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ABSTRACT. A rational evaluation of the danger of debris flow disasters at the regional scale is essential for developing effective disas-

ter prevention measures and economic planning in debris flow-prone areas. A novel projection pursuit method based on the connection 

cloud model and fruit fly optimization algorithm is addressed to analyze the dangerous degree of debris flow disasters at the regional 

scale, considering the random and fuzzy uncertainties of the projection direction vector. In this method, the connection cloud model gen-

erates the candidate projection directions around the latest optimization; these candidate projection direction vectors are screened based 

on set pair analysis to advance the convergence rate. Case studies and comparisons with other algorithms are further carried out to verify 

the validity and reliability of the proposed method. Results demonstrate that the proposed method does not require existing evaluation 

criteria compared to the conventional evaluation methods. It can describe the randomness and fuzziness of the projection direction vector 

and better find the structural characteristics of fuzzy indicators randomly distributed in the finite intervals with a quicker convergence 

rate. 
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1. Introduction 

The assessment of debris flow disasters at a regional scale 

is not only critical to the emergency response (Di et al., 2008; 

Liu et al., 2009; Chiou et al., 2015; Ouyang et al., 2019), di- 

saster prevention and relief (Chang et al., 2017; Yin and Zhang, 

2018), but also the decision-making in economic development 

planning (Liu et al., 2002; Liu et al., 2013). Debris flow is a 

sudden and complex natural disaster process affected by vari- 

ous uncertain factors (Chen et al., 2016). Physical and statisti- 

cal approaches (Carrara et al., 2008) and numerical methods 

(Chang et al., 2010; Han et al., 2019) help analyze the debris 

flow disasters in case of lack of historical data, but these meth- 

ods are not proper to represent the complicated relationship bet- 

ween the tragedies and the contributing variable values. They 

may also entail substantial uncertainties due to the high sensi- 

bility to input parameters of variability (Bregoli et al., 2015; 

Kang and Lee, 2018) and some assumptions used to simplify 

the complexity of the composition and mechanism of the debris 

flow (Wang et al., 2018). The multi-factor composite assess- 

ment model (Liu et al., 2002; Hürlimann et al., 2006), mini- 

mum entropy analysis (Chen et al., 2007), and geographic in- 

formation system (GIS) technology (Han et al., 2007; Bregoli 
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et al., 2015; Kim et al., 2016) have been introduced to represent 

the actual relationship between the debris flow phenomenon and 

contributing variables (Liu et al., 2006). However, previous 

methods are confirmatory data analysis (CDA) methods (Li, 

1997). Unfortunately, the CDA method often results in the 

problem of the “curse of dimensionality” (Zhang and Dong, 

2009). It is unsuitable for the issues of non-normal distribution 

or small-size samples under multiple uncertainties. 

The assessment of debris flow disasters inevitably involves 

the indicators of non-normal distributions and uncertain char- 

acteristics. To overcome the above limitations, many scholars 

used fuzzy sets theory and correlation degree method (Gan et 

al., 2019) associated with the selected factors and their weight- 

ing to improve the quality of assessment. Still, they cannot pro- 

vide the influence degree of each element on the nonlinear be- 

havior of debris flow disasters and rarely involve multiple un- 

certainties such as fuzziness and randomness. Furthermore, these 

methods are set up based on the existing classification standards 

or empirical rules, while processes with no classification stan- 

dards are relatively few. Consequently, there are some limita- 

tions in assessing debris flow disasters using the above methods 

of classification standards because the classification standard 

of debris flow disasters often varies in different areas, and its 

establishment is reasonably complicated. 

