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ABSTRACT. Shorter product lifecycles, more liberal return policies and the rise of internet marketing increased the amount of prod- 

uct returns in recent years. Companies must have a well-managed reverse logistics system to ensure the timely and cost-effective col- 

lection, processing and disposal of returned products. However, high fixed cost of reverse logistics infrastructure and high level of 

uncertainty associated with product returns force companies to outsource their reverse logistics operations to third party reverse logistics 

providers (3PRLPs). The success of outsourcing largely depends on the selection of suitable 3PRLP(s). Although there are many 

3PRLP evaluation methodologies, the research on the determination of order quantities from 3PRLPs considering uncertainties associ- 

ated with budget allocation and capacity is very limited. In addition, the previous studies do not allow decision makers to express their 

preferences for 3PRLP selection criteria in a physically meaningful way. This study fills these research gaps by proposing a novel 

3PRLP evaluation methodology which integrates linear physical programming (LPP) and fuzzy programming (FP). First, an LPP mod- 

el is constructed based on decision makers’ preferences and alternative 3PRLPs are ranked according to their total LPP scores. Then, 

an FP model takes total LPP scores, budget allocation and capacity constraints as input and determines the number of returned products 

to be processed by each 3PRLP. A numerical example is also provided to illustrate the feasibility and practicality of the proposed 

method. The results from this example are analyzed by considering the effects of capacity and budget limitations on order quantities 

and several managerial insights are proposed. 
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1. Introduction  

Traditional logistics, also known as forward logistics, in- 

volves the flow of raw materials, work-in-progress inventory, 

and finished products from point of origin to the point of con- 

sumption. However, there are many cases (e.g., repair, war- 

ranty returns) that require the flow of materials and finished 

products from consumers to the point of origin. In order to op- 

erate effectively at these cases, companies must establish an ef- 

fective system for reverse logistics which involves all the activ- 

ities related to the collection and treatment of product returns. 

There is an increasing interest towards reverse logistics 

in both industry and academia in recent years due to a number 

of environmental and economical reasons. Governments try to 

cope with various environmental problems (e.g., ozone deple- 

tion, global warming) by forcing manufacturers to establish re- 

verse logistics networks for the management of product returns. 

Moreover, implementation of a suitable product recovery op- 

tion (e.g., recycling, remanufacturing) may be profitable for a 

manufacturer. An effective reverse logistics program leads to 
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decreased resource investment levels and reduces various costs 

(viz., holding, distribution and disposal). Reverse logistics- 

related product recovery operations (viz., remanufacturing, re- 

pair, reconfiguration, and recycling) positively impact a com- 

pany’s bottom line through value reclamation (Autry, 2005). 

More liberal return policies and higher number of customers 

buying products through e-commerce also increase the amount 

of product returns. Hence, companies must ensure the cost- 

effective design and operation of a reverse logistics system in 

order to handle customer returns profitably and increase the loy- 

alty of their customers. 

Reverse logistics operations cannot be performed using the 

forward logistics infrastructure. Because, collection and trans- 

portation of returned products and product recovery opera- 

tions require the use of sophisticated equipment and a dedicat- 

ed workforce. Moreover, high level of uncertainty associated 

with the product returns and processing times complicates the 

planning of reverse logistics operations. Outsourcing of reverse 

logistics operations to a third party reverse logistic provider 

(3PRLP) is a frequently used method to deal with the above- 

cited complications (Kumar and Putnam, 2008). 

3PRLPs can be beneficial to companies in many ways. 

They have sophisticated equipment for transportation, mate- 

rial handling and product recovery operations together with a 

dedicated workforce. Hence, they can carry out complete set 
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of reverse logistics operations letting companies focus on their 

core competencies. They also increase customer satisfaction in 

after-sale service by responding promptly to customers’ repair 

and warranty-related requests. Lastly, they reduce the total cost 

of reverse logistics operations by achieving economies of scale. 

According to Krumwiede and Sheu (2002), annual logistics costs 

could be reduced up to 10% by out-sourcing reverse logistics op- 

erations to 3PRLPs. 

The most crucial decision in the outsourcing of reverse lo- 

gistics operations is to determine the most suitable 3PRLP(s). The 

methodology employed in 3PRLP evaluation process should con- 

sider decision makers’ preferences and the high level of uncer- 

tainty associated with reverse logistics operations. In this study, 

a novel 3PRLP evaluation methodology integrating linear phys- 

ical programming (LPP) and fuzzy programming (FP) is pro- 

posed. First, an LPP model is constructed based on decision 

makers’ preferences and the alternative 3PRLPs are ranked ac- 

cording to their total LPP scores. Then, an FP model takes to- 

tal LPP scores, budget allocation and capacity constraints as in- 

put and determines the number of returned products to be pro- 

cessed by each 3PRLP. 

The rest of the paper is organized as follows. Section 2 pre- 

sents a literature review on reverse logistics and 3PRLP eval- 

uation. The proposed methodology is explained in Section 3. 

Section 4 provides an example to illustrate the working mech- 

anism of the methodology. Conclusions and directions for fu- 

ture research are presented in Section 5.  

