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ABSTRACT. Floods are the most common and among the most severe natural disasters in many countries around the world. As global 

warming continues to exacerbate sea level rise and extreme weather, governmental authorities and environmental agencies are facing the 

pressing need of timely and accurate evaluations and predictions of flood risks. Current flood forecasts are generally based on historical 

measurements of environmental variables at monitoring stations. In recent years, in addition to traditional data sources, large amounts of 

information related to floods have been made available via social media. Members of the public are constantly and promptly posting 

information and updates on local environmental phenomena on social media platforms. Despite the growing interest of scholars towards 

the usage of online data during natural disasters, the majority of studies focus exclusively on social media as a stand-alone data source, 

while its joint use with other type of information is still unexplored. In this paper we propose to fill this gap by integrating traditional 

historical information on floods with data extracted by Twitter and Google Trends. Our methodology is based on vine copulas, that allow 

us to capture the dependence structure among the marginals, which are modelled via appropriate time series methods, in a very flexible 

way. We apply our methodology to data related to three different coastal locations on the South coast of the United Kingdom (UK). The 

results show that our approach, based on the integration of social media data, outperforms traditional methods in terms of evaluation and 

prediction of flood events.  

 

Keywords: climate change, dependence modelling, floods, natural hazards, social media sentiment analysis, time series modelling, vine 

copulas

 

 
 

1. Introduction 

In recent years, climate change has caused an exacerbation 

of the frequency and severity of natural hazard phenomena, 

such as floods, storms, wildfires and other extreme weather 

events (Field et al., 2012; Muller et al., 2015). Around the 

world, a substantial part of the population is exposed to flood 

risk, with more than 2.3 billion people residing in locations 

experiencing inundations during flood events (UN, 2015). In 

the United Kingdom, intense storms occurred during recent 

years, bringing severe flooding and causing considerable dam-

age to people, infrastructure and the economy, totalling mil-

lions of pounds (Smith et al., 2017). This caused a growing 

need for timely and accurate information about the severity of 

flooding, which is essential for forecasting and nowcasting these 

phenomena and for effectively managing response operations 

and appropriately allocate resources (Rosser et al., 2017). 

Generally, in order to estimate and predict inundations, 

statistical and machine learning models are employed, typically 

using information gathered from meteorological and climato- 

logical instrumentation at monitoring stations. For example, 

Wang and Du (2003) use a combination of meteorological, geo- 

graphical and urban data to produce flooding tables and maps 
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published via Internet for public consultation. Keef et al. (2013) 

used data from a set of UK river flow gauges to estimate the 

probability of widespread floods based on the conditional ex- 

ceedance model of Heffernan and Tawn (2004). Grego et al. 

(2015) collected historic flood frequency data and modelled 

them via finite mixture models of stationary distributions using 

censored data methods. Balogun et al. (2020) utilized geograph- 

ic information system and remote sensing data from Malaysia 

to generate flood susceptibility maps, applying Fuzzy-Analytic 

Network Process flood models. Model validation results show- 

ed that 59.42 and 36.23% of past flood events fall within the 

very high and high susceptible locations of the susceptibility 

map respectively. Moishin et al. (2020) investigated fluvial 

flood risk in Fiji developing a flood index based on current and 

antecedent day’s precipitation. Talukdar et al. (2020) gathered 

historical flood data related to the Teesta River basin in Ban- 

gladesh and employed ensemble machine learning algorithms 

to predict flooding sites and flood susceptible zones. Results 

showed that an area of more than 800 km2 was predicted as a 

very high flood susceptibility zone by all algorithms. 

However, information collected at monitoring stations may 

suffer from data sparsity, time delays and high costs (Muller et 

al., 2015). In particular, remotely sensed data may take several 

hours to become available (Mason et al., 2012) and their tem- 

poral resolution is often limited (Schumann et al., 2009). 

On the other hand, an increasing availability of consumer 

devices, such as smartphones and tablets, is leading to the dis-
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semination and communication of flood events directly by in- 

dividuals, with information shared in real-time using social me- 

dia. User-generated content shared online often includes reports 

on meteorological conditions especially in case of extreme or 

unusual weather (Alam et al., 2018). Recent studies have fo- 

cused specifically on social media sources, such as Twitter, 

Facebook and Flickr, to collect real-time information on floods 

and environmental events and their impacts across the globe. 

For example, Herfort et al. (2014) and De Albuquerque et al. 

(2015) identified spatial patterns in the occurrence of flood-re- 

lated tweets associated with proximity and severity of the River 

Elbe flood in Germany in June 2013. Saravanou et al. (2015) 

performed a case study on the floods that occurred in the UK 

during January 2014, investigating how these were reflected on 

Twitter. The authors evaluated their findings against ground 

truth data, obtained from external independent sources, and 

were able to identify flood-stricken areas. Twitter data gener- 

ated during flooding crisis was also used by Spielhofer et al. 

(2016) to evaluate techniques to be adopted in real-time to 

provide actionable intelligence to emergency services. Differ- 

ent methods to create flood maps from Twitter micro-blogging 

were presented by Brouwer et al. (2017), Smith et al. (2017) 

and Arthur et al. (2018), who applied their approaches to dif- 

ferent locations, such as the city of York (UK), Newcastle upon 

Tyne (UK) and the whole England region, respectively. The 

2015 South Carolina flood disaster was analysed by Li et al. 

(2018) to map the flood in real time by leveraging Twitter data 

in geospatial processes. Results show that the authors’ ap- 

proach could provide a consistent and comparable estimation 

of the flood situation in near real time. Spruce et al. (2021) ana- 

lysed rainfall events occurred across the globe in 2017, com- 

paring outputs from social sensing against a manually curated 

database created by the Met Office. The authors showed that 

social sensing successfully identified most high-impact rainfall 

events present in the manually curated database, with an overall 

accuracy of 95%. 

However, the majority of contributions in the literature an- 

alysing online generated data focus exclusively on social media 

sources, overlooking any relation or synergy with other sources 

of information. One of the few exceptions is the paper by 

Rosser et al. (2017), who estimated the flood inundation extent 

in Oxford (UK) in 2014 based on the fusion of remote sensing, 

social media and topographic data sources, using a simple 

Weights-of-Evidence analysis. 

In this paper we propose to leverage the association be- 

tween social media and environmental information via sophis- 

ticated statistical modelling based on vine copulas, to enhance 

the assessment and prediction of flood phenomena compared 

to traditional approaches. 

Copulas are multivariate statistical tools, which allow us 

to model separately the marginal models and their dependence 

structure (Huang et al., 2017). Copulas were used in flood risk 

analysis, for example, by Jane et al. (2016) to predict the wave 

height at a given location by exploiting the spatial dependence 

of the wave height at nearby locations. The use of copulas in 

flood risk management was also explored by Jane et al. (2018), 

who used a copula to capture dependencies in a 3-dimensional 

loading parameter space, estimating the overall failure prob- 

ability. Copulas have also been applied in a flood risk context 

to model the dependence between multiple co-occurring driv- 

ers by Ward et al. (2018), among others. Couasnon et al. (2018) 

use Gaussian pair-copulas in a Bayesian Network to derive 

boundary conditions that account for riverine and coastal inter- 

actions for a catchment in southeast Texas. Feng et al. (2020) 

employed time-varying copulas with nonstationary marginal 

distributions to estimate the dependence structure of inundation 

magnitudes in flood coincidence risk assessment. 

Vine copulas are based on bivariate copulas as building 

blocks and provide a great deal of flexibility, compared to stan- 

dard copulas and other traditional multivariate approaches, in 

modelling complex dependence structures between the vari- 

ables. Vine copulas were adopted, for example, by Latif and 

Mustafa (2020) to model trivariate flood characteristics for the 

Kelantan River basin in Malaysia. Tosunoglu et al. (2020) ap- 

plied vine copulas in hydrology for multivariate modelling of 

peak, volume and duration of floods in the Euphrates River Ba- 

sin, Turkey. Vine copulas were applied to model compound 

events by Bevacqua et al. (2017) and by Santos et al. (2021). 

