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ABSTRACT. Extensive uncertainties exist in hydroclimatic risk analysis. Especially in multivariate hydrologic risk inferences, uncer- 

tainties in individual hydroclimatic extremes such as floods and their dependence structure may lead to bias and uncertainty in future 

hydrologic risk predictions. In this study, a parameter uncertainty and sensitivity evaluation (PUSE) framework is proposed to quantify 

parameter uncertainties and then reveal their contributions to the multivariate hydroclimatic risk predictions. The predictive risks are 

finally generated by “integrating” the values over the posterior distributions of the parameters. The proposed approach was applied for 

bivariate risk analysis of compound floods at the Xiangxi River to characterize the concurrence probabilities of flood peaks and volumes. 

The results demonstrate that the proposed approach can quantify uncertainties in a copula-based multivariate risk analysis and characte- 

rize effects and contributions of parameters in marginal and dependence structures on the multivariate hydroclimatic risk predictions. In 

terms of the bivariate risk for flood peak and volume at the Xiangxi River, uncertainties in model parameters would lead to noticeable 

uncertainties even for moderate floods. The performances of the copula model for flood peak-volume at Xiangxi River are mainly affect- 

ed by the uncertainties in location parameters of the two individual flood variables. Also, parameter uncertainty in the dependence struc- 

ture (i.e., copula) would also poses explicit impacts on performance of the copula-based risk analyses model. These uncertainties would 

result into higher bivariate predictive risks than the values obtained by “optimal/deterministic” predictions. This indicates that uncertain- 

ties are required to be considered to provide reliable multivariate hydroclimatic risk predictions. 

 

Keywords: Hydroclimatic risk, Copula, MCMC, factorial analysis, global sensitivity analysis

 

 
 

1. Introduction 

1.1. Importance and Motivation 

Hydroclimatic extremes are expected to increasingly oc- 

cur especially under climate change. Flood, as one of the most 

frequently occurred hydroclimatic hazards, has taken a devas- 

tating societal and economic toll over the world, leading to a 

large number of fatalities and property losses. (Fan et al., 2015, 

2016a, 2016b). Consequently, design of water infrastructure 

projects, such as dam spillways, urban drainage systems, needs 

characterize the occurrence probabilities of floods (Tan et al., 

2011; Zhai et al., 2021; Dong et al., 2021). Moreover, flood risk 

is often not only determined by peak discharge, but is a multi- 

dimensional problem (Dung et al., 2015). Multivariate flood 

risk analysis is desired to provide a full screen for a flood. The 

applications of multivariate flood risk analyses are growing 

dramatically since the introduction of copulas in hydrology and 

geosciences (Serinaldi, 2013). De Michele and Salvador (2003) 

initially introduced the concept of copulas into hydrological 

simulation, which described the dependence between storm du-  
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ration and average rainfall intensity by means of a suitable 2-

Copula. After that, a great number of research works have been 

proposed for multivariate hydrologic simulation through copula 

functions, such as multivariate flood frequency analysis (e.g., 

Zhang and Singh, 2006; Li et al., 2008; Sraj et al., 2015; Xu et 

al., 2017), drought assessments (e.g., Kao and Govindaraju, 2010; 

Song and Singh, 2010; Sun et al., 2019), storm or rainfall de- 

pendence analysis (e.g., Zhang and Singh, 2007; Vandenberghe 

et al., 2010), climate downscaling (e.g., Zhou et al., 2018; Sun 

et al., 2021), and so on. Copula functions can estimate the mar- 

ginal distributions and the joint dependence models in two se- 

parate processes, giving additional flexibility in choosing differ- 

ent marginal and joint probability functions (Zhang and Singh, 

2006; Genest and Favre, 2007; Karmakar and Simonovic, 2009; 

Li et al., 2010; Sraj et al., 2015; Huang et al., 2017). 

One major issue in hydroclimatic risk analysis is the pres- 

ence of uncertainties, resulting from model selection and para- 

meter estimation. There are two primary sources of uncertainty: 

(1) natural uncertainty stemming from variability of the under- 

lying stochastic process, and (2) epistemic uncertainty coming 

from incomplete knowledge about the system under study (Merz 

and Thieken, 2005). Dung et al. (2015) proposed a bootstrap- 

ping based algorithm to investigate parameter estimation method 

uncertainty, model selection uncertainty and sampling uncer- 

tainty. The results showed that bivariate flood frequency analy- 
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sis is expected to carry significant uncertainty and that the quan- 

tification and reduction of uncertainty merit greater attention 

(Dung et al., 2015). However, the research works on uncertain- 

ty assessment for multivariate hydroclimatic risk analysis are 

still limited. Parameter uncertainty can be well quantified through 

some Monte Carlo based algorithms and uncertainty predictions 

are then obtained. But two issues may arise: (i) in a multivariate 

framework, parametric uncertainties in the marginal and depen- 

dence structures may lead to great variations in multivariate hy- 

droclimatic risk analysis, but few research is reported to reveal 

how the interactions of parameter uncertainties affect the perfor- 

mance of the multivariate model; (ii) the aim of a statistical in- 

ference is sometimes (even frequently) not parameter estima- 

tion, but rather prediction of an unobserved value, but only lim- 

ited studies are proposed to explore the predictive multivariate 

hydroclimatic inferences under parameter uncertainties. 

Consequently, as an extension of previous research works, 

this study aims to propose a parameter uncertainties and sensi- 

tivities evaluation (PUSE) framework for copula-based multi- 

variate hydroclimatic risk assessment. The PUSE method inte- 

grates the capabilities of copula method, Bayesian inference, 

factorial and sensitivity analyses to quantify parametric uncer- 

tainties in multivariate flood risk inferences and further char- 

acterize the impacts of parameter uncertainties and generate re- 

liable risk predictions. The proposed PUSE approach will apply 

for multivariate flood risk assessment in the Xiangxi River lo- 

cated in the Three Gorges Reservoir area in China. 

 

 
 

Figure 1. Framework of PUSE. 

2. Methodology 

Figure 1 presents the detailed procedures for the proposed 

PUSE framework. In detail, the parameter uncertainties are 

quantified through a Bayesian inference method. The interac- 

tions of parameter uncertainties are explored through a multi-

level factorial analysis approach and the contributions of pa- 

rameter uncertainties are analyzed through Sobol’s based sensi- 

tivity analysis method. The predictive risks will be finally gen- 

erated through “integrating out” the parameters of the multi- 

variate risk model. 