2. Literature Review 

Researchers developed various Multi-Criteria Decision 

Making (MCDM) methodologies for the selection of 3PRLPs 

(Guarnieri et al., 2015; Ilgin et al., 2015; Gupta and Ilgin, 2018; 

Zhang et al., 2020). Weight-based MCDM techniques such as 

analytic network process (ANP), analytic hierarchy process 

(AHP) and TOPSIS (Technique for Order of Preference by 

Similarity to Ideal Solution) are frequently used in these meth- 

odologies. Meade and Sarkis (2002) and Tavana et al. (2016b) 

proposed ANP-based 3PRLP evaluation and selection method- 

ologies. Presley et al. (2007) presented an approach integrating 

four techniques, viz., activity based costing (ABC), balanced 

scorecard (BSC), AHP and quality function deployment (QFD). 

Efendigil et al. (2008) considered the vagueness associated 

with the selection of a suitable 3PRLP by developing an inte- 

grated methodology based on fuzzy AHP and neural networks 

(NNs). Objective and subjective factors associated with 3PRLP 

selection process were considered by the approach proposed 

by Kannan et al. (2009a). This approach combined AHP and 

linear programming (LP) and determined the best 3PRLP as 

well as the optimum quantities to be ordered from alternative 

3PRLPs. The interactions among 3PRLP evaluation criteria 

were analyzed by Kannan et al. (2012) using Interpretive Struc- 

tural Modeling (ISM). The methodology proposed by Kannan 

et al. (2009b) integrated fuzzy TOPSIS and ISM. Kannan (2009) 

and Kannan and Murugesan (2011) used fuzzy AHP in order 

to evaluate alternative 3PRLPs. Percin and Min (2013) devel- 

oped an integrated methodology involving three steps. In the 

first step, specific customer service needs are determined and 

those needs are matched to the characteristics of alternative 

3PRLPs. Fuzzy linear regression is then used to determine a 

functional relationship between the 3PRLP user’s logistics 

service needs and the 3PRLP characteristics. Finally, alter- 

native 3PRLPs are ranked by solving a zero-one goal program- 

ming model. Senthil et al. (2014) determined criteria weights 

by employing fuzzy AHP. Then fuzzy TOPSIS was used in or- 

der to obtain the final ranking of alternative 3PRLPs. Tavana 

et al. (2016a) integrated intuitionistic fuzzy AHP and SWOT 

(Strengths, Weaknesses, Opportunities and Threats) analysis 

in order to determine the importance levels of 3PRLP selec- 

tion criteria. There are two main problems associated with the 

weight-based techniques. First, there is a high level of subjec- 

tivity involved in pairwise comparison process. Second, as the 

number of alternatives increases, the inconsistency of pair-wise 

comparisons also increases. 

As an alternative to the weight-based MCDM techniques, 

data envelopment analysis (DEA) was used in various 3PRLP 

selection methodologies. Saen (2009, 2010, 2011) proposed 

DEA-based methodologies. Azadi and Saen (2011) proposed 

a chance-constrained DEA approach considering both dual- 

role factors and stochastic data. Although these methodolo- 

gies eliminate the weight assignment process, they fail to pro- 

vide decision makers with a natural problem formulation proc- 

ess. Moreover, they cannot specify the order quantities from 

alternative 3PRLPs. 

3PRLP evaluation and selection studies can be catego- 

rized into two main categories based on the consideration of 

uncertainty. The papers in the first category (Meade and Sarkis, 

2002; Presley et al., 2007; Kannan et al., 2009a; Saen, 2010; 

Kannan et al., 2012; Tavana et al., 2016b) simply do not con- 

sider the effect of uncertainty in 3PRLP evaluation and selec- 

tion process. The papers in the second category take the uncer- 

tainty into consideration by employing fuzzy or stochastic anal- 

ysis techniques. As can be seen from the third column of Ta- 

ble 1, weight-based techniques such as Fuzzy AHP (Efendigil 

et al., 2008; Kannan and Murugesan, 2011; Tavana et al., 

2016a) and Fuzzy TOPSIS (Kannan et al., 2009b; Senthil et 

al., 2014) consider the uncertainty in the comparison and eval- 

uation process by building fuzzy comparison and evaluation 

matrices. DEA-based methodologies (Saen, 2009, 2010, 2011; 

Azadi and Saen, 2011) consider imprecise or stochastic inputs 

and outputs. There is one study employing fuzzy regression 

analysis (Percin and Min, 2013). 

Table 1 summarizes the important details about the pre- 

vious studies and the proposed approach. According to Table 

1, there is no study focusing on the determination of order 

quantities from 3PRLPs considering uncertainties associated 

with budget allocation and capacity. In addition, the previous 

studies do not let decision makers convey their preferences for 

3PRLP selection criteria in a physically meaningful manner.  

In this study, we try to fill these gaps by integrating LPP and 

FP. The subjective and tedious weight assignment process 

required by weight-based techniques is eliminated by using 

the class functions of LPP. In LPP, the decision maker speci- 

fies appropriate class functions and the associated ranges of  
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Table 1. Previous Studies and the Proposed Approach 

Study Techniques Consideration of 

Uncertainty? 

DM’s Role in Determination of 

Criteria Weights 

Determination of 

Order Quantities? 

Meade and Sarkis (2002) ANP No DM compares criteria subjectively 

using Saaty’s scale. 

No 

Presley et al., (2007) ABC, BSC, AHP, QFD No DM compares criteria subjectively 

using Saaty’s scale. 