The former authors adopted this approach to quantify the risk 

in present-day and future climate, and to measure uncertainty 

estimates around such risk. The latter authors used vines to as- 

sess compound flooding from storm surge and multiple riverine 

discharges in Sabine Lake, Texas. 

However, to the best of our knowledge, there are currently 

no studies exploring the use of vine copulas to integrate social 

media data with other types of information. This paper pro- 

poses a novel approach, based on vine copulas, that combines 

data gathered from Twitter and Google Trends with remotely 

sensed information. The proposed methodology involves the 

use of subjective information, more specifically the feelings of 

people expressed through social media and quantified by sen- 

timent scores, not merely as stand-alone data sources, used in 

isolation to predict inundations, but combined with information 

on the occurrence and magnitude of flood events. The vine cop- 

ula approach allows us to exploit the associations between all 

the considered data sources, environmental as well as on-line, 

which all contribute to calculate flood forecasts. 

The methodology articulates in the following steps, that 

will be illustrated in detail in the following sections: 

 fit each variable (environmental as well as on-line infor- 

mation) with a suitable time series model, to remove the 

temporal effects from the data; 

 construct a vine copula model, which accounts for the 

dependencies between all variables and exploits the 

associations between environmental and social media 

information; 

 calculate predictions of the flood variables based on the 

vine copula model. 

The application of our methodology to three different 

coastal locations in the South of the UK shows that our ap- 

proach performs better than traditional approaches, which do 

not take into account associations between environmental and 
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on-line information, to estimate and predict the occurrence and 

the magnitude of flood events. 

The remainder of the paper is organised as follows. Sec- 

tion 2 describes the environmental and social media data used 

in the analysis; Section 3 illustrates the vine copula methodol- 

ogy; Section 4 reports the results of the analysis; finally, con- 

cluding remarks are presented in Section 5. 

2. Study Area and Data Collection 

The UK coastline has been subject to terrible floods through- 

out history. Over the last few years, storms and floods relent- 

lessly hit the UK coast, triggering intense media coverage and 

public attention. Table 1 lists the major winter storm events af- 

fecting the UK between 2012 and 2018. 

In this paper we consider three locations on the South coast 

of the UK, which were severely affected by storm events in re- 

cent years: Portsmouth, Plymouth and Dawlish. The inunda- 

tion episodes of the last few years had a substantial socioeco- 

nomic impact on the local communities of the three locations, 

which are totalling a population of almost 500,000. The three 

areas were affected by most of the inundation events listed in 

Table 1. In particular, devastating overnight storms on February 

4, 2014, swept the main rail route at Dawlish, leaving tracks 

dangling in mid-air. The seawall was breached, a temporary 

line of shipping containers forming a breakwater was con- 

structed, however huge waves damaged it and punched a new 

hole in the sea wall. Later, a replacement seawall was installed 

and railway operations recommenced on April 4, 2014. The 

waves on the night of the 4th February were relatively modest. 

The breach was more likely a result of a combination of factors 

including coincidental arrival of swell waves and the highest 

locally generated wind waves, large storm surge arriving a few 

days after a spring tide and the sequence of storm events hitting 

the South UK coast that winter before the breach lowering 

beach level (Sibley et al., 2015).  

In order to estimate and predict flood phenomena in the 

three coastal areas, we applied the vine copula methodology to 

data based on historical measurement in conjunction with infor- 

mation gathered online. 

For each one of the three locations, we obtained daily hy- 

draulic loading condition data as well as social media informa- 

tion for the period between January 2012 and December 2016, 

obtaining 1,827 daily data points for each variable. We there- 

fore constructed a dataset of time series, all of the same length. 

More precisely, we downloaded wave height (m) and water lev- 

el (tidal residual, m) data from the UK Environment Agency 

flood-monitoring API. Furthermore, for the aforementioned lo- 

cations, we gathered Google Trends information on the number 

of searches for the keywords flood, flooding, rain and storm, 

using the gtrendsR package from the R software (R Core Team, 

2020; Massicotte and Eddelbuettel, 2021). In addition, we col- 

lected Twitter messages containing the same keywords used to 

perform Google Trends searches for the three areas. After re- 

moving tweets sent by automated accounts, which contained 

factual information about the current weather in the required 

location, we obtained 9,781 tweets for Portsmouth, 4,995 tweets 

for Plymouth and 1,769 tweets for Dawlish. From the Twitter 

data, we considered the total number of tweets as well as the 

sentiment scores calculated using two different lexicons: Bing 

and Afinn (Hu and Liu, 2004), which are available in the R 

tidytext package (Silge and Robinson, 2016). The Bing lexi- 

con splits words into positive or negative. The Bing sentiment 

score for each tweet is calculated by counting the number of 

positive words used in each tweet and subtracting from this the 

number of negative words. The Afinn lexicon scores words be- 

tween ±5. The Afinn sentiment score is calculated by multi- 

plying the score of each word by the number of times it appears 

in the tweet; these scores are then summed to derive the overall 

sentiment score. In order to take into account of the different 

population sizes living in the three areas, we scaled the Bing 

and Afinn sentiment scores by the relevant number of residents. 

 

Table 1. Major Winter Storm Events in the UK Between 2012 and 2018  

Winter Winter Winter Winter Winter 

2012/13 2013/14 2015/16 2016/17 2017/18 

Date Date Storm Date Storm Date Storm Date 

  Name  Name  Name  

11 Oct 28 Oct Abigail 12 ~ 13 Nov Angus 20 Nov Aileen 12 ~ 13 Sep 

18 Nov 5 ~ 6 Dec Barney 17 ~ 18 Nov Barbara 23 ~ 24 Dec Brian 21 Oct 

14 Dec 18 ~ 19 Dec Clodagh 29 Nov Conor 25 ~ 26 Dec Caroline 7 Dec 

19 Dec 23 ~ 24 Dec Desmond 5 ~ 6 Dec Doris 23 Feb Dylan 30 ~ 31 Dec 

22 Dec 26 ~ 27 Dec Eva 24 Dec Ewan 26 Feb Eleanor 2 ~ 3 Jan 

 30 ~ 31 Dec Frank 29 ~ 30 Dec   Fionn 16 Jan 

 3 Jan Gertrude 29 Jan   Georgina 24 Jan 

 25 ~ 26 Jan Henry 1 ~ 2 Feb     

 31 Jan ~ 1 Feb Imogen 8 Feb     

 4 ~ 5 Feb Jake 2 Mar     

 8 ~ 9 Feb 

12 Feb 

14 ~ 15 Feb 

Katie 27 ~ 28 Mar     

Note: the storm naming system was introduced in 2015.  
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Figure 1. Trace plots of Portsmouth data. 

 

Figure 1 and Figures S1 and S2 in the supplementary ma- 

terials show the trace plots of the data collected for Portsmouth, 

Plymouth and Dawlish, respectively. The plots are produced 

using a daily scale. The panels (from top to bottom) illustrate 

the wave height (Hs), the water level (WL), the Google Trends 

searches (Google), the total number of Tweets (Total tweets), 

the Bing sentiment scores (Bing) and the Afinn sentiment scores 

(Afinn). We notice spikes in the plots corresponding to most of 

the storm events listed in Table 1. For example, the flood events 

occurred in February 2014 are reflected in high spikes in the 

time series plots, especially for Dawlish in Figure S2. From the 

plots we also notice that the time series exhibit a similar pattern 

at specific time points. Generally, the higher the values of wave 

height and water level, the higher the volume of tweets and 

Google searches, and the lower the sentiment scores for both 

lexicons. This suggests the presence of association between the 

social media and remotely sensed data. 

3. Methodology 

The copula is a function that allows us to bind together a 

set of marginals, to model their dependence structure and to ob- 

tain the joint multivariate distribution (Joe, 1997; Nelsen, 2007). 

