projections
(time series of minimum, maximum and mean temperatures) of
Jing-Jin-Ji region from MGCMs, the impacts assessment of cli-
matic/non-climatic factors on electricity demand, future electri-
city demand under multiple scenarios were generated. Results
demonstrated that the uncertainties of GCMs and RCPs have
obvious effects on climate change projections and electricity
demand predictions.

The results reveal that: (i) Jing-Jin-Ji region would expe-
rience a warmer climate in the next 80 years (for every decade,
temperatures rising [0.17, 0.23] <C under RCP4.5 and [0.35,
0.54] <C under RCP8.5); (ii) the projected temperatures from
MGCMs would be different, due to the different ways of re-
presenting physical processes with different parameterizations
in GCMs; (iii) 1 <T increase of temperature would lead to 4.5%
augment of annual electricity demand; (iv) electricity intensity
has the most significant impact on electricity demand for Jing-
Jin-Ji region; (v) electricity demand would increase under all
climate scenarios (i.e., electricity demands would increase by
[162.4, 191.6]% by 2050 and [334.9, 391.1]% by 2100, compar-
ed with the value in 2018); (vi) the electricity demand under
RCP8.5 would be higher than that under RCP4.5 by 2100, which
is [4.6, 9.4] times the regional electricity consumption in 2018.

157



H. Mei et al. / Journal of Environmental Informatics 38(2) 145-161 (2021)

400 A CA 400 1 CN 400 ~ NO
Beijing Beijing Beijing
300 - 300 A 300 A
200 A 200 A 200 A
100 T 1 100 T 1 100 T 1
2021 2060 2100 2021 2060 2100 2021 2060 2100
195 1 180 1 195 ~
Tianjin Tianjin Tianjin
150 A 140 A 150 A
~ 105 A 100 A 105 A
<
2
o
4
T 60 T 160 T 1 60 T }
I 2021 2060 2100 2021 2060 2100 2021 2060 2100
§ 2500 ; 2500 - 2500 1
2 Hebei Hebei Hebei
S
3
Q
W 1800 1 1800 A 1800 1
1100 1100 - 1100 A
400 T 400 T 400 T |
2021 2060 2100 2021 2060 2100 2021 2060 2100
3100 1 3100 1 3100 -
Jing-Jin-Ji Jing-Jin-Ji Jing-Jin-Ji
2200 1 2200 2200
1300 1300 1300 A
400 T T T 400 T T T 400 T T T |
2021 2040 2060 2080 2100 2021 2040 2060 2080 2100 2021 2040 2060 2080 2100
RCP4.5 RCP8.5

Figure 10. Annual electricity demands of Beijing, Tianjin, and Hebei (2021 ~ 2100).

Both the rapidly socioeconomic development and the intensifi-
ed global warming would promote the regional electricity de-
mand. If climate change intensifies, the cost and the challenge
for electrical power system to adapt to climate change would
further intensify; if no effective measure is conducted to abate
the global warming, electricity supply in Jing-Jin-Ji region would
encounter enormous pressure. Correspondingly, a number of ef-
fective measures should be taken to mitigate the impacts of cli-
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mate change and ensure the security of electricity supply. The
most effective way is to improve the efficiency of electricity
utilization (especially for Hebei), which can directly relieve the
pressure on meeting electricity demand. Besides, developing re-
newable energy technologies to reduce GHGs emission can
contribute to climate change mitigation. Efficient supports of
technical, financial and policy are beneficial to stimulating re-
newable energy utilization.
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Appendix: Stepwise cluster analysis

In SCA, sample sets of predictors are cut or merged into
new sets, and values of predictands are used as references to
judge into which new set a sample in the parent set will enter.
In detail, the clustering criterion is the F test based on Wilks’
likelihood ratio criterion. Let cluster ¢, which contains nc sam-
ples, be cut into two sub-clusters a and b (a and b contain na
and n, samples, respectively, i.e., na + np = nc). According to
Wilks’ likelihood ratio criterion, if the cutting point is optimal,
the value of Wilks’ A (A = |[U]/|U+V]) should be the minimum
(Kennedy and Gentle, 1981); where U and V are the total-sam-
ple matrix {uij} and the within-groups matrix {vij}, respective-
ly; and |U| and |V| mean the determinants of matrixes {ui} and
{vij}, respectively. When A value is very large, clusters a and
b cannot be cut, but must be merged into greater cluster c. By
Rao’s F-approximation, the R-statistic can be given by (Rao,
1973; Huang, 1992):