No 

Efendigil et al., (2008) Fuzzy AHP, NNs Fuzzy pairwise 

comparisons 

DM compares criteria subjectively 

using fuzzy version of Saaty’s scale. 

No 

Kannan et al., (2009a) AHP, LP No DM compares criteria subjectively 

using Saaty’s scale. 

LP determines 

order quantities 

Kannan et al., (2009b) ISM, Fuzzy TOPSIS Fuzzy evaluation 

matrix 

DM compares criteria subjectively 

using fuzzy version of Saaty’s scale. 

No 

Kannan (2009) AHP, Fuzzy AHP Fuzzy pairwise 

comparisons 

DM compares criteria subjectively 

using classical and fuzzy versions of 

Saaty’s scale. 

No 

Saen (2009) DEA Imprecise inputs and 

outputs 

DM determines the inputs and outputs 

of alternatives. 

No 

Saen (2010)  DEA No DM determines the inputs and outputs 

of alternatives. 

No 

Saen (2011) DEA Imprecise inputs and 

outputs 

DM determines the inputs and outputs 

of alternatives. 

No 

Azadi and Saen (2011) DEA Stochastic inputs and 

outputs 

DM determines the inputs and outputs 

of alternatives. 

No 

Kannan and Murugesan 

(2011) 

Fuzzy AHP Fuzzy pairwise 

comparisons 

DM compares criteria subjectively 

using fuzzy version of Saaty’s scale. 

No 

Kannan et al., (2012) ISM No There is no weight assignment. No 

Percin and Min (2013) QFD, AHP, Fuzzy LR, 

GP 

Fuzzy linear 

regression  

DM compares criteria subjectively 

using Saaty’s scale. 

No 

Senthil et al., (2014) AHP, Fuzzy TOPSIS  Fuzzy evaluation 

matrix 

DM compares criteria subjectively 

using Saaty’s scale. 

No 

Tavana et al., (2016a) Fuzzy AHP, SWOT Fuzzy pairwise 

comparisons 

DM compares criteria subjectively 

using fuzzy version of Saaty’s scale. 

No 

Tavana et al., (2016b) ANP No DM compares criteria subjectively 

using Saaty’s scale. 

No 

Proposed Approach  LPP, FP Fuzzy budget and 

capacity constraints 

DM determines physically 

meaningful preference ranges. 

FP determines 

order quantities 

ABC: Activity Based Costing; AHP: Analytical Hierarchy Process; ANP: Analytical Network Process; BSC: Balanced Score Card; DEA: Data 

Envelopment Analysis; DM: Decision Maker; FP: Fuzzy Programming; GP: Goal Programming; ISM: Interpretive Structural Modeling; LP: Linear 

Programming; LPP: Linear Physical Programming; LR: Linear Regression; NNs: Neural Networks; QFD: Quality Function Deployment; SWOT: 

Strengths, Weaknesses, Opportunities and Threats; TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution. 

 
different degrees of desirability instead of assigning weights. 

FP determines the order quantities from alternative 3PRLPs con- 

sidering fuzzy budget allocation and capacity constraints. 

3. Proposed 3PRLP Evaluation Methodology 

Outline of the proposed methodology is presented in Fig- 

ure 1. Following the determination of alternative 3PRLPs and 

selection criteria, LPP class functions and associated limits are 

specified based on the decision makers’ preferences. Then LPP 

weight algorithm is employed to calculate criteria weights. Next, 

total LPP scores of alternative 3PRLPs are determined by con- 

structing and solving an LPP model. Finally, using normalized 

LPP scores, budget allocation and capacity constraints, an FP 

model calculates the amount of returned products to be pro- 

cessed by each 3PRLP. The knowledge about 3PRLPs and 
their performance have a vital importance in the successful im-  

plementation of the proposed methodology. That is why the 

performance of 3PRLPs must be tracked and various inputs of 

the methodology (viz., 3PRLP alternatives, selection criteria, 

limits of class functions) must be updated regularly. The feed- 

back loops in Figure 1 represent this tracking and updating proc- 

ess. The following sections present the working mechanisms 

of LPP and FP. 

 

3.1. Linear Physical Programming 

Weight-based MCDM techniques like goal programming 

(Ignizio, 1976) requires decision makers to assign physically 

meaningless weights. LPP (Messac et al., 1996) eliminates this 

weight assignment process by allowing decision-maker to ex- 

press his/her preferences using one of the following four classes 

for each criterion (Ilgin and Gupta, 2012a):  

 Class 1S: smaller-is-better 

 Class 2S: larger-is-better  
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selection criteria
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associated limits  
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Use LPP weight algorithm to determine 
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model

Rank the 3PRLPs based 

on normalized total score 
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Track the performance of 

3PRLPs

Feedback on the selection criteria and the list of 3PRLPs

Feedback on the limits of class functions

Capacity & Budget Constraints

Literature & Experts

Experts

Experts

 
 

Figure 1. Flow chart for the proposed methodology. 