Sklar’s theorem (Sklar, 1959) is the most important result in 

copula theory. It states that, given a vector of random variables 

X = (X1, ..., Xd), with d-dimensional joint cumulative distribu- 

tion function F(x1, ..., xd) and marginal cumulative distributions 

(cdf) Fj(xj), with j = 1, ..., d, a d-dimensional copula C exists, 

such that: 

 

      1 1 1, , , , ;d d dF x x C F x F x K K   (1) 

 

where Fj(xj) = uj, with uj ∈ [0, 1] are called u-data, and de- 

notes the set of parameters of the copula. The joint density 

function can be derived as: 



L. Ansell and L. Dalla Valle / Journal of Environmental Informatics 39(2) 97-110 (2022) 

101 

 

          1 1 1 1 1, , , , ;d d d d df x x c F x F x f x f x   K K K  (2) 

 

where c denotes the d-variate copula density. The copula allows 

us to determine the joint multivariate distribution and to describe 

the dependencies among the marginals, that can potentially be 

all different and can be modelled using distinct distributions. 

In this paper, we adopt the 2-steps inference function for 

margins (IFM) approach (Joe and Xu, 1996), estimating the mar- 

ginals in the first step, and then the copula, given the marginals, 

in the second step. 

 

3.1. Marginal Models 

Given the different characteristics of the six marginals, we 

fitted different models for each of the six time series for each 

location. Further, we extracted the residuals εj, with j = 1, ..., d, 

from each marginal model and we applied the relevant distri- 

bution functions to get the u-data Fj(εj) = uj to be plugged into 

the copula. 

 

3.1.1. Wave Height (Hs) 

The best fitting model for the log-transformed Hs marginal 

for all three locations was the autoregressive integrated moving 

average (ARIMA) model (for more information about ARIMA 

models, see, for example Hyndman and Athanasopoulos (2018)). 

The ARIMA model aims to describe the autocorrelations in the 

data by combining autoregressive and moving average models. 

The model is usually denoted as ARIMA(p, d, q), where the 

values in the brackets indicate the parameters: p, d, q, where p 

is the order of the autoregressive part, d is the degree of first 

differencing involved and q is the order of the moving average 

part. The ARIMA model, for t = 1, ..., T takes the following 

form: 

 

1 11 1

p q

t i t i t ti i
y a y     
       (3) 

 

where  1
d

t ty B x  , xt are the original data values, B is the 

backshift operator, a is a constant, φi, with i = 1, ..., p, are the 

autoregressive parameters, θi, with i = 1, ..., q, are the moving 

average parameters and εt ~ N(0,1) is the error term. 

 

3.1.2. Water Level (WL) 

We fitted the log-transformed WL marginal for the Plym- 

outh location with an ARIMA model, as described in Equation 

(3). However, for Portsmouth and Dawlish, the ARIMA-

GARCH model with Student’s t innovations appeared to ex- 

hibit a better fit. This model combines the features of the 

ARIMA model with the generalized autoregressive conditional 

heteroskedastic (GARCH) model, allowing us to capture time 

series volatility over time. The GARCH model is typically de- 

noted as GARCH(p, q), with parameters p and q, where p is the 

number of lag residuals errors and q is the number of lag vari- 

ances. The ARIMA(p, d, q)-GARCH(p, q) model can be ex- 

pressed as: 

11 1
,

p q

t i t i t i ti i
y a y     
      

2 2 2

1 1

p q

t t t i t i i t ii i
z        

       (4) 

 

where αi, with i = 1, ..., p, and βi, with i = 1, ..., q are the pa- 

rameters of the GARCH part of the model, and εt follows a 

Student’s t distribution. 

 

3.1.3. Google Trends (Google) 

Since the Google marginal in all locations includes several 

values equal to zero, we fitted a zero adjusted gamma distribu- 

tion (ZAGA) using time as explanatory variable (see Rigby and 

Stasinopoulos (2005)). This distribution is a mixture of a dis- 

crete value 0 with probability ν, and a gamma distribution on 

the positive real line (0, ∞) with probability (1 − ν). The proba- 

bility density function (pdf) of the ZAGA model is given by: 

 

 
   

, 0
| , ,

1 | , , 0
X

GA

if x
f x

f x if x


  

  


 

 
  (5) 

 

For 0 ≤ x < ∞, 0 < ν < 1, where µ > 0 is the scale parameter, 

σ > 0 is the shape parameter and fGA(x|µ, σ) is the gamma pdf. 

We assumed that the parameter µ of the ZAGA model is related 

to time, as explanatory variable, through an appropriate link 

function, with coefficient β (for more details, see Rigby et al. 

(2019)). 

 

3.1.4. Total Number of Tweets (Total_tweets) 

The best fitting model for the marginal Total tweets is the 

zero adjusted inverse Gaussian distribution (ZAIG), which is 

similar to the ZAGA model discussed in Section 3.1.3. The pdf 

of the ZAIG model is: 

 

 
   

, 0
| , ,

1 | , , 0
X

IG

if x
f x

f x if x


  

  


 

 
 (6) 

 

For 0 ≤ x < ∞, 0 < ν < 1, where µ > 0 is the location param- 

eter, σ > 0 is the scale parameter and fIG(x|µ, σ) is the inverse 

Gaussian pdf. Similarly to the ZAGA model, for the ZAIG 

model we assumed that the parameter µ is related to time, as 

explanatory variable, through an appropriate link function, with 

coefficient β (see Rigby and Stasinopoulos (2005); Rigby et al., 

(2019)). 

 

3.1.5. Bing Sentiment Score (Bing) 

The best model for the Bing marginal for all three loca- 

tions was the ARIMA-GARCH model with Student’s t innova- 

tions, as illustrated in Equation (4), fitted on the log-transformed 

data. 

Since the residuals of the Dawlish data still showed some 

structure, they were fitted using a Generalized t distribution 

(GT), which depends on four parameters controlling location, 

scale and kurtosis (for more information, see Rigby and Sta- 

sinopoulos (2005); Rigby et al., (2019)). 
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3.1.6. Afinn Sentiment Score (Afinn) 

The log-transformed Afinn marginal was fitted with an 

ARIMA-GARCH model with Student’s t innovations (see 

Equation (4)). 

For Portsmouth, since the residuals still presented some 

structure, they were fitted using a skew exponential power type 

2 distribution (SEP2), which depends on four parameters: the 

location, scale, skewness and kurtosis. For the implementation 

of the SEP2 distribution, we used time as explanatory variable 

for the location parameter. 

For Dawlish, the residuals were fitted using a Normal-

exponential-Student-t distribution (NET), considering time as 

explanatory variable. The NET distribution is symmetric and 

depends on four parameters controlling the location, scale and 

kurtosis (for more details on the SEP2 and NET distributions, 

see Rigby and Stasinopoulos (2005); Rigby et al., (2019)). 

 

3.2. Vine Copula Model 

A vine copula (or vine) represents the pattern of depen- 

dence of multivariate data via a cascade of bivariate copulas, 

allowing us to construct flexible high-dimensional copulas using 

only bivariate copulas as building blocks. For more details about 

vine copulas see Czado (2019). 