 

2.1. Concept of Copula 

A copula is a multivariate distribution function with uni- 

form marginals on the interval [0, 1], which can set up a link 

between the joint distribution and its marginal distribution func- 

tions (Dung et al., 2015). In detail, a multivariate copula func- 

tion can be expressed as: 

 

1 21 2 1 2( ,  ,  ,  )  ( ( ),  ( ),  ,  ( ))
nn X X X nF x x x C F x F x F x  (1) 

 

where
1 21 2( ),  ( ),  ,  ( )

nX X X nF x F x F x are marginal distributions 

of the random vector (X1, X2, …, Xn). If these marginal distri- 

butions are continuous, then a single copula function C exists, 

which can be written as (Sraj et al., 2015): 

 

1 2

1 1 1

1 2 1 2( ,  ,  , )  ( ( ),  ( ),  ,  ( ))
nn X X X nC u u u F F u F u F u    (2) 

 

More details on theoretical background and properties of vari- 

ous copula families can be found in Nelsen (2006). 

A number of copula functions are widely used in hydrocli- 

matic risk analyses, mainly including the Archimedean, ellipti- 

cal, extreme value copulas. In this study, the Archimedean cop- 

ulas will be employed since they can be easily generated and 

are capable of capturing wide range of dependence structures 

with several desirable properties, such as, symmetry and asso- 

ciativity (Ganguli and Reddy, 2013). The Clayton, Gumbel and 

Frank copulas are considered for probabilistic assessment of 

flood risk, which belong to the class of Archimedean copula. 

For a bivariate model, the corresponding Archimedean copula 

can be formulated as (Nelsen, 2006): 

 
1

1 2 1 2( ,  )  ( ( )  ( ))C u u u u      (3) 

 

where u1 and u2 is a specific value of U1 and U2, respectively; 

U1=
1 1( )XF x and U2=

2 2( )XF x ;
1XF and

2XF is the cumulative dis- 

tribution function (CDF) of random variable X1 and X2, re- 

spectively; ϕ is the copula generator that is a convex decreasing 

function with ϕ(1) = 0 and ϕ-1(.) = 0 when u2 ≥ ϕ(0); the sub- 

script θ of copula C is the parameter hidden in the generating 

function. 

Once the copula function is established, the probability 

density function (pdf) of the copula function can be expressed 

as (Fan et al., 2018): 

Flood variable 1 Flood variable 2

Marginal distribution 

F1 = F(x, θ1)

Marginal distribution 

F2 = F(y, θ2)

Joint distribution estimation

FXY(x, y) = C(F(x, θ1), (y, θ2), θc)

Parameter uncertainty quantification

θ1 ~ π(θ|X)

θ2 ~ π(θ|Y)

θc ~ π(θ|X,Y)

Multi-level factorial 

analysis

Global sensitivity 

analysis

Main and interactive 

effects of parameters 

Uncertainty sources 

identification

Predictive bivariate risk
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1 2
1 2

1 2

( ,  )
( ,  )  

C u u
c u u

u u




 
 (4) 

 

The joint pdf of the two random variables can be obtained as: 

 
2 2

1 2 1 2 1 2
1 2

1 2 1 2 1 2

( ,  ) ( ,  )
( ,  )    

C u u C u u u u
f x x

x x u u x x

   
 

     
  

1 21 2 1 2                 ( ) ( ) ( ,  )X Xf x f x c u u  (5) 

 

Consequently, the conditional pdf of X1, given the value of X2, 

can be formulated as: 

 

1

2

1 2
1 2 1 1 2

2

( ,  )
( | )    ( ) ( ,  )

( )
X

X

f x x
f x x f x c u u

f x
   (6) 

 

The conditional pdf of X2, given the value of X1, can be ex- 

pressed as: 

 

2

1

1 2
2 1 2 1 2

1

( ,  )
( | )    ( ) ( ,  )

( )
X

X

f x x
f x x f x c u u

f x
   (7) 

 

Various methods have been developed for estimating the 

unknown parameters in a copula, such as the method of mo- 

ments with the use of Kendall correlation coefficient, pseudo 

maximum likelihood (PML) or canonical maximum likelihood 

(CML) method, inference from margin method (IFM), and ex- 

act maximum likelihood (EML) (Dung et al., 2015). For one 

parameter copula, the unknown parameter (i.e., θ) can be esti- 

mated using the method of moments with the use of Kendall 

correlation coefficient (Nelsen, 2006). For the copulas with two 

or more unknown parameters, the maximum likelihood method 

or maximum pseudo-likelihood method can be selected (Sraj et 

al., 2015). Table 1 presents some basic characteristics of the ap- 

plied single-parameter bivariate Archimedean copulas. 

If appropriate copula functions are specified to reflect the 

joint probabilistic characteristics among correlated flood vari- 

ables, the conditional, primary and secondary return periods 

can be obtained. Specifically, the joint (primary) return periods 

called OR and AND can be formulated as (Salvadori et al., 2007, 

2011; Graler et al., 2013; Sraj et al., 2015; Fan et al., 2018): 

 

1 2

1 2

,  

1 2

  
1  ( ,  )

OR

u u

U U

T
C u u





 (13) 

 

1 2

1 2

,  

1 2 1 2

  
1      ( ,  )

AND

u u

U U

T
u u C u u




  
 (14) 

 

where μ is the mean inter arrival time of the two consecutive 

flooding events. 

The secondary return period, called Kendall’s return pe- 

riod, is defined as follows (Salvadori et al., 2011; Sraj et al., 

2015): 

1 2,    
1  ( )

u u

C

T
K t





 (15) 

 

where KC is the Kendall’s distribution, associated with theoreti- 

cal Copula function Cθ. For Archimedean copulas, KC can be 

expressed as (Nelsen, 2006): 

 

( )
( )    

( )
C

t
K t t

t



 
 


 (16) 

 

where ϕ′(t+) is the right derivative of the copula generator func- 

tion ϕ(t). 

Furthermore, the hydrologic risk can be characterized 

through the joint return periods obtained by copulas. In engi- 

neering design of hydrologic infrastructures, risk can be explain- 

ed as the chance of downstream flood attributable to uncontrol- 

led water release from upstream flood facilities (e.g., a reser- 

voir), leading to life and property losses (Gebregiorgis and Hos- 

sain, 2012). Yen (1970) proposed a formulation for the risk of 

failure associated with the return period of a flood event, which 

can be expressed as: 

 

  1  (1  )   1    1  (1  1/ )n n nR p q T         (17) 

 

where R is the risk of failure; p and q is the exceedance and 

nonexceedance probability, respectively; T is the return period 

of a flood event; n is the design life of the hydraulic structure. 