Recently, some robust approaches (Wang, 2000; Liu et al., 

2006; Yuan and Zhang, 2006; Chang and Chien, 2007; Liang 

et al., 2012; Liu et al., 2013; Qian et al., 2016; Xu et al., 2017; 
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Banihabib et al., 2020) have been further discussed to eliminate 

the high relativity existing in their results for the improvements 

of assessment reliability (Li et al., 2019). These methods have 

improved the quantitative assessment of debris flow disasters 

to some extent. However, they are hard to explore the inherent 

structural characteristics of the high-dimensional data and to 

depict the multiple uncertainties of indicators. Obviously, be- 

cause of the complex nature of debris flow and composite inde- 

terminacy of influenced factors (Zhang et al., 2011), it is not 

easy to precisely understand the mechanism and forecast their 

occurrence. Sometimes different results may be obtained using 

these methods with varying classification standards despite the 

exact regional location of debris flow. Consequently, the pro- 

jection pursuit (PP) method put forward by Friedman and Turkey 

(1974) is applied gradually to reveal the structural characteris-

tics of debris flow data from a testing perspective (Wang et al., 

2002). This PP method can overcome the defect of the “curse 

of dimensionality” of the CDA method and automatically express 

nonliner characteristics of high-dimensional problems (Xiao 

and Chen, 2012) to the extent. Still, the issue of projection di-

rection determination has not been well solved up to the present 

because the occurrence and development of actual debris flow 

are of randomness and fuzziness. To this end, some evolution-

ary algorithms and swarm intelligence methods, including the 

shuffled frog leaping algorithm (Wang et al., 2009), particle 

swarm optimization (Xu and Xu, 2010), differential evolution 

method (Niu et al., 2015), grey wolf optimization method (Yu 

and Lu, 2018), and moth-flame optimization (Liu et al., 2019), 

was introduced to pursue the optimal PDV. These methods can 

get more benefits than those by the traditional gradient or poly-

nomial optimization methods. However, these algorithms rarely 

consider multiple uncertainties. 

Luckily, the fruit fly optimization algorithm (FOA) devel- 

oped by Pan (2012) provides a new way to quickly find the op- 

timal solution of the optimization problem because it has gener- 

alizability and the advantages of easy implementation and under- 

standing and a reasonable convergence rate. Today, the algori-

thm has been successfully applied in various fields (Tian and 

Li, 2019; Wang et al., 2019; Peng et al., 2020; Xiong and Liang, 

2021). Of course, the algorithm provides a powerful tool to find 

the optimal PDV of the PP method. Nevertheless, the classic 

FOA often adopts a fixed search range to pursue the optimal 

individual. It may result in the local optima problem when the 

optimum is far from the origin (Tian and Li, 2019). In addition, 

the traditional FOA may be unable to analyze the case where 

the independent variable takes a negative value or 0. It is easy 

to fall into early maturity convergence for the optimal solution 

away from the original position. Up to the present, reports on 

the FOA rarely focused on the fuzziness and randomness of the 

PDV. So to enhance the global optimization capability of the 

FOA, some enhanced FOAs such as the multi-swarm fruit fly 

optimization algorithm (MFOA) (Yuan et al., 2014), the im- 

proved fruit fly optimization algorithm (IFOA) using an adaptive 

search scope (Pan et al., 2014; Tian and Li, 2019), and chaotic 

fruit fly optimization algorithm (CFOA) (Lei et al., 2014; Mitić 
et al., 2015) were proposed to enhance the performance based on 

the improvements of the search radius, generation mechanism 

of candidate source, and flight strategy (Pan et al., 2014; Zhang 

et al., 2016; Zhang et al., 2020). These improved FOAs have 

enhanced the simulation of the foraging randomness of fruit 

flies and have avoided being trapped in local premature to some 

extent. However, they cannot reflect the fuzzy characteristic of 

individual foraging behavior and the fuzziness at the bounds, 

which may decrease the search efficiency and the ability to ex- 

press data structure with uncertainties. Hence, the assignment 

of optimal PDV using the FOA and previous improved FOAs 

cannot simultaneously describe ambiguous and arbitrary char- 

acteristics. It is a great demand for developing an improved FOA 

to enhance the performance of the PP evaluation method for 

high-dimensional problems under multiple uncertain environ- 

ments. 

The fruit fly swarm’s foraging process dynamically updates 

the source position based on the perceived smell concentration 

in the conventional FOA. Still, the site of each fruit fly and its 

decision of smell concentration are random and ambiguous in 

the finite interval. Hence, the individual search range and direc- 

tion are of randomness and fuzziness when flying to the optimal 

individual. To simultaneously characterize the randomness and 

fuzziness of foraging behaviors of fruit fly swarm, Wu et al. 