 

 Class 3S: value-is-better  

 Class 4S: range-is-better  

A qualitative and quantitative representation of LPP class 

functions are presented in Figure 2. The vertical axis presents 

the value of the class function and the value of the criterion is 

presented on the horizontal axis. The smaller values of a class 

function are preferred and the ideal value of this function is 

zero. The preference ranges presented in the horizontal axis 

are used by the decision maker to categorize the value of the 

cth criterion. The desirability ranges of Class 2S can be pre- 

sented as given below: 

 Unacceptable range:
5c c

g t   

 Highly undesirable range:
5 4c c c

t g t    

 Undesirable range:
4 3c c c

t g t    

 Tolerable range:
3 2c c c

t g t    

 Desirable range:
2 1c c c

t g t    

 Ideal range:
1c c

g t   

A decision maker states his/her preferences for the cth ge- 

neric criterion by specifying the quantities 1ct
 through 5ct

 . As- 

suming that the criterion being evaluated is to be mini- mized 

(Class 1S) and the decision maker specifies the values of +
1ct  

through 
+
5ct  as 50, 100, 150, 200, and 250, respectively. If the 

alternative under consideration has a criterion value of 65, it 

would be in the desirable range. If it has a value of 225, it 

would locate in the highly undesirable range, and so on (Ilgin 

and Gupta, 2012b). 

The criterion value, gc is mapped into a real, positive and 

dimensionless parameter using the class function, zc, on the 

vertical axis in Figure 2. This ensures that a common scale is 

used for different criteria values with different meanings. For 

instance, for Class 1S, the value of the class function is zero if 

the value of a criterion, gc, is in the ideal range. On the other 

hand, if the value of a criterion is in the unacceptable range, 

the value of the class function is very high (Pochampally et 

al., 2009). 

Application of LPP involves the following four steps (Ilgin 

and Gupta, 2012a): 

1. The decision maker specifies one of the four classes for 

each criterion.  

2. The decision maker specifies the limits of the ranges of 

differing degrees of desirability for each criterion.  

3. Incremental weights are calculated using LPP weight al- 

gorithm (Messac et al., 1996) as follows:  

I. Initialize. β = 1.1; 1cw = 0, 1cw = 0, 

2z% = small positive 

number (i.e., 0.1), c = 0; i = 1; nc = number of criteria.  

II. Set c = c + 1. 

III. Set i = i + 1. Evaluate the following parameters 

sequentially: , , ,  ,i
ci ci ciz t t w  % %%  ciw , min,  ,  ;ci ciw w w % % % if minw%  is less 

than some chosen small positive number (i.e., 0.01), then 

increase β, and go to II. 

IV. If i ≠ 5, go to III. 

V. If c ≠ nc, go to II. 

where ciw
 and ciw

 are positive and negative weights, respec- 

tively, for criterion c in the ith range (These weights represent 

the slope increments of the class function for different desira- 

bility ranges), 

iz%  represents the change in the value of the class 

function along the ith range, 
cit %  and 

cit %  are the lengths of the ith 

ranges on the positive and negative sides of the cth criterion, 

ciw%  and 
ciw%  are positive and negative normalized weights, re- 

spectively, minw%  is calculated by taking the minimum of 
ciw%  

and 

ciw%  and β is a convexity parameter. 

The following equations are employed to calculate the var- 

ious parameters appeared in the weight algorithm: 
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  1  (   1)i i

cz n z  % %  (1) 

 

(   1)    ci ci c it t t  

 % % %  (2) 

 

(   1)ci ci c it t t  

 % % %  (3) 

 

  i

ci ciw z t  %%  (4) 

 

  i

ci ciw z t  %%  (5) 

 
5

2

  ci ci ci

i

w w w  



 %   (6) 

 
5

2

  ci ci ci

i

w w w  



 %   (7) 

 

Equation 1 calculates the change in the value of class func- 

tion along the ith range. A given initial value of 

2z%  must be de- 

termined in order to apply Equation 1. In practice, small posi- 

tive value, such as 0.1, will be appropriate. The lengths of the 

ith ranges on the positive and negative sides of the cth criterion 

are calculated using Equations 2 and 3, respectively. Equations 

4 and 5 are employed for the calculation of positive and nega- 

tive weights, respectively. Positive and negative normalized 

weights are calculated using Equations 6 and 7, respectively. 

4. A total score (T) is determined for each alternative by 

calculating a weighted sum of deviations over all ranges and 

criteria as given below:  

 
5

,
1 2

min (       )
c

ci ci

n

ci ci ci ci
d d

c i

T w d w d
 

   

 

    % %  (8) 

 

where cid 
 and cid 

 represent the deviations of the cth criterion 

value from the corresponding target values. The most desir- 

able alternative is the one with the lowest total score.  

 

3.2. Fuzzy Programming 

A great deal of uncertainty is involved in 3PRLP selec- 

tion process. Since the deterministic models are not effective 

in dealing with such vagueness, FP models are often employed. 

Instead of strictly satisfying the constraints, these models max- 

imize the overall aspiration level (Kumar et al., 2006). They 

also have the capability of handling multiple objectives. There 

are successful applications of FP in many areas including waste 

management (Chen et al., 2017), closed-loop supply chain net- 

work design (Pourjavad and Mayorga, 2019), water and land 

resources management (Ren et al., 2017), supplier evaluation 

(Nakashima and Gupta, 2013) and warehouse management 

(Mohammed et al., 2017). 

Zimmermann (1978) proposed a method for the solution of 

multi-objective fuzzy mathematical programming models. Ac- 

cording to this method, first, a multi-objective programming 

problem with fuzzy goals and constraints is transformed into a 

crisp linear programming formulation. Then conventional opti- 

mization tools are employed to solve the crisp model. In this sec- 

tion, first, 3PRLP selection problem is modeled as a multi objec- 

tive problem with fuzzy goals and constraints. Then the solu- 

tion methodology proposed by Zimmerman (1978) is discussed. 