In multivariate framework, the multivariate hydrologic risk can 

be similarly defined. In this study, the joint return period in 

“AND” case is adopted to define the bivariate risk analysis as 

follows (Fan et al., 2018): 

 

1 2

1 2

,  

,  

1
  1  (1  )n

u u AND

u u

R
T

    (18) 

 

2.2. Uncertainty in the Copula Model 

Extensive uncertainties may be involved in the parametric 

estimation of a copula function due to: (i) the inherent uncer- 

tainty in the flooding process, (ii) uncertainty in the selection 

of appropriate marginal functions and copulas and (iii) statisti- 

cal uncertainty or parameter uncertainty within the parameter 

estimation process (e.g., the availability of samples). In this stu- 

dy, we will analyze the inherent uncertainty in the copula mod- 

el through Bayesian analysis, which provides the posterior pro- 

bability distributions for the unknown parameters in the copula 

model. The Bayesian approach has been widely applied for un- 

certainty quantification since it can incorporate various sources 

of information into a singly analysis through Bayes’ theorem. 

Given the prior probability density and observations, the poste- 

rior distribution can be derived through Bayes’ theorem, which 

is expressed as: 

 

0

0

( | ) ( )
( | )  

( | ) ( )

L X
X

L X d

  
 

   



 (19) 
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where π0(θ) signifies the prior parameter distribution, and L(θ|X) 

denotes the likelihood function. ∫L(θ|X)π0(θ)dθ is the normali- 

zation constant. π(θ|X) is the posterior probability density func- 

tion. X = (x1, x2, …, xn) is the observation vector (X = (x1, x2) in 

this study). 

For the bivariate hydrologic risk analysis through copula, 

it is necessary to estimate the parameter of the copula, as well 

as the parameters of the two marginal probability distributions. 

Let θc, θ1, θ2 denote the parameters of the copula, and the two 

marginal probability distributions. The posterior distribution 

can be derived as follows (Fan et al., 2018): 

 

1 2 1 2 0 1 2( ,  ,  | ,  ) ( ,  ,  | ,  ) ( ,  ,  )c c cX Y L X Y            

1 2 0 0 1 0 2 ( ,  ,  | ,  ) ( ) ( ) ( )c cL X Y          (20) 

 

The term of L(θc, θ1, θ2|X, Y) is the likelihood function of 

observations. Based on the dependence structure between a co- 

pula and its marginal distributions, as expressed by Equation (5), 

the likelihood function can be estimated as (Fan et al., 2018): 

 

1 2( ,  ,  | ,  )cL X Y     

1 2 1 2 ( ( ),  ( ) | ) ( | ) ( | )U U X Y c X Yc F x F y f x f y    (21) 

 

where
1 2U Uc is the density of the copula function and fX and fY are 

the two marginal probability density functions, respectively. 

The procedures to derive the posterior distributions are pre- 

sented as follows: 

 Step 1: Set the prior distributions for the unknown parame- 

ters. In this study, the unknown parameters in the marginal 

distributions and the copula function are assumed to be 

uniformly distributed within intervals. 

 Step 2: Use MCMC with Metropolis–Hastings algorithm 

to derive the posterior probabilities for the parameters in 

the marginal and joint distributions. 

 Step 3: For each MCMC iteration j (if total J iterations are 

used) after the burn-in period, estimate the quantile set 

(also, quantile curve QC* in bivariate context) and construct 

the probability density function of X-Y-pairs in the quan- 

tile set. 

 Step 4: Sample a large number N of (x, y) pairs from QC* 

using the individual density functions of coincidence of (x, 

y). 

 Step 5: Generate a random integer number r in [1, 2, …, J] 

for random selection of the QC* from MCMC results. 

 Step 6: Sample a point along the curve QC*. 

 Step 7: Repeat steps 8 and 9 N times. 

 

2.3. Interactive and Sensitivity Analysis for Parameters 

Uncertainties 

Due to the uncertainties existing in the unknown parame- 

ters for a copula model, the associated risk or the return period 

for a flooding event may also be uncertain. Few studies are re- 

ported to analyze the effect of uncertainties in the copula model 

on risk evaluation for a flood event. To address the above issue, 

a multi-level factorial analysis will be employed to assess un- 

certainties in parameters and their interactive effect on the per- 

formance of the proposed copula model. A global sensitivity 

analysis approach will be further adopted to explore the detail- 

ed contributions of uncertainties in the marginal distributions 

and dependence structure to performances of the copula model. 

Factorial designs are the cornerstone of industrial experi- 

mentation and used extensively in industrial research and de- 

velopment for process improvement, among which the multi-

level factorial design is a powerful statistical technique to study 

the effects of several independent variables (factors) with mul- 

tiple levels on a dependent variable (response) (Wang and Huang, 

2015; Fan et al., 2020a, 2020b, 2021). A 3k factorial design is 

proposed for screening the effects of parameters in a copula 

model on its performance for evaluating flooding risk. The 3k 

factorial design consists of k factors with each factors having 

three levels. A 3k factorial design contains 3k treatment combi- 

nations with a degrees of freedom of 3k – 1. These treatment 

combinations can generate sums of squares for k main effects 

with each having two degrees of freedom,
2

k 
 
 

two-factor inter- 

actions with each having four degrees of freedom, …, and one 

k-factor interaction with 2k degrees of freedom (Wang and Huang, 

2015). In general, an h-factor has a degrees of freedom of 2h – 

1, and can be further partitioned into 2h – 1 orthogonal two-

degrees-of-freedom components (Montgomery, 2001). Through 

the 3k factorial design, the main effect of the model parameters 

and their interactions can be revealed. In this study, the factors 

are the unknown parameters of the copula model (both in mar- 

ginal distributions and the copula function). The three levels 

for each parameter consist of its 2.5% quantile value, mean and 

97.5% quantile value, which are obtained by the sample values 

from MCMC. 