(2015) used a normal cloud generator to depict the updated lo- 

cation of individuals instead of the uniform random distribution 

in the osphresis stage. Nevertheless, it ignores the interval char- 

acteristic of the arbitrary and fuzzy uncertainties and cannot ac- 

curately express the fuzziness at the bounds. Fortunately, the 

connection cloud model (CCM) present by Wang and Jin (2017) 

can depict the changing tendency of the jumps and the certainty-

uncertainty relationship by identity, discrepancy, and contrary 

views. Thus, CCM is available to represent the actual charac- 

teristic of individual foraging processes. A novel CCM-based 

fruit fly optimization algorithm (CCMFOA) is introduced here 

to seek the optimal PDV for the indicators with multiple uncer- 

tainties in the restricted intervals and improve the global and 

local searching performance of the PP method for the assess- 

ment of debris flow disasters. 

As follows from the previous discussion, debris flow disasters 

on a regional scale are of nonlinear characteristics and multiple 

uncertainties. Earlier studies on the FOA were rarely focused 

on describing the fuzziness and randomness of finding the opti- 

mal PDV (Lin et al., 2012; Xu et al., 2017; Banihabib et al., 

2020), while the CCM can handle these problems (Wang et al. 

2020; Wang et al., 2021). To simultaneously consider the fuzzy 

and random uncertainties of the PDV in the finite intervals, it 

is a tremendous demand for enhancing the performance of the 

PP method using an improved FOA based on the connection 

cloud model. 

Given the multiple uncertainties of debris flow evaluation, 

a novel PP method using CCM-based FOA is discussed to analyze 

the dangerous degree of debris flow. To better pursue the optimal 

PDV, the generation mechanism of the new PDV is first strength- 

ened by the set pair analysis. Namely, the identity-discrepancy-

contrary (IDC) rule of set pair analysis is discussed to screen 

the candidate PDV. Meanwhile, the mechanism “picks the best 

of the best” is adopted to attain the goal of the candidate solu- 

tion. The validity and feasibility of the proposed PP evaluation 
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method were further confirmed by case studies and comparative 

analysis with other methods. The improved FOA presented here 

is helpful to improve the generation mechanism and search rate 

of the optimal PDV, and is a balanced algorithm of the global 

searching capability and local acceptable optimization efficien- 

cy. The PP method with a quicker osphresis foraging process 

offers the opportunity to improve the local optimization capa- 

bility and effectively depict the random and fuzzy uncertainties 

of individual search performance and decision. It will be helpful 

to apply the PP method to the assessment of debris flow disasters. 

2. Methodology 

2.1. Projection Pursuit 

The PP method is an exploratory data analysis (EDA) method 

for handling non-normal and high-dimensional data problems. 

Its basic idea is to project high-dimensional data onto a low-

dimensional space to represent specific features concerning a 

projection index function and the objective projection function. 

Then analyze the structural characteristics of original high-

dimensional data with the obtained projection scores to scale 

the possibility of a specific structure. The critical point in the 

PP method is to pursue the optimal PDV, which can effectively 

describe the structural features of high-dimensional data. How- 

ever, it is a complex work for the small size of samples under un-

certain environments with complicated topology and numerous 

uncertainty factors. Hence, the connection cloud model and set 

pair analysis are introduced here to improve the FOA algori-

thm and pursue the optimal PDV considering the randomness 

and fuzziness of the individual PDV in the finite interval. 

 

2.2. Connection Cloud Model-Based FOA (CCMFOA) 

From the above discussion, variables in the normal cloud 

model should obey the normal distribution in the infinite inter- 

val; this may not be consistent with the actual distribution of 

the variables and may limit the application extent. However, 

the CCM overcomes this defect and can depict the uncertain 

characteristics in the finite intervals (Wang and Jin, 2017; Wang 

et al., 2020). So the CCM provides a powerful tool for the char- 

acterization of the uncertainty foraging behavior of the fruit fly 

swarm and the changing tendency at the bounds from three as- 

pects of identity, discrepancy, and contrary. The CCM is defined 

as follows. 