In order to obtain a vine copula we proceed as follows. First 

we factorise the joint distribution f(x1, ..., xd) of the random vec- 

tor X = (X1, ..., Xd) as a product of conditional densities: 

 

     1 1 1, , |d d d d d d df x x f x f x x   K K  

 1|2 1 2| , ,d df x x x K K   (7) 

 

The factorisation in Equation (7) is unique up to re-

labelling of the variables and it can be expressed in terms of a 

product of bivariate copulas. In fact, by Sklar’s theorem, the 

conditional density of Xd−1|Xd can be easily written as: 

 

  

      1| 1 1, 1 1 1,| , ;d d d d d d d d d d d df x x c F x F x         

 1 1d df x    (8) 

 

where
1,d dc 

is a bivariate copula, with parameter vector
1, .d d 

 

Through a straightforward generalisation of Equation (8), each 

term in Equation (7) can be decomposed into the appropriate 

bivariate copula times a conditional marginal density. More pre- 

cisely, for a generic element Xj of the vector X we obtain: 

 

     , ; | || |
| , | ;

j l l j l l lj j
X X j l l lX x

f c F X F 


    ν ν νν
ν ν   

  , ; | |
j l l j lX X j lf X

  
ν ν

ν   (9) 

 

where ν is the conditioning vector, νl is a generic component of 

ν, ν−l is the vector ν without the component νl,  | ,
j lXF


 ν is the 

conditional distribution of Xj given ν−l and  , ; ,
j l lXc  

 ν is the 

conditional bivariate copula density, which can typically be- 

long to any family (e.g. Gaussian, Student’s t, Clayton, Gum- 

bel, Frank, Joe, BB1, BB6, BB7, BB8, etc.; for more informa- 

tion on copula families, see Nelsen, 2007), with parameter

 , ; , .
j l lX 


 ν

 The d-dimensional joint multivariate distribution 

function can hence be expressed as a product of bivariate copu- 

las and marginal distributions by recursively plugging Equation 

(9) in Equation (7). 

For example, let us consider a 6-dimensional distribution. 

Then, Equation (7) translates to: 

 

       1 6 6 6 5|6 5 6 4|5,6 4 5 6, , | | ,f x x f x f x x f x x x   K K   

 1|2, ,6 1 2 6| , , .f x x x K K   (10) 

 

The second factor  5|6 5 6|f x x on the right-hand side of 

Equation (10) can be easily decomposed into the bivariate cop- 

ula     5|6 5 5 6 6,c F x F x  and marginal density  5 5f x : 

 

        5|6 5 6 5,6 5 5 6 6 5,6 5 5| , ;f x x c F x F x f x    (11) 

 

On the other hand, the third factor on the right-hand side 

of Equation (10) can be decomposed using the Equation (9) as: 

 

      4|5,6 4 5 6 4,5;6 4|6 4 6 5|6 5 6 4,5;6| , | , | ;f x x x c F x x F x x    

 4|6 4 6|f x x   (12) 

 

Therefore, one of the possible decompositions of the joint 

density  1 6, ,f x xK is given by the following expression, which 

includes the product of marginal densities and copulas, which 

are all bivariate: 

 

   
6

1 6 1,2 1,3 3,4 1,5 5,6 2,3;1

1

1,4;3 3,5;1 1,6;5 2,4;1;3 4,5;1,3 3,6;1,5

, , j j

j

f x x f x c c c c c c

c c c c c c



      

     

K
  

2,5;1,3,4 4,6;1,3,5 2,6;1,3,4,5.c c c    (13) 

 

Equation (13) is called pair copula construction. Note that 

in the previous equation the notation has been simplified, set- 

ting     , , ,, ;a b a b a a b b a bc c F x F x  . 

Two particular types of vines are the Gaussian vine and the 

Independence vine. The first one is constructed using solely 

Gaussian bivariate pair-copulas as building blocks, such that 

each conditional bivariate copula density  , ; ,
j l lXc  

 ν described 

in Equation (9) is a Gaussian copula. The Gaussian vine was 

adopted in flood risk analysis by Couasnon et al. (2018). The 

second type is the independence vine, which is constructed 

using only independence pair-copulas, that are simply given by 

the product of the marginal distributions of the random vari- 

ables. In this latter case each conditional bivariate copula den- 

sity  , ; ,
j l lXc  

 ν described in Equation (9) is an Independence 

copula, implying absence of dependence between the variables. 

Pair copula constructions can be represented through a 

graphical model called regular vine (R-vine). An R-vine V(d)  
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Figure 2. Six-dimensional R-vine graphical representation. Source: Czado (2019). 

 

on d variables is a nested set of trees (connected acyclic graphs) 

T1, ..., Td−1, where the variables are represented by nodes linked 

by edges, each associated with a certain bivariate copula in the 

corresponding pair copula construction. The edges of tree Tk 

are the nodes of tree 1, 1, , 1.kT k d  K Two edges can share a 

node in tree Tk without the associated nodes in tree Tk+1 being 

connected. In an R vine, two edges in Tk which become two 

nodes in tree Tk+1, can only share an edge if in tree Tk the edges 

shared a common node, but they are not necessarily connected 

by an edge. 

Figure 2 shows the 6-dimensional R-vine represented in 

Equation (13). Each edge corresponds to a pair copula density 

(possibly belonging to different families) and the edge label 

corresponds to the subscript of the pair copula density, e.g., 

edge 2,4;1,3 corresponds to the copula 2,4;1,3.c  

In order to estimate the vine, its structure as well as the 

copula parameters have to be specified. A sequential approach 

is generally adopted to select a suitable R-vine decomposition, 

specifying the first tree and then proceeding similarly for the 

following trees. For selecting the structure of each tree, we fol- 

lowed the approach suggested by Aas et al. (2009) and de- 

veloped by Dissmann et al. (2013), using the maximal spanning 

tree algorithm. This algorithm defines a tree on all nodes 

(named spanning tree), which maximizes the sum of absolute 

pairwise dependencies, measured, for example, by Kendall’s τ. 

This specification allows us to capture the strongest dependen- 

cies in the first tree and to obtain a more parsimonious model. 

Given the selected tree structure, a copula family for each pair 

of variables is identified using the Akaike Information Crite- 

rion (AIC), or the Bayesian Information Criterion (BIC). This 

choice is typically made amongst a large set of families, com- 

prising elliptical copulas (Gaussian and Student’s t) as well as 

Archimedean copulas (Clayton, Gumbel, Frank and Joe), their 

mixtures (BB1, BB6, BB7 and BB8) and their rotated versions, 

to cover a large range of possible dependence structures. For an 

overview of the different copula families, see Joe (1997) or 

Nelsen (2007). The copula parameters ϑ for each pair-copula in 

the vine are estimated using the maximum likelihood (MLE) 

method, as illustrated by Aas et al. (2009). The R-vine estima- 

tion procedure is repeated for all the trees, until the R-vine is 

completely specified. 

 

3.3. Out-of-Sample Predictions 

In order to evaluate the suitability of the proposed vine cop- 

ula model in relation to other methods, we produced one-day-

ahead out-of-sample predictions and we compared them to the 

original data. Let X = {Xt; t = 1, ..., T} be the 6-dimensional 

time series of environmental and social media data. Our aim is 

to forecast XT+1 based on the information available at time T. In 

order to do that, we adopted the forecasting method described 

by Simard and Remillard (2015). Before fitting the vine, we ex- 

tracted the residuals from the marginals, as explained in Section 

3.1, and obtained the u-data. Next, after fitting the vine, we 

simulated M realizations from the vine copula. Hence, we 

calculated the predicted values for each simulation, using the 

inverse cdf and the relevant fitted marginal models. More pre- 

cisely, we applied the inverse transformation to the M reali- 

zations from the vine copula to obtain the residuals which we 

then plugged into the marginal models to get the predicted val- 

ues of the environmental variables (wave height and water lev- 

el). Then, we calculated the average prediction for all simu- 

lations 1

Avg

T X  and use it as the forecast XT+1. The prediction in- 
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terval of level (1 − α) ∈ (0, 1) for XT+1 was calculated by taking 

the estimated quantiles of order α/2 and 1 − α/2 amongst the 

simulated data. We denote by 1

l

T X  and 1

u

T X  the lower and up-

per values of the prediction intervals. 