_1-A" Z.S-P-(K-1)/2+1

R="ps P-(K-1) (A1)
Z=n,-1-(P+K)/2 (A2)
g P (K-1)*-4 (A3)

P? + (K —1)*-5

where statistic R is distributed approximately as an F-variate
withvi =P.(K-1)and v2=P - (K- 1)/2 + 1 degrees of free-
dom. K is the number of groups, and P is the number of predic-
tors. The R-statistics can reduce to an exact F-variate when P
=1or 2, or when K =2 or 3. Since the number of groups is two
(K = 2) in this study, an exact F test is possible based on the
Wilks’ A criterion. Thus, we have F (P, nh—P —1) = (1 - A)/A -
(nn— P — 1)/P. The criteria of cutting and merging clusters be-
come to conduct a number of F-tests (Rao, 1973). Second step
is the tests of optimal cutting points. Sequence nn samples in
cluster h according to the values of x-i® in {x} (r=1, 2, ..., n).
According to Wilks’ likelihood ratio criterion, the optimal cut-
ting point, which split the cluster h into two sub-clusters e and
f when the samples are sequenced according to the values of
X« i™ in {xi}, should satisfy that A(ne, ny) is the minimum com-
paring to that of any other cutting alternatives. Then the F test
can be undertaken. If (Huang, 1992):

, . 1-A(n_,n _p -
F(P',n,—P -1)= (M) 1, F.’ 125 (A4)
A(n,,ny) P

is satisfied, cluster h can then be cut into two sub-clusters e and
f. xi~ is identified as the most important predictor, which signi-
ficantly affects the values of the predictands. Conversely, if
Equation (A4) is not satisfied, cluster h cannot be cut. Then all
the other clusters will be tested and cut if it satisfies the above
testing criterion, until no cluster can be further cut. The next
step is to test whether any two of the generated sub-clusters
should be merged into a new cluster. For two clusters ¢ and d

among the existing H clusters, if:

F(P,n +n,—P -1)
_1-A(Me+ng-21) no+n-P -1 o (A5)
A(n, +n, —2,) P Tt

is satisfied, clusters c and d can be merged into a new cluster g.
Otherwise, If Equation (A5) is not satisfied, clusters ¢ and d
cannot be merged. Then all the other clusters will be tested and
merged if it satisfies the above testing criterion, until no clus-
ters can be further merged. Final step is building a cluster tree
for prediction. After all calculations and tests have been com-
pleted when all hypotheses of further cut or mergence are reject-
ed, a cluster tree can be derived for a new sample prediction
(Huang, 1992, 2006).

The predictor values in the cluster tree will be used as the
criteria to determine which end nodes the new predictor samples
will enter into. The predictands values of the end nodes in the
cluster tree will be used to calculate the values of the predic-
tands corresponding to the new predictor samples. Each cutting
point, which leads to two branches, corresponds to a value
xr+i+™ of the predictor xi~. When a new sample set of predictors
{xp} is examined, its xp;~ values are compared with xi~™, at
the cutting points and classified into relevant branches. Step-
by-step, the sample finally enters in to a tip branch (tip cluster)
which cannot be either cut or merged further. Let e’ be the tip
branch where the new sample enters. Then, the predictands {yp}
are (Huang, 1992):

—y©® £ RE
Yo=Y, ERy (A6)

where y,© is mean of predictor yp in sub-cluster ', and Rp®? is
radius of yp in cluster e":

vy =%Z y&) foralli (A7)
k=1

(A8)

Ne: Ne:
s max(y(s2)-min(y() 2

In this study, SCA technique is used for transferring large-
scale climate simulation outputs to construct climate change
projections at a regional scale.
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