Moreover, the contributions of parameters uncertainties to 

the uncertainty in model output will be further quantified through 

the Sobol’s global sensitivity analysis (GSA) approach. By using 

Sobol’ GSA, the main effect “first-order sensitivity index” and 

total effect of the input can be quantified. In Solbol’s method, 

the total variance of outputs attributed to individual model pa- 

rameters and their interactions can be expressed as (Zhang et 

al., 2013; Song et al., 2015): 

 

1, 2, ,  

  1   1    

      
n n n

i ij n

i i j i

V V V V
  

       (22) 

 

where V represents the total variance of the model output, Vi 

denotes the first-order variance due to the ith factor, Vij denotes 

the interaction between factor i and j. The sensitivity of each 

factor can be quantified based on their percentage contribution 

to the total variance: 

 

First-order index   i
i

V
S

V
  (23) 

 

Total-order index ~  1  
i

i
T

V
S

V
   (24) 
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 Table 1. Basic Properties of Applied Copulas 

Copula Name Function[ 1 2( , )C u u ]    
Generating functions 

[ ( )t ] 

1

0

( )
1 4

'( )

t
dt

t





    

Ali-Mikhail-Haq 
1 2

1 2[1 (1 )(1 )]

u u

u u  
 [-1, 1) 

[1 (1 )]
ln( )

t

t

 
 

1 23 2 2
[ (1 ) ln(1 )]
3


 




    

Clayton 
1/

1 2[ 1]u u       (0, ∞) 1t    
2



 
 

Gumbel-Hougaard 
1/

1 2exp{ [( ln ) ( ln ) ] }u u       [1, ∞) ( ln )t   11    

Frank 
1 ( 1)( 1)

ln{1 }
1

u ve e

e

 



 



 
 


 (-∞, ∞)\{0} 

1
ln[ ]

1

te

e












 1

4
1 [ ( ) 1]D 


   * 

 

2.4. Predictive Probability under Uncertainty 

The ultimate aim of a statistical inference is sometimes 

(even frequently) not parameter estimation, but rather predic- 

tion of an unobserved value (Renard et al., 2013). In practical 

hydraulic structure design through the statistical inference mod- 

el, the operation objective is to identify the acceptable hydrolo- 

gic event (e.g., flood for dams) rather than only providing the 

unknown parameter values in the model. For instance, if a dam 

is designed to prevent a flood with a 100-year return period, the 

question is what characteristics a 100-year return period would 

have (e.g., peak flow, volume), especially when the parameters 

in the statistical model are uncertain? In this study, the predic- 

tive distribution proposed by Renard et al. (2013) would be em- 

ployed to estimate the distribution of an unobserved outcome 

through “integrating out” the parameters of the statistical mod- 

el, which can be expressed as: 

 

( | ) ( ,  | ) ( | ,  ) ( | )p z p z d p z p d  y θ y y y      

             ( | ) ( | )p z p d  y    (25) 

 

where ( | )p z  corresponds to the pdf of the assumed distribu- 

tion, ( )p  y denotes the posterior distribution of model para- 

meters. In a bivariate context, the occurrence probability of a 

bivariate hydrologic event (i.e., flood peak and volume) can be 

obtained by: 

 

( ,  | ,  ) p x y X Y    

1 2 1 2 1 2( ( | ), ( | ) | ) ( , , | , )X Y c c cc F x F y X Y d d d           (26) 

 

where the 1 2( ( | ), ( | ) | )X Y cc F x F y   is the probability density 

function for the copula, and 1 2( , , | , )c X Y    is the posterior 

probability density function for the unknown parameters. Sim- 

ilarly, the non-exceedance probability for a predefine obser- 

vation pair can be generated by: 

 

(   ,    | ,  ) p X x Y y X Y       

1 2 1 2 1 2( ( | ), ( | ) | ) ( , , | , )X Y c c cC F x F y X Y d d d           (27) 

 

where 1 2( ( | ), ( | ) | )X Y cC F x F y   is the copula function. 

Compared with the standard approach for prediction through 

maximizing the posterior pdf, the predictive distribution uses 

the assumed distribution ( | )p z  integrated over possible poste- 

rior realizations of θ, which can accounts for uncertainties in 

prediction model (Renard et al., 2013). In practice, the integra- 

tions in Equations (12) and (13) can hardly be obtained analyti- 

cally. Consequently, they will be approximated using the MCMC 

samples. Based on the predictive pdf, the associated predictive 

risk for a predefined hydrological event can be evaluated. 

3. Overview of the Studied Watershed 

The Xiangxi River is located between 30.96 ~ 31.67ºN and 

110.47 ~ 111.13ºE in Hubei part of China Three Gorges Re- 

servoir (TGR) region, draining an area of about 3200 km2, as 

shown in Figure 2. The Xiangxi River originates in the Shen- 

nongjia Nature Reserve with a main stream length of 94 km, 

which is one of the main tributaries of the Yangtze River (Han 

et al., 2014). The Xiangxi River watershed experiences a north- 

ern subtropics climate. Annual precipitation is 1100 mm and 

ranges from 670 to 1700 mm with considerable spatial and tem- 

poral variability (Xu et al., 2010). The main rainfall season is 

May to September, with a flooding season from July to August. 

Approximately 70% of the precipitation received between May 

and September, is rainfall and over 80% of the area is mountain- 

ous, and the land cover is dominated by mixed needle-leaf and 

broad-leaf forests (Li et al., 2015). The annual average tempera- 

ture in this region is 15.6 ºC and ranges from 12 to 20 ºC. 

We investigate the bivariate hydrologic risk for flood peak 

(Q) and volume (V) at the Xiangxi River, based on the measure- 

ments at Xingshan Hydrologic Station. The Xingshan Hydrolo- 

gic Station (110º45’0’’E, 31º13’0’’N) is located on the main 

stem of Xiangxi River, with a drainage area of 1,900 km2. It is 

the main control gauge station with an average flow volume of 

1.27 × 109 m3. The measured minimum and maximum flow vol- 

ume are 5.7 × 108 (in 1966) and 2.15 × 109 m3 (in 1988), respect- 

tively. The biggest flood occurred in 1935 with an estimated 

flood volume of 2770 m3/s. In this study, total fifty years’ daily 

discharge data (1961 ~ 2010) from Xingshan Hydrologic Station 

would be used for probabilistic assessment of flood risks in 

Xiangxi River. Based on the daily stream flow data, the flood 

peak applied in this study is defined as the maximum daily flow 

during the flood event. The flood volume being considered as 

the cumulative flow volume during the flood period. Such flood 

characteristics are obtained based on the annual scale, meaning 

in each year one flood would occur. The detailed method to 

identify the flood peak and the associated flood volume can be 
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Figure 2. The location of the Xiangxi River basin. 