In order to compare and contrast the accuracy of predic- 

tions for different models, we made use of four indicators: the 

mean squared error (MSE) to evaluate point forecasts; the mean 

interval score (MIS), proposed by Gneiting and Raftery (2007), 

to assess the accuracy of the prediction intervals; the Normal- 

ized Nash-Sutcliffe model efficiency (NNSE) coefficient, pro- 

posed by Nash and Sutcliffe (1970) to appraise hydrological 

models; and the Distance Correlation, proposed by Szekely et 

al. (2007), to determine the association between observed and 

predicted data. The MSE for each variable j = 1, ..., d was cal- 

culated as follows: 

 

 
2

, ,

1

1
MSE

T S

j t j t j

t T

x x
S



 

    (14) 

 

where xt,j is the observed value for each variable at each time 

point t, ,t jx  is the corresponding predicted value, T + 1 denotes 

the first predicted date, while T + S indicates the last predicted 

date. The 95% MIS for each variable, at level α = 0.05, was 

computed as: 
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where ,

l

t jx  and ,

u

t jx  denote, respectively, the lower and upper 

limits of the prediction intervals for each variable at each time 

point, and 1(·) is the indicator function. 

The NNSE coefficient was calculated as: 

 

NNSE 1 (2 NSE )j j    (16) 

 

with 
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where jx  is the mean of the observed values for each variable. 

The NSE is a normalized statistic that determines the relative 

magnitude of the residual variance (“noise”) compared to the 

measured data variance (“information”). The Distance Corre- 

lation takes the form: 

 

 
 

   

dCov ,
DC dCor ,

dVar dVar

j j

j j j

j j

X X
X X

X X
    (18) 

 

where Xj is the jth observed variable, jX is the corresponding jth 

predicted variable, dCov( , )j jX X is the distance covariance and

dVar( )jX and dVar( )jX are the distance standard deviations, 

obtained replacing the signed distances between the variables 

with centred Euclidean distances. The DC is a distance-based 

correlation that can detect both linear and non-linear relation- 

ships between variables. 

 

 
 

Figure 3. Wordclouds of paired words in tweets from 

Portsmouth (top panel), Plymouth (middle panel) and Dawlish 

(bottom panel). 
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4. Result Analysis and Discussions 

We now present the results of the analysis of the remotely-

sensed and online flood data for the three locations under con- 

sideration. 

 

4.1. Twitter Wordclouds 

First, we analysed the information gathered on Twitter, 

cleaning and stemming the tweets and producing wordclouds 

for each location. 

Figure 3 displays the wordclouds of paired words obtained 

by pairing the most common combinations of words appearing 

in the collected tweets. The top, middle and bottom panels 

show the wordclouds of Portsmouth, Plymouth and Dawlish 

tweets, respectively. The most frequent pairs of words refer to 

dates indicating storm and flood events (e.g., 28 October, 3 Jan- 

uary), names of places affected by storms (e.g., Thorney Island, 

St Mary) and names of rivers (e.g., river Yealm, river Teign). 

 

4.2. Marginals Estimation 

Table S1 (in the supplementary materials) lists the param- 

eter estimates, obtained via the MLE method, of the best fitting 

models for the marginals, as described in Section 3.1, for 

Portsmouth (top panels), Plymouth (middle panels) and Dawlish 

(bottom panels). Standard errors are in brackets. 

As an example, Figure 4 shows the fit of the residuals for 

the Google trends marginal for Portsmouth. The other plots for 

all marginals related to all three locations exhibit a similar be- 

haviour. The top panel displays the QQ-plot comparing the 

Gaussian theoretical quantiles with the sample quantiles, the 

middle panel illustrates the observations (black line) and in-

sample predictions obtained from the fitted ZAGA model (red 

line), while the bottom panel shows the histogram of the re- 

sulting u-data. The plots clearly show an excellent fit of the 

ZAGA model to the marginal, as demonstrated by the points in 

the QQ-plot aligning almost perfectly to the main diagonal, the 

in-sample predictions overlapping the observed data and the 

shape of the u-data histogram displaying a uniform pattern. 

 

4.3. Vine Copula Estimation 

Once the marginals were estimated, we derived the corre- 

sponding u-data from the residuals, as illustrated in Section 

3.1. Then, we carried out fitting and model selection for the 

vine copula for each location using the R package rvinecopulib 

(Nagler and Vatter, 2021). 

Figure 5 displays the first trees of the vine copulas esti- 

mated for Portsmouth (top panel), Plymouth (middle panel) and 

Dawlish (bottom panel). The nodes are denoted with blue dots, 

with the names of the margins reported in boldface. On each 

edge, the plots show the name of the selected pair copula family 

and the estimated copula parameter expressed as Kendall’s τ. 

In order to estimate the vines, we adopted the Kendall’s τ cri- 

terion for tree selection, the AIC for the copula families se- 

lection and the MLE method for estimating the pair copula 

parameters. As it is clear from Figure 5, the vines for the three 

different locations exhibit a very similar structure, with the en- 

vironmental variables Hs and WL playing a central role and 

linking to the social media variables. The sentiment scores 

Bing and Afinn are directly associated. Likewise, Total tweets 

and Google are contiguously related. The symmetric Gaussian 

copula, which is often employed in traditional multivariate mod- 

elling, was not identified as the best fitting copula for any of 

the locations. On the contrary, the selected copula families in- 

clude the Student’s t copula, which is able to model strong tail 

dependence, Archimedean copulas such as the Clayton and 

Gumbel, that are able to capture asymmetric dependence, and 

mixture copulas such as the BB1 (Clayton-Gumbel) and BB8 

(Joe-Frank), that can accommodate various dependence shapes. 

Most of the associations between the variables are positive. The 

strongest associations are between the Bing and Afinn senti- 

ment scores and between the environmental variables Hs and 

WL. Also, Hs and Total tweets are mildly associated. 

 

 
 

Figure 4. Plots illustrating the fit of the residuals for the 

Google marginal for Portsmouth. Top panel: QQ-plot 

comparing the Gaussian theoretical quantiles with sample 

quantiles. Middle panel: observed time series (black line) and 

in-sample predictions obtained from the fitted ZAGA model 

(red line). Bottom panel: Histogram of the resulting u-data.  
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Figure 5. First trees of the vine copulas estimated for Portsmouth (top panel), Plymouth (middle panel) and Dawlish 

(bottom panel). 

 

4.4. Out-of-Sample Prediction Results 

In this Section we constructed out-of-sample predictions 

using the proposed vine methodology, which integrates envi- 

ronmental and social media variables. We then compared the 

predictions obtained with our methodology with those yielded 

using two traditional approaches. The former is based on vines 

built exclusively using Gaussian pair copulas, which are the 

most common in applications, but are restricted to dependence 

symmetry and absence of tail dependence. The latter approach 

assumes independence among the six time series under consid- 

eration and therefore calculates predictions ignoring any asso- 

ciation between environmental and online information. 

Out-of-sample predictions based on the proposed model 

were constructed as illustrated in Section 3.3, considering the 

vine copula estimated as explained in Section 4.3 until the 15th 

February 2016 and using it to predict the period between the 

16th February 2016 and the 31st December 2016. 