Let C be a qualitative concept in the domain X of finite 

interval. If numerical value xX is a random implementation 

of concept C, then the quantitative description of x belonging 

to the concept C is: 

 

9
exp

2 3

x Ex

y




 

− = −
 
 

         (1) 

 

where μ represents the connection degree, μ[0, 1]. y and x are 

random numbers obeying the normal distribution N (En, He2) 

and N (Ex, y2), correspondingly. Ex, En, He, and θ are the ex- 

pectation, entropy, hyper entropy, the order of the distribution 

density function for the numerical characteristics of the CCM, 

respectively. They are given as: 
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where Lmax and Lmin denote the upper and lower limitations of 

the interval, respectively; β represents the fuzzy degree; l rep- 

resents the indicator value at the connection degree of 0.5; λ is 

the width of the left or right half branch of cloud. 

3. Development of the PP Method 

3.1. Basic Principle 

The basic principle of the PP method using the CCMFOA 

for the assessment of debris flow disasters is presented as follows: 

Firstly, standardize measured values of indicators, and initialize 

the PDV and parameters of the CCMFOA. Next, set up the pro- 

jection index function and the projection objective model. Then, 

generate the candidate PDV around the latest optimal PDV by 

the connection cloud generator and preselect the PDV based on 

the set pair analysis. Namely, the expectation Ex and the en- 

tropy En of the numerical characteristics are used to depict the 

randomness and fuzziness of the optimal PDV and search range 

in the smelling stage. And to embody the greedy strategy for 

the generation mechanism of the PDV, the IDC relationship be-

tween the candidate PDV and the optimal PDV obtained from 

the latest optimization iteration is also investigated based on 

the theory of set pair analysis. Moreover, adaptive entropy with 

a specific number of iterations is adopted to enhance the local 

convergence speed. Then next, pursue the optimal PDV ac-

cording to the projection index function and the projection ob- 

jective model. Finally, measured data of debris flow disasters 

are projected into a low-dimensional subspace to investigate 

the data structure based on the optimal PDV found. 

 

3.2. Evaluation Procedure 

The assessment procedures of debris flow disasters with the 

PP method coupled with the CCMFOA are illustrated in Figure 

1. And the detailed process consists of eight steps as follows. 

Step 1: Determine the assessment index system of debris 

flow disasters and standardize measured values of indicators. 

Index selection profoundly influences the assessment of debris 

flow disasters. Based on the understanding of generation condi- 

tions of debris flows in the existing reports, case studies, and 
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Figure 1. Flowchart of the PP method based on the CCMFOA for the assessment of debris flow disasters. 

 

analyses, variables including topographic slope, formation lithol- 

ogy, channel density, annual average rainfall, and seismic in- 

tensity are often selected as the evaluation factors for the dan- 

gerous degree of debris flow (Liu and Tang, 1995; Liu et al., 

2002; Liu et al., 2006; Liang et al., 2012; Yin and Zhang, 2018). 

The measured values of indicators with various fields should 

be normalized to reduce the impacts of different dimensions 

among indicators. For the benefit indicator, the normalization 

model is: 

 

( ) ( )* /j j j

ij ij min max minx x x x x= − −         (6) 

 

where, xij
* and xij denote the normalized and measured values 

of index j of sample i, respectively; j

maxx and j

minx are the maxi- 

mum and minimum values of the evaluation index j. While for 

the cost indicator, the corresponding model is given as: 

 

( ) ( )* /j j j

ij max ij max minx x x x x= − −         (7) 

 

Step 2: Initialize the PDV and parameters of the CCMFOA: 

 

( ) () / 2ij j j jX LB UB LB rand= + −         (8) 

 

where Xij is the initial PDV; LBj and UBj denote the lower and 

upper bounds of index j; rand() represents a function that pro- 

duces a random number obeying the standard uniform distribu- 

tion on the open interval (0, 1). 