The multi-objective integer programming 3PRLP selec- 

tion problem (MIP-3PRLP) for two objectives, namely, total 

normalized LPP score (TNS) and total cost (TOC) and four 

relevant system constraints can be written as follows: 

 

Goal 1:  

 

Minimize TNS: 
1

n

i i

i

NS X TNS


   (9) 

 

Goal 2:  

 

Minimize TOC: 
1

n

i i

i

UC X TOC


   (10) 

 

Capacity Constraint:  

 

i iX CAP              (11) 

 

Returned Product Constraint:  

 

i

i

X R                             (12) 

 

Budget Allocation Constraint:  

 

i i i

i

UC X B                    (13) 

 

Non-negativity Constraint:  

 

0iX                                       (14) 

 

where:  

i: 3PRLP index, i = 1, 2, …, n 

Bi: Budget allocated for 3PRLPi 

UCi: Unit cost of 3PRLPi 

R: Number of products returned by customers  

NSi: Normalized LPP score of 3PRLPi  

CAPi: Capacity of 3PRLPi  

Xi: Quantity to be processed by 3PRLPi 

n: Number of alternative 3PRLPs 

Equation 9 minimizes the total normalized LPP score. 

Equation 10 minimizes total cost (TOC). Equation 11 ensures 

that the amount of returned products allocated to a 3PRLP may 

not exceed its capacity. According to Equation 12, total amount 

of returned products allocated to alternative 3PRLPs must be 

equal to the total amount of products returned by customers.  
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Figure 2. Class functions for LPP. 

 

Equation 13 guarantees that the budget used by a 3PRLP may 

not exceed the budget allocated for that 3PRLP. Equation 14 re- 

presents the non-negativity constraints. 

A linear membership function is defined for all fuzzy pa- 

rameters in order to formulate the fuzzy multi-objective integer 

programming 3PRLP selection problem (f-MIP-3PRLP). The 

lower and upper values of the acceptability for a parameter 

are used to define a linear membership function and this func- 

tion has a continuously increasing or decreasing value over the 

range of the parameter. 

A fuzzy objective Z X%
 is a fuzzy subset of X characterized 

by its membership function μz(x):x → [0, 1]. The linear member- 

ship function for the fuzzy objectives is given by: 

 

( ) 
jz x   

min

max max min min max

max

1 ( )  

( ) [ ( )] / [ ] ( )

0 ( )
j

j j

z j j j j j j j

j j

if Z x Z

x Z Z x Z Z if Z Z x Z

if Z x Z



 


    
 

 (15) 

 

where j is the index for the objectives (j = 1, 2, …, J), Zj
min is 

minj Zj(x*), Zj
max is maxj Zj(x*) and x* is the optimum solution. 
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A fuzzy constraint   C X%
  X is a fuzzy subset of X characterized 

by its membership function μc(x) : x → [0, 1]. The linear member- 

ship function for a fuzzy constraint can be defined as follows: 

 

( ) 
kC x   

1             

( )  [1  { ( )  }/ ]

0             
kC k k kx g x b d




  



 

 ( )                 

   ( )    

     ( )       

k k

k k k k

k k k

if g x b

if b g x b d

if b d g x



  

 

 (16) 

 

where k is the index for constraints (k = 1, 2, …, K) and dk is 

the tolerance interval for constraint k. 

The following crisp formulation is obtained by transform- 

ing the FP model with J objectives and K constraints (Kumar 

et al., 2006): 

 

Maximize λ  (17) 

 

subject to: 

 
max min max  (   )  ( )  ,   = 1, 2, ..., j j j jZ Z Z x Z j J      (18) 

 

  ( )  ( )    ,  = 1, 2, ..., k k k kd g x b d k K       (19) 

 

Ax ≤ b for all deterministic constraints  (20) 

 

x ≥ 0 and x is integer  (21) 

 

0 ≤ λ ≤ 1  (22) 

 

where λ is the overall degree of satisfaction. 

According to the solution procedure proposed by Zimmer- 

mann (1978), the individual optima is used as lower bound 

(Zj
min) and upper bound (Zj

max) of the optimal values for each 

objective. MIP-3PRLP problem is solved as a linear program- 

ming model in order to obtain the lower bound (Zj
min) and up- 

per bound (Zj
max) of the optimal values. It must be noted, while 

solving the problem, one objective is considered each time by 

ignoring other objectives:  

 

Minimize/Maximize ( ),    = 1, 2, ..., jZ x j J  (23) 

 

subject to: 

 

      ,    1,  2,  ...,  k k kg x b d k K     (24) 

 

Ax ≤ b for all deterministic constraints  (25) 

 

x ≥ 0 and x is integer  (26) 

 

The three-step solution methodology can be summarized 

as follows:  

1. For each objective, a linear programming problem with 

the system constraints is solved. The maximization of the 

objective gives the upper bound of the optimal values of the 

objective while the minimization of the objective gives the 

lower bound. 

2. An equivalent crisp formulation of the fuzzy optimi- 

zation problem is created by using the lower and upper bound 

values determined in step 1. 

3. The equivalent crisp formulation is solved based on 

the maximization of the overall satisfaction level. 