Tables 2 and 3 list the MSE and MIS values calculated for 

Portsmouth, Plymouth and Dawlish, in the top, middle and 

bottom panel, respectively, for each variable. The second col- 

umns show the results assuming independence among vari- 

ables, the third columns show the results assuming all Gaussian 

pair-copulas, and the fourth columns show the vine copula re- 

sults. The MSEs and MISs of the best performing approaches 

for each variable are highlighted in boldface. From Tables 2 

and 3, we notice that the vine copula approach outperforms the 

other two approaches in the majority of the cases. Comparing 

the three different locations, in Plymouth the vine copula ex- 

ceeds the performance of the other two approaches for most of 

the variables, whereas the independence approach is never se- 

lected. In Portsmouth the Gaussian vine method achieves gen- 

erally the best results, with the independence approach only se- 

lected in a few cases. In Dawlish, the vine and Gaussian copula 

methods are preferred for several variables, although the inde- 

pendence approach is selected in a few cases. This might be due 

to the lack of social media information for Dawlish, compared 

to the other two locations, as shown in Figure S2, making it dif- 

ficult to define associations between online and environmental 

data and to leverage data integration for predicting purposes. 
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Table 2. MSEs Calculated for Portsmouth (Top Panel), 

Plymouth (Middle Panel) and Dawlish (Bottom Panel) for 

Each Variable 

MSE Portsmouth 

Variable Independent Gaussian Vine Copula 

Hs 0.2693 0.2603 0.2639 

WL 0.0301 0.0327 0.0325 

Google 404.4304 403.9977 404.4147 

Total Tweets 6.7351 6.6994 6.7829 

Bing 2.6572 × 10−11 2.6634 × 10−11 2.6624 × 10−11 

Afinn 1.3823 × 10−10 1.3745 × 10−10 1.3767 × 10−10 

MSE Plymouth 

Variable Independent Gaussian Vine Copula 

Hs 0.3646 0.3647 0.358 

WL 0.0274 0.0278 0.0261 

Google 2874.761 2875.053 2873.466 

Total Tweets 14.2388 14.1698 14.1569 

Bing 2.6834 × 10−11 2.6282 × 10−11 2.6829 × 10−11 

Afinn 1.2103 × 10−10 1.2035 × 10−10 1.2028 × 10−10 

MSE Dawlish 

Variable Independent Gaussian Vine Copula 

Hs 0.2857 0.2864 0.2915 

WL 0.0267 0.0295 0.0285 

Google 4612.772 4613.572 4612.738 

Total Tweets 609.9969 610.042 610.3111 

Bing 5.7304 × 10−9 5.6124 × 10−9 5.6264 × 10−9 

Afinn 6.1873 × 10−9 6.1670 × 10−9 6.1208 × 10−9 

Note: The numbers show the results assuming independence among 

variables (second column), all gaussian pair-copulas (third column) 

and vine copula (fourth column); the mses of the best performing 

approaches for each variable are in boldface. 

 

The variables Hs and WL are generally better predicted by 

the vine method, as opposed to the independence approach, 

which assumes no dependence between any of the variables in- 

volved in the model. Hence, the independence approach indi- 

cates the absence of any association between the environmental 

and the social media variables, implying the lack of contribu- 

tion of online-generated information in predicting the flood var- 

iables. On the contrary, the vine approach assumes the presence 

of a dependence structure between the variables and, in par- 

ticular, between the environmental and social media insights. 

Therefore, the better performance of the vine compared to the 

independence model demonstrates usefulness of social media 

information in forecasting environmental variables. 

The prediction of online-generated information also ben- 

efits from data integration. Google trends are more accurately 

forecasted by the vine copula method, or by the Gaussian ap- 

proach in the Portsmouth case, rather than by the independent 

approach. The prediction of Total tweets achieves generally 

better results with the vine copula method for Plymouth data 

and with the Gaussian method for Portsmouth data, while the 

independence approach is typically selected for Dawlish data, 

due to the lack of information for this location, as explained 

above. 

Comparing the sentiment scores, we notice that the vine 

copula approach is generally preferred with Afinn, while the 

Gaussian method is typically selected with Bing. This is prob- 

ably due to the fact that the Afinn lexicon is more sophisticated 

than Bing, since it scores words into several positive and neg- 

ative categories, and hence provides more information. 

 

Table 3. MISs Calculated for Portsmouth (Top Panel), 

Plymouth (Middle Panel) and Dawlish (Bottom Panel) for 

Each Variable 

MIS Portsmouth 

Variable Independent Gaussian Vine Copula 

Hs 0.4193 0.4158 0.1199 

WL 0.0431 0.0436 0.0465 

Google 6.1179 6.1151 6.1169 

Total Tweets 0.6366 0.6316 0.6356 

Bing 1.2021 × 10−6 1.1982 × 10−6 1.2039 × 10−6 

Afinn 3.175 × 10−6 3.1668 × 10−6 3.1644 × 10−6 

MIS Plymouth 

Variable Independent Gaussian Vine Copula 

Hs 0.1554 0.1533 0.1518 

WL 0.0384 0.0365 0.0361 

Google 10.8789 10.879 10.8759 

Total Tweets 0.7849 0.7845 0.7833 

Bing 1.2178 × 10−6 1.2043 × 10−6 1.2175 × 10−6 

Afinn 3.0799 × 10−6 3.0693 × 10−6 3.0704 × 10−6 

MIS Dawlish 

Variable Independent Gaussian Vine Copula 

Hs 0.4177 0.4116 0.4116 

WL 0.0383 0.0388 0.0431 

Google 13.5782 13.5794 13.5782 

Total Tweets 7.0887 7.0889 7.0913 

Bing 1.7472 × 10−5 1.7184 × 10−5 1.7284 × 10−5 

Afinn 1.8396 × 10−5 1.8385 × 10−5 1.8301 × 10−5 

Note: The numbers show the results assuming independence among 

variables (second column), all gaussian pair-copulas (third column) 

and vine copula (fourth column); the miss of the best performing ap- 

proaches for each variable are in boldface. 

 

Figure S3 (in the supplementary materials) depicts grouped 

bar charts showing the differences between optimal fit for each 

model and the NNSEs for wave height (left panel) and water 

level (right panel) for each location. The red bars show the re- 

sults assuming independence among variables, the green bars 

assuming all Gaussian pair-copulas and the blue bars assuming 

a vine copula model. Shorter bars indicate better fitting models. 

In the Plymouth location, the vine copula achieves better re- 

sults than the other two models for both Hs and WL. The Gauss- 

ian model performs best for Hs in the Portsmouth location. The 

independent model is selected for the remaining cases, partic- 

ularly in Dawlish, where again the lack of data points might be 

the cause. 

Figure 6 shows the forecasts and prediction intervals for 

the wave height Hs and water level WL (on the left and right 

panel, respectively), obtained with the vine copula methodol- 

ogy for the period between the 16th February 2016 and the 31st 

December 2016. The top panels depict the Portsmouth plots, 

the middle panels depict the Plymouth plots and the bottom 

panels depict the Dawlish plots. The black lines denote the ob-  
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Figure 6. Line plots showing forecasts and prediction intervals for Hs (left panels) and WL (right panel) obtained with the vine 

copula methodology for the period between the 16th February 2016 and the 31st December 2016, for Portsmouth (top panel), 

Plymouth (middle panel) and Dawlish (bottom panel). Observed values are in black, predicted values are the inner red lines and 

95% prediction intervals are the outer dotted red lines. 

 

served values, the inner red lines denote the predicted values 

and the outer dotted red lines denote the 95% prediction inter- 

vals. We notice that the forecasted water levels are in line with 

the observations, and the average dynamics of wave height is 

adequately represented by the proposed model. Intervals pre- 

dicted by the vine copula method capture most of the dynamic 

of the environmental variables, indicating that the proposed 

methodology is able to leverage social media information for 

forecasting flood-related data. 

In addition, we carried out a correlation analysis between 

predicted and observed data. Figure S4 (in the supplementary 

materials) illustrates grouped bar charts showing the differ- 

ences between optimal fit for each model and the DCs for wave 

height (left panel) and water level (right panel) for each loca- 

tion. The bar colour codes are the same used in Figure S3. Ac- 

cording to the DC, the Gaussian vine model is generally the 

preferred approach, while the vine copula model performs best 

for wave height in the Plymouth location. The independent 
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model, which implies no input from the social media data for 

calculating predictions, is never selected. 

5. Concluding Remarks 

In this paper, we propose a new methodology aimed at ob- 

taining more accurate forecasts, compared to traditional ap- 

proaches, for variables measuring inundations and floods events. 