Step 3: To characterize the structural features of the mea- 

sured data and represent the structural characteristics of data and 

pursue the optimal PDV, establish a proper projection index 

function to obtain the local projection points as dense the group 

points as scattered as possible. Here, a linear projection index 

function is used to specify the projection cores scores, its math- 

ematical model is written as: 

 

( ) ( ) ( )Q S D= α α α           (9) 

 

( )
2

0.5

1

( ) [ ( ) ( ) / ( 1)]
n

i

i

S Z Z n  
=

= − −      (10) 

 

( )
1 1

( ) ( )
n n

ik ik

i k

D R r I R r
= =

= −  −       (11) 

 

( )R S =            (12) 

 

( ) ( )ik i kr Z Z = −          (13) 

 

*

1

( )
m

i p ik

k

Z x 
=

=          (14) 

 

where α denotes a projection direction vector. Q(α) is the pro- 

jection index function. S(α) represents the dispersion characteris- 

tics of projection scores Zi(α) obtained based on the PDV α. D(α) 

denotes the local density of low-dimensional data points. ( )Z 

Selection of index system 

Initialization of parameters 

Build the projection index function 

Construct the optimization model of the PDV 

Specify the dangerous degrees of samples based on the projection scores 

g < maxgen 

Yes 

No 

Determine the local optimal PDV based 
on connection cloud model and IDC rule 

Search the global PDV based on 
the mutation operator  

Calculate the projection score using the optimal PDV 
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denotes the mean value of projection scores. R is the window 

radius of the local thickness. Ψ is a coefficient; rik (i = 1, 2, …, 

n; k = 1, 2, …, n) denotes the distance. I represents a unit leap 

function that takes 1 when R is greater than or equal to rik; oth- 

erwise, it takes 0. 

Step 4: Build an optimization model of the PDV. Accord- 

ing to the projection index function, projection scores of sam- 

ples only vary with the PDV for the given indicator values. The 

optimal PDV can best depict the structural feature of high-

dimensional data. The determination of the optimal PDV is re- 

garded here as a problem of maximizing the objective project- 

tion function. The corresponding process is written as: 
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m
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where αj denotes the jth projection direction. 

Step 5: Generate the candidate PDV using the CCM. Nu- 

merical characteristics of the CCM were utilized here to depict 

the randomness, fuzziness, and stability of the candidate PDV. 

Namely, the optimal PDV obtained from the latest iteration is 

characterized by the expectation Ex of the CCM, and the ran- 

dom number y is used to express the random and fuzzy charac- 

teristics of the individual search radius. The new PDV is ran- 

domly generated near the expectation Ex using numerical char- 

acteristics’ parameters of entropy y and hyper entropy He. The 

entropy En is also changed dynamically with the iteration num- 

ber to increase the algorithm’s convergence speed. Its mathe- 

matical model is: 

 

 1 2 () 1 / 6
g

En rand
maxgen



 
= −   − 
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where ζ is the coefficient of adaptive control; g and maxgen are 

the gth iteration number and maximum iteration number, res-

pecttively. 

Step 6: Screen the candidate PDV with the IDC analysis. 

The theory of set pair analysis (SPA) proposed by Zhao (2000) 

is introduced here to improve the efficiency of finding the opti- 

mal PDV and the generation mechanism of PDV. Namely, the 

connection degree of a set pair, consisting of the candidate PDV 

and the latest optimum PDV of fruit fly swarm, is calculated 

with Equation (1) to analyze the IDC relationship with the theo- 

ry of set pair analysis (Wang and Jin, 2017). Herein, the identi- 

ty and contrary relationships for the assessment of debris flow 

disasters are as follows: an identity relationship between the 

candidate PDV and the optimal PDV of the swarm is defined 

when the corresponding connection degree is more significant 

than 0.5. In contrast, a contrary relationship is determined when 

the connection degree is less than 0.5. The SPA between the 

candidate PDV and the latest optimal PDV can be illustrated in 

Figure 2. 

The candidate PDV of an identity relationship with the 

newest optimal PDV of fruit fly swarm can be directly used to 

calculate the projection score. In contrast, the candidate PDV 

of a contrary relationship may not meet the candidate genera- 

tion mechanism of the PDV and should be regenerated before 

the complex calculation. It can promote the faster aggregation 

to the optimal PDV obtained by the most recent iteration and 

enhance the FOA algorithm’s convergence speed. Thus, in the 

CCMFOA, the candidate generation mechanism based on the 

CCM and the set pair analysis can reflect the randomness and 

fuzziness of individual decision-making of smell concentration 

and enhance search capability relative to the basic FOA and 

other improved FOAs. 

 

 
 

Figure 2. IDC relationship between the candidate PDV and 

the latest optimal PDV. 