 

found in Yue (2000, 2001). Table 2 shows some descriptive 

statistics values of the considered variables (peak discharge, Q; 

hydrograph volume, V). The positive values of kurtosis and skew- 

ness suggest that the flood variables can be modeled by sharp 

and right tailed distributions. 

 

Table 2. Statistical Characteristics of Flood Variables 

No.   Flood characteristics 

   Peak Volume 

1 Percentile Minimum 91 72 

25% 324 530.8 

50% 451.5 713.3 

75% 684 1189.5 

Maximum 1050 2430.8 

2 Range 959 2358.8 

3 Mean 510 920.5 

4 Std 243.8 531.9 

5 Skewness 0.74 0.959 

6 Kurtosis 2.61 3.20 

4. Results Analysis 

4.1. Marginal Distribution Analysis 

The univariate flood frequency analyses would be perform- 

ed based on the historical flooding records. A number of para- 

metric or non-parametric approaches have been proposed to es- 

timate the distributions of flood variables (Karmakar and Simo- 

novic, 2009; Sun et al., 2019). For the distribution of flood peak, 

different distributions have been recommended in different re- 

gions, such as the general extreme value distribution in the United 

Kingdom, Log-Pearson Type-III in the U.S. and Pearson III in 

China (Adamowski, 1989, Kidson and Richards, 2005, Wu et 

al., 2013). In this study, several parametric distribution func- 

tions will be employed to quantify the distributions of the flood 

peak and volume, including Gamma, generalized extreme value 

(GEV), Lognormal, Pearson Type III, and Log-Pearson Type 

III distributions. The expressions of these distribution functions 

are presented in Table 3. The parameters in these distributions 

are estimated through maximum likelihood estimation (MLE) 

method. 

 

 
 

 
 

Figure 3. Comparison of different distributions in quantifying 

the flood variables. 

 

Figure 3 illustrates the fitted marginal distributions for the 

flood peak and volume through Gamma, GEV, Lognormal, 

Pearson Type III and Log-Pearson Type IIT distribution func- 
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Table 3. Parameters of Marginal Distribution Functions of Flood Variables 

Name Probability density function 
 Parameters 

 Peak  Volume Duration 

Gamma 
11

( )

x

a b

a
x e

b a





, 1

0
( ) a ua u e du


     

a 4.50 3.06 8.72 

b 113.26 301.24 0.75 

GEV 
1 1

11 ( ) ( )
( )exp( (1 ) )(1 )k k

x x
k k

 

  

   
    

k 0.032 0.099 0.054 

μ 185.0 373.16 1.735 

σ 396.15 664.96 5.427 

Lognormal 

2

2

( )1
exp( )

22

y

yy

y

x






  y = log(x), x > 0, -∞ < μy < ∞, σy > 0 

μy 6.12 6.65 1.82 

σy 0.50 0.63 0.34 

Pearson Type III 
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( )

( )

x

a b
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





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
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1
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
     

a 4.28 3.14 2.42 

b 116.73 301.28 1.54 

α 10.91 -20.24 2.80 

Log-Pearson 

Type III 

(log( ) )

11
(log( ) )
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x
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








 

a 54.66 75.31 17.61 

b 0.071 0.079 0.083 

α 2.25 0.676 0.355 

 

Table 4. Statistical Test Results for Marginal Distribution Estimation 

Flooding variables 
 Marginal  

 distribution 

A-D test 
 RMSE AIC 

T  P-value 

Peak  Gamma 0.4888 0.7574  0.0370 -325.5954 

 Pearson Type III 0.4731 0.7735  0.0361 -326.0715 

 Log Pearson  

 Type III 

0.4133 0.8348  0.0273 -354.0118 

 GEV 0.4142 0.8339  0.0329 -335.3050 

 Lognormal 0.3356 0.9088  0.0260 -358.9344 

Volume  Gamma 0.5863 0.6602  0.0436 -309.2290 

 Pearson Type III 0.5996 0.6475  0.0448 -304.5710 

 Log Pearson  

 Type III 

0.8073 0.4752  0.0428 -309.0321 

 GEV 0.5084 0.7374  0.0415 -312.2103 

  Lognormal 0.5249 0.7207  0.0353 -328.2738 

 

tions. The results indicate that the five distribution functions 

can fit the empirical probabilities well. Moreover, the goodness- 

of-fit test for the used distributions are tested through the Kol- 

mogorov-Smirnov test. The results presented in Table 4 indi- 

cate that all the five parametric distributions can produce satis- 

factory results, with all the p-values larger than 0.05. Further- 

more, the performance of each marginal distribution is evaluat- 

ed against the empirical non-exceedance probability, using root 

mean square error (RMSE) and Akaike Information Criterion 

(AIC) criteria, which aims to identify the most appropriate dis- 

tribution function for flood peak and volume. The results are 

presented in Table 4. It can be concluded that the Lognormal 

distributions would be most appropriate in modeling the distri- 

butions of flood peak and volume, which leads to lowest RMSE 

and AIC values. 

 

4.2. Joint Probability Distribution 

Three Archimedean copulas, including Cook-Johnson (Clay- 

ton), Gumbel-Hougaard and Frank copulas are employed to 

model the dependence among flood peak-volume. The Ali-Mik- 

hail-Haq copula is excluded in this study since it can only be 

applicable when the Kendall’s tau coefficient between the two 

random variables is located within [-0.18, 0.33]. However, the 

Kendall’s tau coefficient between flood peak and volume is 

0.75. The unknown parameter in these copulas can be estimated 

by method-of-moments-like (MOM) estimator based on inver- 

sion of Kendall’s tau. The goodness-of-fit statistics is perform- 

ed based on the Cramér von Mises statistic proposed by Genest 

et al. (2009). The root mean square error (RMSE) and Akaike 

information criterion (AIC) are further used to evaluate the per- 

formance of the obtained copulas and identify the most appro- 

priate one. 

Table 5 shows statistical test results for the three copulas 

based on the method proposed by Genest et al. (2009). The re- 

sults show that the Frank and Gumbel copulas can generated 

satisfactory results, with the p-values being 0.42 and 0.45, re- 

spectively. In comparison, the Clayton copula produces unsa- 

tisfactory results in modelling the dependence between flood 

peak and volume, with the p-value of goodness-of-fit test less 

than 0.05. Moreover, among the Frank and Gumbel copulas, 
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the Frank copula performs better than the Gumbel copula in 

modeling the dependence of flood peak and volume, leading to 

lower RMSE and AIC values. Consequently, the Frank copula 

will be chosen in this study to further characterize the uncer- 

tainty in model parameters and the resulting risks. 