Section 4 provides a numerical example for better under- 

standing of the proposed 3PRLP evaluation methodology. 

4. Illustrative Example 

Suppose that a manufacturer wants to determine suitable 

3PRLP(s) and associated quantities of returned products to be 

processed. The product structure is presented in Figure 3. There 

are two subassemblies (SA) and six components (C). Disassem- 

bly times of alternative 3PRLPs are presented in Table 2. 

 

Table 2. Disassembly Times of Alternative 3PRLPs (minutes) 

3PRLPs Root SA1 SA2 

3PRLP1 4.0 3.0 3.0 

3PRLP2 5.0 4.5 4.5 

3PRLP3 4.0 4.0 3.0 

 

Root

SA1 SA2

C1 C2 C4 C5 C6C3

 
 

Figure 3. Product structure 

 

Table 3. Criteria Values for Each 3PRLP 

3PRLPs g1 g2 g3 g4 g5 g6 

3RLP1 25.00 10.00 0.20 0.10 0.75 0.85 

3RLP2 15.00 14.00 0.60 0.20 0.60 0.80 

3RLP3 20.00 11.00 1.00 0.50 0.90 0.95 

 

Table 4. Target Values for LPP Model 

Criterion t 

+ 

c1 t 

+ 

c2 t 

+ 

c3 t 

+ 

c4 t 

+ 

c5 

g1 10.00 13.00 18.00 25.00 30.00 

g2 5.00 7.00 10.00 12.00 15.00 

g3 0.20 0.40 0.80 1.10 1.50 

g4 0.10 0.20 0.40 0.60 0.70 

Criterion t 

– 

p1 t 

– 

p2 t 

– 

p3 t 

– 

p4 t 

– 

p5 

g5 0.50 0.60 0.75 0.90 1.00 

g6 0.60 0.70 0.80 0.95 1.00 

 

4.1. Ranking 3PRLPs Using LPP 

There are four Class 1S criteria and two Class 2S criteria. The 

formulations associated with each criterion can be written as 

follows: 
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Table 5. Normalized Weights for LPP 

Criterion 2cw%  3cw%  4cw%  5cw%  2cw%  3cw%  4cw%  5cw%  

g1 0.046 0.045 0.125 0.784 - - - - 

g2 0.042 0.050 0.363 0.545 - - - - 

g3 0.056 0.036 0.312 0.596 - - - - 

g4 0.028 0.018 0.106 0.848 - - - - 

g5 - - - - 0.285 0.004 0.150 0.561 

g6 - - - - 0.142 0.074 0.003 0.781 

 

4.1.1. Class 1S Criteria 

Unit Collection Cost (UCCi) is the average cost of collect- 

ing (retrieving) one product ($/product): 

 

g1 = UCCi   (27) 

 

Unit Disassembly Time is the average time of disasem- 

bling one product (minutes): 

 

g2 = RDTi +
  1

N

ij
j

SDT
   (28) 

 

where RDTi is the root disassembly time of 3PRLPi and SDTij 

is the time required for the disassembly of subassembly j by 

3PRLPi. N is the total number of subassemblies.  

Unit Disassembly Cost (UDACi) is the cost of disassem- 

bly per unit time ($/minute):  

 

g3 = UDACi     (29) 

 

Unit Disposal Cost (UDSCi) is the disposal cost per unit 

weight ($/lb): 

 

g4 = UDSCi   (30) 

 

4.1.2. Class 2S Criteria 

On Time Delivery Ratio (ODRi) is the ratio of the orders 

that were received on or before the due date against the total 

number of orders received: 

 

g5 = ODRi              (31) 

 

Confirmed Fill Rate (CFRi) is the ratio of the orders that 

were received in right amount and right size against the total 

number of orders received: 

 

g6 = CFRi  (32) 

 

Table 3 presents criteria values for alternative 3PRLPs. 

Target values are provided in Table 4. Normalized weights 

used in LPP were determined using the LPP weight algorithm 

described in Section 3.1. (see Table 5). The weight algorithm 

was written in C++. 

Deviations of criteria values from target values are pre- 

sented in Tables 6 ~ 8. For instance, consider the second crite- 

rion (g2) and the first 3PRLP (3PRLP1). The deviation for i = 

2 can be determined in two steps. First, the value of the crite- 

rion (i.e., 10, see the bolded number in Table 3) is subtracted 

from the target value (i.e., 5, see the bolded number in Table 

4). Then the absolute value (i.e., 5, see the bolded number in 

Table 6) of this difference is taken. 

The total score for each 3PRLP is calculated using Equa- 

tion 8. Table 9 presents the score, normalized score and rank 

of each 3PRLP.  