The proposed methodology is based on the integration of en- 

vironmental variables collected via remote sensing with online 

generated social media information. We obtained data at three 

different locations on the South coast of the UK, which were 

affected by severe storm events on several occasions in the past 

few years. Together with wave height and water level infor- 

mation, we also gathered Google Trends searches and Twitter 

microblogging messages involving keywords related to floods 

and storms. From the tweets, we considered the volume as well 

as the sentiment scores, to investigate the feelings of people to- 

wards inundation events. Our methodology is based on vine 

copulas, which are able to model the dependence structure be- 

tween the marginals, and thus to take advantage of the asso- 

ciation between social media and environmental variables. We 

tested our approach calculating out-of-sample predictions and 

comparing the vine copula method with two traditional ap- 

proaches: the first based on a vine constructed with all Gauss- 

ian copulas, and the second based on independence between 

variables. The results show that the vine copula method out- 

performs the other two approaches in most cases, demonstrat- 

ing that our methodology is able to leverage social media in- 

formation to obtain more accurate predictions of floods and in- 

undations than the other two approaches. In some cases, the 

Gaussian vine copula method is selected, showing that the vine 

data integration approach is still achieving the best perfor- 

mance, although some variables are less affected by asymme- 

tries and tail dependence. Since social media information for 

Dawlish were lacking, they provided a more limited contribu- 

tion to the prediction of the environmental variables for this 

location. 

The proposed methodology will support decision-makers 

enabling them to use knowledge gained from the model results 

to deepen their understanding of risks associated to floods and 

optimise resources in a more effective and efficient way. At 

strategic level, the methodology could be used to validate re- 

source deployments in response to threats from floods; while at 

operational level, the methodology could assist to improve the 

effectiveness of civil contingency responses to flood events. 

Further investigations involving other locations and in- 

cluding additional social media information will be the object 

of future work. Also, we will explore the use of the results of 

the study to validate inundation modes. Another extension will 

involve Bayesian inference, which would allow us to incur- 

porate other information, such as experts’ opinion, in the mod- 

el. In addition, the use of more sophisticated machine learning 

approaches could be envisaged for deriving the sentiment vari- 

ables to improve the proposed methodology. 

 
Acknowledgments. The authors are grateful to the anonymous Re- 

viewers for their useful comments which significantly improved the 

quality of the paper. This work was supported by the European Region- 

al Development Fund project Environmental Futures & Big Data Im- 

pact Lab, funded by the European Structural and Investment Funds, 

grant number 16R16P01302. 

References 

Aas, K., Czado, C., Frigessi, A. and Bakken, H. (2009). Pair-copula 
constructions of multiple dependence. Insur. Math. Econ., 44(2), 

182-198. https://doi.org/10.1016/j.insmatheco.2007.02.001 

Alam, F., Ofli, F. and Imran, M. (2018). Crisismmd: Multimodal twit- 

ter datasets from natural disasters. In Proceedings of the Interna- 
tional AAAI Conference on Web and Social Media, Volume 12. 

Arthur, R., Boulton, C.A., Shotton, H. and Williams, H.T. (2018). So- 

cial sensing of floods in the uk. PloS one. 13(1), e0189327. https:// 

doi.org/10.1371/journal.pone.0189327 

Balogun, A., Quan, S., Pradhan, B., Dano, U. and Yekeen, S. (2020). 
An improved flood susceptibility model for assessing the correlation 

of flood hazard and property prices using geospatial technology and 

fuzzy-ANP. J. Environ. Inform., https://doi.org/10.3808/jei.202000442 

Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M. and Vrac, M. 
(2017) Multivariate statistical modelling of compound events via 

pair-copula constructions: analysis of floods in Ravenna (Italy),  

Hydrol. Earth Syst. Sci., 21, 2701-2723. https://doi.org/10.5194/hess- 

21-2701-2017 
Brouwer, T., Eilander, D., Loenen, A.v., Booij, M.J., Wijnberg, K.M., 

Verkade, J.S. and Wagemaker, J. (2017). Probabilistic flood extent 

estimates from social media flood observations. Nat. Hazards Earth 

Syst. Sci., 17(5), 735-747. https://doi.org/10.5194/nhess-17-735-2017 

Couasnon, A., Sebastian, A. and Morales-Nápoles, O. (2018). A copula- 
based Bayesian network for modeling compound flood hazard from 

riverine and coastal interactions at the catchment dcale: An appli- 

cation to the Houston Ship Channel, Texas, Water, 10(9), 1190. 
https://doi.org/10.20944/preprints201808.0072.v4 

Czado, C. (2019). Analysing dependent data with vine copulas. Lec- 

ture Notes in Statistics, Springer. https://doi.org/10.1007/978-3-03 

0-13785-4 
De Albuquerque, J.P., Herfort, B., Brenning, A. and A. Zipf (2015). A 

geographic approach for combining social media and authoritative data 
towards identifying useful information for disaster management. Int. J. 
Geogr. Inf. Sci., 29(4), 667-689. https://doi.org/10.1080/13658816.20 
14.996567 

Dissmann, J., Brechmann, E.C., Czado, C. and Kurowicka, D. (2013). 
Selecting and estimating regular vine copulae and application to 
financial returns. Comput. Stat. Data. Anal., 59, 52-69. https://doi. 
org/10.1016/j.csda.2012.08.010 

Feng, Y., Shi, P., Qu, S., Mou, S., Chen, C. and Dong, F. (2020). Non- 
stationary flood coincidence risk analysis using time-varying copula 
functions. Sci. Rep., 10(1), 1-12. https://doi.org/10.1038/ s41598-02 
0-60264-3 

Field, C.B., Barros, V., Stocker, T.F. and Dahe, Q. (2012). Managing 
the risks of extreme events and disasters to advance climate change 

adaptation: special report of the intergovernmental panel on cli- 

mate change. Cambridge University Press. https://doi. org/10.1017 

/CBO9781139177245 
Gneiting, T. and Raftery, A.E. (2007). Strictly proper scoring rules, 

prediction, and estimation. J. Am. Stat. Assoc., 102(477), 359-378. 

https://doi.org/10.1198/016214506000001437 
Grego, J.M., Yates, P.A. and Mai, K. (2015). Standard error estimation 

for mixed flood distributions with historic maxima. Environmetrics 
26(3), 229-242. https://doi.org/10.1002/env.2333 

Heffernan, J.E. and Tawn, J.A. (2004). A conditional approach for mul- 
tivariate extreme values (with discussion). J. R. Stat. Soc. Series. B 
Stat. Methodol., 66(3), 497-546. https://doi.org/10.1111/j.1467-986 
8.2004.02050.x 



L. Ansell and L. Dalla Valle / Journal of Environmental Informatics 39(2) 97-110 (2022) 

110 

 

Herfort, B., de Albuquerque, J.P., Schelhorn, S.-J. and Zipf, A. (2014). 

Exploring the geographical relations between social media and 

flood phenomena to improve situational awareness. In Connecting 

a digital Europe through location and place, pp. 55-71. Springer. 

https://doi.org/10.1007/978-3-319-03611-3_4 

Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. 

In Proceedings of the tenth ACM SIGKDD international conference 

on Knowledge discovery and data mining, 168-177. https://doi.org/ 

10.1145/1014052.1014073 

Huang, K., Dai, L., Yao, M., Fan, Y. and Kong, X. (2017). Modelling 

dependence between traffic noise and traffic flow through an entropy-

copula method. J. Environ. Inform., 29(2). https://doi.org/10.3808/ 

jei.201500302 

Hyndman, R.J. and Athanasopoulos, G. (2018). Forecasting: principles 

and practice. OTexts. https://otexts.com/fpp3/ 

Jane, R., Dalla Valle, L., Simmonds, D. and Raby, A. (2016). A copula-

based approach for the estimation of wave height records through 

spatial correlation. Coast. Eng., 117, 1-18. https://doi.org/10.1016/ 

j.coastaleng.2016.06.008 

Jane, R.A., Simmonds, D.J. Gouldby, B.P., Simm, J.D., Dalla Valle, L. 

and Raby, A.C. (2018). Exploring the potential for multivariate frag- 

ility representations to alter flood risk estimates. Risk Anal., 38(9), 

1847-1870. https://doi.org/10.1111/risa.13007 

Joe, H. (1997). Multivariate models and multivariate dependence con- 

cepts. CRC Press. https://doi.org/10.1201/9780367803896 

Joe, H. and Xu, J.J. (1996). The estimation method of inference func- 

tions for margins for multivariate models. Technical Report 166, 

Department of Statistics, University of British Columbia. 