 

Table 5. Comparison of RMSE and AIC Values for Joint 

Distributions through Different Copulas 

 RMSE AIC Sn p-value 

Frank 0.0293 -350.8780 0.0245 0.4211 

Clayton 0.0393 -321.6217 0.0691 0.01149 

Gumbel 0.0308 -346.0389 0.0223 0.454 

 

4.3. Uncertainty Analysis 

In this study, the Bayesian-based MCMC approach is em- 

ployed to explore the inherent uncertainty both the marginal 

distributions for flood peak and volume and their dependence 

structure. In detail, the parallelizing MCMC algorithm is appli- 

ed to quantify the posterior distributions for the parameters in 

the marginal and joint distributions, in which five Markov 

chains are generated by the Metropolis–Hastings algorithm. 

Total 10,000 iterations are implemented with the last 50% being 

considered as the posterior samples. 

 

4.3.1. Uncertainty in marginal distributions 

Figure 4 compares the distributions of parameters in the 

marginal distributions for flood peak and volume. In this study, 

the lognormal distribution would be employed to quantify the 

probabilistic characteristics in flood peak and volume. Conse- 

quently, for each flood variable, two pdfs would be obtained to 

indicate the location and shape parameter, respectively. Based 

on the Bayesian method, the sample values for each parameter 

are generated through their posterior distributions, and the as- 

sociated pdf is then obtained through kernel smoothing method. 

In detail, for the location parameters of flood peak and volume, 

their distributions show similar features, which approximately 

obey normal distributions, as presented in Figures (4a) and (4c). 

However, the MCMC approach produces a slightly bimodal dis- 

tribution for the location parameter of the flood volume. For 

shape parameters in the distributions of flood peak and volume 

(i.e., Figures (4b) and (4d)), the posterior distributions are ap- 

proximately symmetric, following normal-like distributions. 

Table 6 compares the optimal parameter values of the mar- 

ginal distribution obtained by the maximum likelihood estima- 

tion (MLE) and Bayesian methods. Based on the sample values 

from the MCMC algorithm, the mean values and the associated 

predictive intervals (PIs) can be obtained. In this study, these 

mean values and PIs are provided based on the 5,000 posterior 

samples obtained by MCMC. The mean values can serve as the 

deterministic estimation and the PIs characterizes the inherent 

uncertainty in model estimation process. As presented in Table 

6, the mean values from MCMC shows good agreement with 

the estimated values from MLE, suggesting the well performan- 

ce of the proposed method in identifying the deterministic para- 

meter estimations. Moreover, the 95% PIs can be obtained 

through the MCMC method, indicating the inherent uncertainty 

in the pdfs of flood peak and volume. For instance, for the para- 

meter σ in the lognormal distribution of flood volume, the Baye- 

sian approach produces a 95% PI of [0.4130, 0.6261]. Figure 5 

shows the comparison between the observations and quantile 

estimations from MCMC. This figure indicates that the obtained 

confidence intervals can well bracket the observed probabilities. 

 

 
 

Figure 4. Parameter uncertainty for marginal distributions. 

 

4.3.2. Uncertainty in joint distribution 

The Frank copula is employed to model the dependence 

between flood peak and volume, due to its lowest RMSE and 

AIC values, as presented in Table 5. The pdf of its parameter 

(i.e., θ) is also approximated through the kernel method based 

on the samples from MCMC method. Figure 6 shows the obtain- 

ed posterior pdf of the dependence parameter between flood 

peak and volume. It indicates that the posterior pdf from MCMC 

approximately follows a norm distribution. Table 7 shows the 

comparison of the estimated parameter values through different 

method. The predictive mean provided by MCMC is different 

with the optimal value from MLE. This means that the uncer- 

tainty in hydrologic series pose significant impact in the estima- 

tion of the dependence parameter. Moreover, the 95% PI for 

the dependence parameter is much wider when compared with 

the 95% PIs for the parameters in the marginal distributions. 

As presented in Table 7, the 95% PI from MCMC ranges within 

[3.90, 8.72], while the 95% PI for the location parameter of 

flood peak is [5.98, 6.26]. 
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Table 6. Comparison of Parameter Estimation for Marginal Distributions through Different Methods. 

Flood 

Variable 

Distribution 

Family 

Estimation 

Method 

Estimation  

Type 

Estimated Parameters 

μ (mean) σ (Standard Deviation) 

Q LN MLE Parameter estimation 6.1192 0.4952 

Bayesian Mean 6.1209 0.5063 

95% PI [5.9823, 6.2644] [0.4130, 0.6261] 

V LN MLE Parameter estimation 6.6525 0.6272 

Bayesian Mean 6.6540 0.6332 

95% PI [6.4806, 6.8339] [0.5280, 0.7544] 

 

 
 

Figure 5. Quantile estimation of peak flow and volume 

 

 
 

Figure 6. Parameter uncertainty of the dependence parameter. 

 

To illustrate the impacts of uncertainty in model parame- 

ters, the bivariate quantile would be obtained compared. The 

method proposed by Zhang et al. (2015) would be employed to 

characterize the confidence regions (CRs) for several hazard 

levels. In this study, the CRs for the joint return period in 

“AND” is obtained under the return periods of 10, 50 and 100 

years. Figure 7 shows confidence regions (CIs or CRs) obtain- 

ed from MCMC. It shows quite large uncertainties even for the 

moderate flood with a 50-year return period, ranging between 

the value of the flood event with a return period of 10 years and 

that with a return period more than 100 years. Moreover, as 

presented in Figure 7, the increase in the return period for a 

flood event would lead to larger uncertainty. For instance, a 

flood event with a joint return period of 50 years would show a 

return period range of [21.5, 181.4] under parameter uncertain- 

ties, while a flood event with a 100-year joint return period 

presents a return period range of [36.3, 473.3] due to the para- 

meter uncertainties. 

 

4.4. Evaluation of parameter sensitivities 

Due to the uncertainties in the marginal and joint distribu- 

tions, the return period for one historical flood event would also 

be uncertain. However, how do the uncertainties in marginal 

distributions and the dependence structure contribute to the un- 

certainty of model output? To address the above issue, parame- 

ter sensitivities will be conducted. In detail, a multilevel facto- 

rial analysis is proposed to characterize the effect of parameter 

uncertainties and their interactions; a variance-based global sen- 

sitivity analysis is further employed to reveal the contributions 

of the uncertain parameters to the model outputs. 