 

Table 6. Deviations of Criteria from Target Values for 

3PRLP1 

Criterion i = 2 i = 3 i = 4 i = 5 

g1 15.00 12.00 7.00 0.00 

g2 5.00 3.00 0.00 0.00 

g3 0.00 0.00 0.00 0.00 

g4 0.00 0.00 0.00 0.00 

g5 0.25 0.15 0.00 0.00 

g6 0.15 0.10 0.00 0.00 

 

Table 7. Deviations of Criteria from Target Values for 

3PRLP2 

Criterion i = 2 i = 3 i = 4 i = 5 

g1 5.00 2.00 0.00 0.00 

g2 9.00 7.00 4.00 2.00 

g3 0.40 0.20 0.00 0.00 

g4 0.10 0.00 0.00 0.00 

g5 0.40 0.30 0.15 0.00 

g6 0.20 0.15 0.00 0.00 

 

Table 8. Deviations of Criteria from Target Values for 

3PRLP3 

Criterion i = 2 i = 3 i = 4 i = 5 

g1 10.00 7.00 2.00 0.00 

g2 6.00 4.00 1.00 0.00 

g3 0.80 0.60 0.20 0.00 

g4 0.40 0.30 0.10 0.00 

g5 0.10 0.00 0.00 0.00 

g6 0.05 0.00 0.00 0.00 

 

4.2. Determination of Order Quantities Using FP 

Characteristics of the 3PRLPs considered in the illustra- 

tive example are presented in Table 10. Number of products 

returned by customers is considered to be a deterministic con- 

straint and the numerical value of this parameter was taken as 

2250. There are two fuzzy parameters: capacities and budget 
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allocations. The uncertainty levels for both parameters were 

considered as 20% of the deterministic model. Table 11 shows 

the membership function values for fuzzy objective functions 

and fuzzy constraints at the lowest and highest aspiration levels. 

Unit cost for a 3PRLP is calculated using the following 

expression: 

 

UCi = UCCi + UDTi ⸱ UDACi + W ⸱ UDSCi (33) 

 

where UCCi is unit collection cost of 3PRLPi, UDTi is the unit 

disassembly time of 3PRLPi, UDACi is the unit disassembly 

cost of 3PRLPi, UDSCi is the unit disposal cost of 3PRLPi 

and W is the weight of the product. Numerical values of the 

first five parameters are taken from Table 2. The weight of the 

product is 10 lbs. For instance, the unit cost of 3PRLP1 is cal- 

culated as follows: 

 

1 25 10 0.2 10 0.1 28UC        (34) 

 

The equivalent crisp formulation of the fuzzy optimiza- 

tion problem formulated using Equations 17 ~ 22 is as follows:  

 

Maximize λ   (35) 

 

subject to: 

 

53.2λ + 0.31X1 + 0.45X2 + 0.24X3 ≤ 641.5  (36) 

 

1756λ + 28X1 + 25.4X2 + 36X3 ≤ 72220  (37) 

 

X1 + X2 + X3 = 2250  (38) 

 

140λ + X1 ≤ 840  (39) 

 

60λ + X2 ≤ 360  (40) 

 

260λ + X3 ≤ 1560  (41) 

 

6000λ + 28X1 ≤ 36000  (42) 

 

4000λ + 25.4X2 ≤ 24000  (43) 

 

10000λ + 36X3 ≤ 60000  (44) 

 

X1, X2, X3 ≥ 0 and integers  (45) 

 

The above model was solved using Lingo 11 and the max- 

imum degree of overall satisfaction achieved is λmax = 0.017. 

The number of returned products to be processed by 3PRLPs 

was determined as follows: X1 = 837, X2 = 200 and X3 = 1,213. 

TNS is 640.59 and TOC is 72,184. 

The effect of uncertainty level was analyzed by increas- 

ing the uncertainty level in steps of 10%. Table 12 presents the 

results of this analysis. According to Table 12, at higher uncer- 

tainty levels, the number of returned products to be processed 

by 3PRLP1 increases due to its low unit cost and low normal- 

ized score. 3PRLP2 experiences drastic reductions due to its 

high normalized score. Although 3PRLP3 has the highest ca- 

pacity, its high unit cost causes reductions in the number of re- 

turned products to be processed by this 3PRLP. 

 

Table 9. Ranking of 3PRLPs 

3PRLPs Score Normalized Score Rank 

3PRLP1 2.573 0.306 2.000 

3PRLP2 3.800 0.452 3.000 

3PRLP3 2.036 0.242 1.000 

 

Table 10. Characteristics of 3PRLPs 

3PRLPs 
Allocated 

Budget ($) 
Capacity 

Unit 

Cost ($) 

3PRLP1 30,000.0 700.0 28.0 

3PRLP2 20,000.0 300.0 25.4 

3PRLP3 50,000.0 1,300.0 36.0 

 

Table 11. Limiting Values in Membership Function for Fuzzy 

Objectives and Fuzzy Constraints 

 µ = 0 µ = 1 

Total Normalized LPP Score (TNS) 641.5 588.3 

Total Cost (TOC) 72,220.0 70,464.0 

Capacity Constraints   

3PRLP1 700.0 840.0 

3PRLP2 300.0 360.0 

3PRLP3 1,300.0 1,560.0 

Budget Constraints    

3PRLP1 30,000.0 36,000.0 

3PRLP2 20,000.0 24,000.0 

3PRLP3 50,000.0 60,000.0 

 

Table 12. The Number of Returned Products to be Processed 

by 3PRLPs under Different Uncertainty Levels 

3PRLPs 
Uncertainty Level 

0.20 0.30 0.40 0.50 0.60 0.70 0.80 

3PRLP1 837 896 955 1014 1075 1139 1200 

3PRLP2 200 167 136 106 81 55 32 

3PRLP3 1213 1187 1159 1130 1094 1056 1018 

 

The effect of budget allocation changes was analyzed by 

decreasing and increasing the budget allocations of all 3PRLPs 

in steps of 5%. The results of this analysis are provided in Ta- 

ble 13. According to Table 13, when the budget allocations of 

all 3PRLPs were decreased 10%, the number of products to be 

processed by 3PRLP2 increases. This result can be attributed 

to the fact that 3PRLP2 has the lowest unit cost. In other words, 

the model tries to satisfy the constraint on the total number of 

returned products to be collected by 3PRLPs (X1 + X2 + X3 = 

2,250) by increasing the amount of returned products to be col- 

lected by 3PRLP2 which has the lowest unit cost. 