Keef, C., Tawn, J.A. and Lamb, R. (2013). Estimating the probability 

of widespread flood events. Environmetrics 24(1), 13-21. https:// 

doi.org/10.1002/env.2190 

Latif, S. and Mustafa, F. (2020). Parametric vine copula construction 

for flood analysis for Kelantan river basin in Malaysia. Civ. Eng. J., 

6(8), 1470-1491. https://doi.org/10.28991/cej-2020-03091561 

Li, Z., Wang, C., Emrich, C.T. and Guo, D. (2018). A novel approach 

to leveraging social media for rapid flood mapping: a case study of 

the 2015 South Carolina floods. Cartogr. Geogr. Inf. Sci., 45(2), 97-

110. https://doi.org/10.1080/15230406.2016.1271356 

Mason, D.C., Davenport, I.J., Neal, J.C., Schumann, G.J.P., and Bates, 

P.D. (2012). Near real-time flood detection in urban and rural areas 

using high-resolution synthetic aperture radar images. IEEE Trans. 

Geosci. Remote. Sens., 50(8), 3041-3052. https://doi.org/10.1109/ 

TGRS.2011.2178030 

Massicotte, P. and Eddelbuettel, D. (2021). gtrendsR: Perform and 

Display Google Trends Queries. R package version 1.4.8. 

Moishin, M., Deo, R.C., Prasad, R. Raj, N. and Abdulla, S. (2020). De- 

velopment of flood monitoring index for daily flood risk evaluation: 

case studies in Fiji. Stoch. Environ. Res. Risk Assess., 1-16. https:// 

doi.org/10.1007/s00477-020-01899-6 

Muller, C., Chapman, L. Johnston, S. Kidd, C. Illingworth, S. Foody, 

G. Overeem, A. and R. Leigh (2015). Crowdsourcing for climate 

and atmospheric sciences: Current status and future potential. Int. J. 

Climatol., 35(11), 3185-3203. https://doi.org/10.1002/joc.4210 

Nagler, T. and Vatter, T. (2021). rvinecopulib: High Performance Algo- 

rithms for Vine Copula Modeling. R package version 0.5.5.1.1. 

Nash, J.E. and Sutcliffe, J.V. (1970). River flow forecasting through 

conceptual models part I - A discussion of principles, J. Hydrol., 

10(3), 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 

Nelsen, R.B. (2007). An introduction to copulas. Springer Science & 

Business Media. 

R Core Team (2020). R: A Language and Environment for Statistical 

Computing. Vienna, Austria: R Foundation for Statistical Computing. 

Rigby, R.A. and Stasinopoulos, D.M. (2005). Generalized additive 

models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Stat., 

54(3), 507-554. https://doi.org/10.1111/j.1467-9876.2005.00510.x 

Rigby, R.A., Stasinopoulos, M.D., Heller, G.Z. and De Bastiani, F. 

(2019). Distributions for modeling location, scale, and shape: Using 

GAMLSS in R. CRC press. https://doi.org/10.1201/9780429298547 

Rosser, J.F., Leibovici, D. and Jackson, M. (2017). Rapid flood inun- 

dation mapping using social media, remote sensing and topographic 

data. Nat. Hazards. 87(1), 103-120. https://doi.org/10.1007/s11069-

017-2755-0 

Santos, V.M., Wahl, T., Jane, R., Misra, S.K. and White, K.D. (2021) As- 

sessing compound flooding potential with multivariate statistical 

models in a complex estuarine system under data constraints. J. Flood 

Risk Manag., e12749 https://doi.org/10.1111/ jfr3.12749 

Saravanou, A., Valkanas, G., Gunopulos, D. and Andrienko, G. (2015). 

Twitter floods when it rains: a case study of the UK floods in early 

2014. In Proceedings of the 24th International Conference on World 

Wide Web, pp. 1233-1238. https://doi.org/10.1145/2740908.2741730 

Schumann, G., Bates, P.D., Horritt, M.S., Matgen, P. and Pappenberger, 

F. (2009). Progress in integration of remote sensing-derived flood 

extent and stage data and hydraulic models. Rev. Geophys., 47(4). 

https://doi.org/10.1029/2008RG000274 

Sibley, A., Cox, D. and Titley, H. (2015). Coastal flooding in England 

and Wales from Atlantic and North Sea storms during the 2013/2014 

winter. Weather, 70(2), 62-70. https://doi.org/10.1002/wea.2471 

Silge, J. and D. Robinson (2016). tidytext: Text mining and analysis 

using tidy data principles in R. J. Stat. Softw., 1(3). https://doi.org/ 

10.21105/joss.00037 

Simard, C. and Remillard, B. (2015). Forecasting time series with mul- 

tivariate copulas. Dependence Model., 3(1). https://doi.org/10.1515 

/demo-2015-0005 

Sklar, M. (1959). Fonctions de repartition a n dimensions et leurs 

marges. Publications de l'Institut de Statistique de l'Universite de 

Paris 8, 229-231. 

Smith, L., Liang, Q. James, P. and Lin, W. (2017). Assessing the utility 

of social media as a data source for flood risk management using a 

real-time modelling framework. J. Flood Risk Manag., 10(3), 370-

380. https://doi.org/10.1111/jfr3.12154 

Spielhofer, T., Greenlaw, R. Markham, D. and Hahne, A. (2016). Data 

mining twitter during the UK floods: Investigating the potential use of 

social media in emergency management. In 2016 3rd International 

Conference on Information and Communication Technologies for Di- 

saster Management (ICT-DM), 1-6. IEEE. https://doi.org/10.1109 

/ICT-DM.2016.7857213 

Spruce, M.D., Arthur, R., Robbins, J. and Williams, H.T. (2021). Social 

sensing of high-impact rainfall events worldwide: A benchmark com- 

parison against manually curated impact observations. Nat. Hazards 

Earth Syst. Sci., 1-31. https://doi.org/10.5194/nhess-2020-413 

Szekely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007). Measuring and 

Testing Dependence by Correlation of Distances, Ann. Stat., 35(6), 

2769-2794. https://doi.org/10.1214/009053607000000505 

Talukdar, S., Ghose, B. Salam, R., Mahato, S., Pham, Q.B., Linh, 

N.T.T., Costache, R. and Avand, M. (2020). Flood susceptibility 

modeling in Teesta river basin, Bangladesh using novel ensembles 

of bagging algorithms. Stoch. Environ. Res. Risk Assess., 34(12), 

2277-2300. https://doi.org/10.1007/s00477-020-01862-5 

Tosunoglu, F., Gurbuz, F. and Ispirli, M.N. (2020). Multivariate mod -

eling of flood˙ characteristics using vine copulas. Environ. Earth Sci., 

79(19), 1-21. https://doi.org/10.1007/s12665-020-09199-6 

UN (2015). The human cost of weather related disasters 1995-2015, 

United Nations, Geneva, Switzerland. 

Wang, X. and Du, C. (2003). An internet based flood warning system. J. 

Environ. Inform., 2(1), 48-56. https://doi.org/10.3808/jei.200300017 

Ward, P.J., Couasnon, A., Eilander, D., Haigh, I.D., Hendry, A., Muis, S., 

Veldkamp, T.I.E., Winsemius, H.C. and Wahl, T. (2018). Dependence 

between high sea-level and high river discharge increases flood haz- 

ard in global deltas and estuaries, Environ. Res. Lett., 13(8), 084012. 

https://doi.org/10.1088/1748-9326/aad400 

 