 

4.4.1. Factorial analysis 

Figure 8 presents the main effects plot for four parameters 

in marginal distributions and one parameter in the dependence 

structure at three levels. The three levels are generated from the 

parameter distributions obtained by MCMC, in which the low, 

medium, and high levels are the 2.5% quantile value, mean and 

97.5% quantile values. In the main effects plot, the evaluation 

index is the RMSE value at the various levels of each factor, 

with a reference line drawn at the grand mean of RMSE values. 

This plot reveals that the location parameters (i.e. P-mu and V-

mu) for flood peak and volume has the greatest magnitude of 

the main effect upon RMSE value. In particular, the RMSE 

value would reach a lowest value of about 0.006 when the two 

location parameters get their medium values. This is because 

the medium values of the two location parameters are close to  



K. Huang and Y. R. Fan / Journal of Environmental Informatics 38(2) 131-144 (2021) 

140 

 

 

 
 

Figure 7. Comparison of bivariate quantile estimation. 

 

their optimal estimation, leading to good performance of the 

proposed model. Contrarily, the two shape parameters (i.e., P-

shape and V-shape) show less contributions to the variability 

of the RMSE value, and the parameter of the dependence struc- 

ture shows lowest impact. 

 

 
 

Figure 8. Main effects for the uncertainty parameters. 

 

Table 7. Comparison of Parameter Estimation for the Copula 

through Different Methods. 

Flood 

Variable 

Distribution 

Family 

Estimation 

Method 

Estimation  

Type 
θ 

Q-V Frank MLE Parameter 

estimation 

6.9595 

Bayesian Mean 6.32 

95% PI [3.8952, 

8.7200] 

 

The interaction plot for the five factors at three levels is 

presented in Figure 9. It reveals that the change in the RMSE 

value differs across the three levels of one factor depending on 

the level of the other factors, implying that interactions between 

these factors occurs that their effects are dependent upon each 

other. Generally, the copula-based model get lowest RMSE va- 

lues at the medium values of the five parameters. Specifically, 

the interactions between the shape parameters (i.e., P-shape and 

V-shape) and the dependence parameter (theta) seem to be in- 

significant since the three lines are nearly parallel. 

 

4.4.2. Global Sensitivity Analysis 

Figure 10 shows the first-order and total-order sensitivities 

for the five parameters obtained by the Sobol’s sensitivity in- 

dices. In this study, the distributions of the five parameters are 

smoothed through the kernel distribution estimation method. 

Total 100,000 samples are drawn from the distributions of the 

parameters. The first-order and the total-order sensitivities are 

generated based on the selected samples through Equations (23) 

and (24). Figure (10) presents the contributions of the parame- 

ter uncertainties quantified by MCMC to performances of the 

copula model. It shows that the location parameter for flood vol- 

ume contribute most to the performance variability of copula-

based risk analysis models, followed by the location parameter 

of flood peak. Moreover, for the parameter of the dependence 

structure, the first-order sensitivity is not significantly, with a 

sensitivity of 2.29%. But its total-order sensitivity would reach 

7.56%, pose the third contribution to the performance variabili- 

ty of copula models. 

As presented in Table 6, the predictive intervals (PIs) for 

the location parameters of the marginal distributions are quite 

narrow. The 95% PIs of the location parameters are [5.98, 6.26] 

and [6.48, 6.83], respectively, showing uncertainty degrees of 

4% and 5%. But the uncertainty in the shape parameters is more 

significant, with uncertainty degrees of 41% for flood peak and 

35% for flood volume. Moreover, the dependence structure shows 

most significant uncertainty. The 95% PI for the dependence 

parameter ranges from 3.90 to 8.72, with an uncertainty degree 

of 76, as presented in Table 7. However, in terms of parameter 

sensitivities, slight variations in the location parameters will   

Main Effect

theta
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Figure 9. Interaction effects for the uncertainty parameters. 

 

Table 8. Comparison for the Univariate and Joint Return Periods for Flood Characteristics. 

 T 5 10 20 50 100 

 MLE* 689.5 857.4 1026.4 1256.7 1438.4 

P PM** 699.8 875.6 1054.2 1299.7 1494.8 

 95% PI*** [595.9, 840.6] [729.6, 1087.7] [857.6, 1348.7] [1020.3, 1725.1] [1144.6, 2040.1] 

 MLE 1313.5 1730.9 2173.9 2809.5 3333.4 

V PM 1329.2 1759.2 2218.5 2881.8 3432.0 

 95% PI [1088.7, 1632.8] [1403.8, 2223.2] [1719.4, 2889.5] [2161.5, 3898.7] [2511.7, 4751.2] 

 MLE 3.4 6.1 11.3 26.4 51.5 

Tor PM 3.5 6.2 11.4 26.5 51.5 

 95% PI [3.2, 3.7] [5.8, 6.6] [10.9 11.8] [26.0, 27.0] [51.0, 52.1] 

 MLE 8.4 24.0 77.0 408.3 1534.9 

Tand PM 8.9 26.0 85.1 459.0 1737.8 

 95% PI [7.6, 11.0] [21.1, 34.7] [65.4, 119.9] [336.0, 677.4] [1245.9, 2612.7] 

 MLE 6.4 16.0 45.9 221.7 801.7 

T  
PM 6.6 17.0 49.9 246.9 903.0 

 95% PI [6.0, 7.5] [14.7, 21.1] [40.3, 67.0] [185.8, 355.7] [657.4, 1339.9] 

Note: *: Results obtained through maximum likelihood estimation; **: the predictive mean; ***: 95% predictive interval 

 

pose significant effects on the performance of the obtained co- 

pula, but the extensive uncertainty in the shape parameters of 

the marginal distribution and the dependence parameter will not 

show explicit contributions to performance variations from the 

copula. Therefore, in practical multivariate hydrologic risk ana- 

lysis, the location parameters in the flood variables play the 

most vital role, followed by the dependence parameter and the 

shape parameters in order to improve the performance on mod- 

elling the dependence between flood peaks and volumes. 

4.5. Predictive risk 

4.5.1. Return Period Characterization 

The concurrence probabilities of various combinations of 

flood variables can be revealed through the obtained copulas. 