The numerical example assumes that each 3PRLP has a dif- 

ferent capacity and budget allocation. In this setting, a 3PRLP 

with higher capacity and budget allocation will be more advan- 

tageous. Considering this detail, another sensitivity analysis was 

carried out. In this analysis, the capacities and buget allocation  
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Table 13. The Impact of Budget Allocation Changes on the Number of Returned Products to be Processed by 3PRLPs 

 

3PRLPs 

Change in Budgets of Alternative 3PRLPs 

10%  

Decrease 

5% 

Decrease 

No  

Change 

5%  

Increase 

10% 

Increase 

New 

Budget 

Order 

Quant. 

New 

Budget 

Order 

Quant. 

Current 

Budget 

Order 

Quant. 

New 

Budget 

Order 

Quant. 

New 

Budget 

Order 

Quant. 

3PRLP1 27000 824 28500 837 30000 837 31500 837 33000 837 

3PRLP2 18000 226 19000 200 20000 200 21000 200 22000 200 

3PRLP3 45000 1200 47500 1213 50000 1213 52500 1213 55000 1213 

 

Table 14. The Number of Returned Products to be Processed by 3PRLPs if Capacities and Budgets are Equal 

3PRLPs 

Current Setting Equal Capacities and Budgets 

Capacity Budget Order Quantity Capacity Budget Order Quantity 
% Change in Order 

Quantity 

3PRLP1 700.0 30,000.0 837.0 750.0 33,333.3 882.0 5.1% Increase 

3PRLP2 300.0 20,000.0 200.0 750.0 33,333.3 679.0 239.5% Increase 

3PRLP3 1,300.0 50,000.0 1,213.0 750.0 33,333.3 689.0 43.2% Decrease 

 

of all 3PRLPs were assumed to be equal. Table 14 presents the 

number of returned products to be processed by each 3PRLP 

for both settings. According to Table 14, the 3PRLP collecting 

the highest number of returned products is 3PRLP1 when all 

3PRLPs’ capacities and budgets are equal. This result can be at- 

tributed to the normalized score and unit cost values presented 

in Tables 9 and 10, respectively. 3PRLP1 has the second lowest 

unit cost and the second lowest normalized score. 3PRLP2 has 

the lowest unit cost and the highest normalized score while 

3PRLP3 has the lowest normalized score and the highest unit 

cost. Since the model has two objectives (minimization of total 

cost and minimization of total normalized score), it allocates 

more returned products to 3PRLP1 which ranks second in unit 

cost and in normalized score. Another interesting detail that can 

be observed from Table 14 is the fact that 3PRLP3 which has 

the highest capacity and the highest budget allocation in the 

current setting experiences the most drastic reduction (43.2%) 

in the number of returned products to be processed. This is due 

to the fact that there is no capacity and/or budget advantage 

when all 3PRLPs have equal capacity and budget values. On 

the other hand, 3PRLP2 which has the lowest capacity and the 

lowest budget allocation in the current setting experiences the 

most drastic increase (239.5%) in the number of returned prod- 

ucts to be processed. In other words, if 3PRLP2 has same capac- 

ity and budget allocation values with other 3PRLPs, the model 

allocates more returned products to this 3PRLP due to its low 

unit cost. 

5. Conclusions 

Evaluation and selection of 3PRLPs is a key factor in the 

successful outsourcing of reverse logistics operations. In this 

paper, we propose a novel 3PRLP selection methodology by 

integrating LPP and FP. The methodology allows decision mak- 

ers to formulate their preferences in a more natural way. In ad- 

dition, reprocessing quantities of alternative 3PRLPs can be de- 

termined considering budget and capacity constraints. A numer- 

ical example is also provided to illustrate the working mecha- 

nism of the proposed methodology. 

The following managerial insights can be derived based on 

the results of the study: 

Although the numerial example involves three 3PRLPs, 

3PRLP evaluation problems involving more than three 3PRLPs 

can be solved using the proposed methodology. 

Five criteria were considered in this study. Decision mak- 

ers may involve additional criteria depending on the charac- 

teristics of a specific 3PRLP evaluation problem. For each new 

criterion, an appropriate LPP class function must be defined 

and the desirability ranges of this function must be determined 

based on the preferences of the decision maker.  

The proposed methodology was applied to an example 

product structure. It can also be applied to real-life products 

(i.e., washing machines, refrigerators). In that case, various 

product characteristics such as unit collection cost must be 

determined based on expert opinion. 

As a future research topic, a computerized system can be 

developed in order to make the proposed methodology more 

user-friendly. This system should allow the user to determine 

the number of criteria and preference ranges for each criterion 

and calculate weights using LPP weight algorithm. It should 

also determine the rank and reprocessing quantity of each 

3PRLP by automatically generating and solving an appropri- 

ate Lingo model. 
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