As presented in Equations (13) ~ (16), the joint return period 

and second return period can be derived based on the selected 

copula functions. However, due to the uncertainties in the loca- 

tion and shape parameters of the univariate flood variable dis- 
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tributions (e.g., flood peak and volume) and the dependence 

structure, the primary and secondary joint return periods will 

also exhibit uncertainty. Table 8 shows the deterministic and 

predictive values for the univariate and joint return periods for 

flood characteristics. For the deterministic return periods, they 

are generated through the copulas with parameters estimated 

by MLE and the predictive mean based on Equation (27). The 

results suggest that for the univariate return periods, the MLE 

approach provides underestimations when compared with the 

predictive means. For instance, the deterministic approach quan- 

tifies a peak value of 1438.5 m3/s for a flood with the 100-year 

return period, while under consideration of uncertainty, the pre- 

dictive mean for such a flood peak would be 1494.8 m3/s. Simi- 

larly, the primary and secondary return periods obtained from 

MLE are also underestimated when compared with their predic- 

tive means. Moreover, the 95% predictive intervals can bracket 

deterministic predictions from MLE, indicating the effective- 

ness of the MCMC approach in quantifying the uncertainty in 

the copula model. Specifically, as presented in Table 8, the 

width of the 95% PIs for the joint return period in “OR” case 

do not change significantly. On the contrary, the 95% PIs for 

the return period in “AND” case show more uncertainty as the 

increase of the return period, which is consistent with the re- 

sults in Figure 7. Similar features can also be characterized for 

the secondary return period. 

 

 
 

Figure 10. First-order, total-order sensitivities of the  

five parameters. 

 

4.5.2. Bivariate risk analysis 

The damages caused by a flood, such as the failure of hy- 

draulic structures, mainly due to the high peak flow of the flood. 

The annual maximum peak discharge is the central issue to be 

considered for hydrologic risk analysis. Moreover, the flood dis- 

charge volume may also be under consideration in practical 

flood control and mitigation. The flood volume is related to 

flood diversion practices. Consequently, multivariate flood risk 

analysis, which involves more flood variables than just consi- 

dering flood peak, is more helpful for actual flood control. The 

bivariate hydrologic risk defined by Equation (18) is able to re- 

flect the interactive effects of flood variables on the occurrence 

probability of a flood. In this study, the designated peak flow is 

1500 m3/s and two service time scenarios, i.e., 30 and 50 years 

are under consideration. 

Figure 11 provides an illustration of the predictive risk and 

compares it to more standard predictions using an “optimal” 

predictor through MLE. The results indicate that both estimates 

are similar since the uncertainties in the posterior probabilities 

of the model parameters are relatively small. Integrating them 

do not dramatically results into remarkable deviation to the de- 

terministic predictions. However, as shown in Figure 11, the 

“optimal” predictions through MLE provides underestimation 

than the predictive risk under consideration of parameter uncer- 

tainties. This may result from the underestimation for the uni- 

variate return period from the “optimal” parameter values. In 

this study, a flood peak value of 1500 m3/s is considered as the 

design standard for the river levee around the Xingshan station. 

Such a flood peak will have a return period more than 125 years 

under “optimal” prediction while the predictive mean return pe- 

riod is only about 90 years from the Bayesian inference. Such 

an overestimation for the return period of the designated flood 

peak leads to an underestimation of the bivariate hydrologic risk. 

 

 
 

Figure 11. The predictive bivariate risk under uncertainty. 

 

The quantile curve is a standard representation used in ex- 

treme values analyses (Renard et al., 2013). Figure 11 also shows 

95% predictive interval for the bivariate hydrologic risk brack- 

eted by the 2.5% and 97.5% quantile estimations resulting from 

Bayesian inference. In this figure, the quantile curves are gene- 

rated based on the posterior distributions of the model parame- 

ters quantified by MCMC. The results show that the bivariate 

hydrologic risk will decrease as the increase of the flood vol- 

ume, indicating the low concurrence probabilities of high peak 

flow and high flood volume. Moreover, the width of the predic- 

tive intervals will become narrow as the decrease of the bivari- 

ate risk values. However, uncertainties exist in the predictive 

bivariate hydrologic risk resulting from parameter uncertain- 
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ties. Particularly, the bivariate flood risk increases as the increase 

of the service time of the hydraulic infrastructures, and the un- 

certainties in predictive risk also increase at the same time. 

5. Conclusions 

Extensive uncertainties exist in multivariate hydroclimatic 

risk analysis resulting from a variety of sources such as limited 

sample sizes, different model selection and parameter estima- 

tion techniques. In this study, parameter uncertainty and sensi- 

tivity evaluation (PUSE) framework was proposed to quantify 

uncertainty in multivariate hydroclimatic risk analysis, charac- 

terize impacts of parameter uncertainties on model output vari- 

ations and finally provide predictive risk predictions. Uncer- 

tainties in multivariate hydroclimatic risk analysis framework 

was quantified through coupling Bayesian inference into the 

copula framework. The posterior distributions for the parame- 

ters in marginal distributions and dependence structure were 

quantified through a Markov chain Monte Carlo (MCMC) tech- 

nique. The main effects of model parameters and their inter- 

actions on model performance were revealed through a multi-

level factorial analysis approach. The contributions of parame- 

ter uncertainties on model output variations were characterized 

through Sobol’s based global sensitivity analysis method. The 

predictive risks and the associated quantile estimations were 

generated based on the posterior distributions of the parameters. 

The proposed PUSE approach are applied to the bivariate 

flood risk analysis in the Xiangxi River, in which the flood peak 

and volume are under consideration. The results show that un- 

certainties in multivariate hydroclimatic risk analysis can be 

well quantified through Bayesian-based Markov Chain Monte 

Carlo approach. But parameter uncertainties lead to quite large 

uncertainties even for the moderate flood with a 50-year return 

period. Moreover, the multi-level factorial analysis results show 

that the location parameters of the flood variables have the 

greatest magnitude of the main effect, but the interactions be- 

tween the location parameters and the dependence parameter 

are insignificant. Particularly, the two location parameters con- 

tribute most to the modelling performances, followed by the 

dependence and shape parameters, as revealed by the global 

sensitivity analysis. Under uncertainty, the predictive bivariate 

risks show similar features with the “optimal” predictions. But 

the “optimal” predictions present underestimations when com- 

pared with the predictive risks through Bayesian inference. 

Therefore, in practical hydroclimatic risk analysis, the inherent 

uncertainty needs to be well quantified especially for the uncer- 

tainty in the location parameters of the flood variables. Well 

uncertainty quantification may provide more reliable hydrocli- 

matic risk predictions. 
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