 

Step 7: Conduct the iteration calculation to determine the 

optimal PDV with the PP method and CCMFOA. The corres-

ponding pseudo-code for finding the optimal PDV using CC-

MFOA is listed in Figure 3. 

Step 8: Calculate projection scores of samples with the 

obtained optimal PDV, and then analyze debris flow disasters 

according to the projection score. 

4. Case Study 

4.1. Case 1 

4.1.1. Data 

Case selection is of great importance for the reliability val- 

idation of the model. A case reported by Liu and Tang (1995) 

was utilized here to confirm the validity and reliability of the 

proposed method. This instance has been commonly used for 

validation analyses of new models in China (Wang, 2000; Liu 

et al., 2002; Wang et al., 2002; Liu et al., 2006; Xu et al., 2017). 

The results from the neural network method and the PP meth- 

ods based on other improved FOAs and RAGA were conducted 

further. This case chose eight indicators (the spatial density of 

debris flow gullies C1, the flood hazard frequency C2, the weath- 

ering degree of rock C3, the variation coefficient of the mean 

annual precipitation C4, the fault density C5, the average day of 

rainfall more than 25 mm by ten years C6, the percentage of 

land area with a slope greater than 25° of land area C7, and the 

percentage of cultivated land with a slope greater than 25° of 

total cultivated land C8) to analyze the dangerous degree of 
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Algorithm 1: Optimization algorithm of finding the optimal PDV based on the CCMFOA. 

1: Initialize NP, p, δ, maxgen, He, ζ; 

2: for i = 1: NP 

3:  for j = 1: m 

4:   α1 = rand (); Randomly generated projection direction vector α1 of NP × p by uniform distribution 

5:  end for 

6: end for 

7: [Q α Z] = projection_pursuit(α1, x, δ); 

8: Smell = Q; 

9: [bestSmell bestindex] = max(Smell); 

10: Smellbest = bestSmell; 

11: α(j, 1) = α; 

12: for g = 1: maxgen 

13:  for j = 1: m 

14:    Ex(j, g) = α(j, k); 

15:    Adaptive adjustment of En; 

16:    K = 1; 

17:    while k <= NP 

18:     Produce a random number y, obeying the normal distribution N(En, He2); 

19:     Produce a random number α2, obeying the normal distribution N[Ex(j, g), y2]; 

20: 
    

1 0.5
=

k for
k

k otherwise

+ 



; 

21:    end while 

22:  end for 

23: [Q2 α Z2] = projection_pursuit(α2, x, δ); 

24: Smell2 = Q2; 

25: [bestSmell2 bestindex2] = max(Smell2); 

26: end for 

Figure 3. Pseudo-code for finding the optimal PDV using the CCMFOA. 

 

Table 1. Index Values of Samples of Case 1 (Liu and Tang, 1995) 

Samples County 
Indicator 

C1 C2 C3 C4 C5 C6 C7 C8 

1 Wenchuan 24.76 23.08 1.85 0.78 95.38 1.28 31.72 32.69 

2 Lixian 42.02 57.14 1.80 0.68 18.94 0.93 4.56 41.90 

3 Maoxian 28.69 42.86 1.89 0.78 151.85 1.45 8.32 30.82 

4 Heishui 23.92 25.00 1.79 0.77 20.34 2.68 13.49 44.54 

5 Songfan 7.88 14.29 1.76 0.71 65.97 1.40 19.72 61.56 

6 Maerkang 5.99 16.67 1.69 0.86 8.19 2.50 1.63 76.01 

7 Rangtang 5.45 16.67 1.67 0.93 8.11 1.83 1.33 91.66 

8 Jinchuan 40.99 57.14 1.73 0.89 12.59 1.38 36.89 65.91 

9 Xiaojin 19.08 14.29 1.82 0.83 2.82 1.34 22.66 48.45 

 

Table 2. Optimal PDVs Obtained from Different Algorithms 

in Case 1 

Algorithm C1 C2 C3 C4 C5 C6 C7 C8 

RAGA 0.897 0.772 0.699 0.209 0.160 0.044 0.751 0.109 

IFOA 0.472 0.526 0.122 0.135 0.586 0.061 0.346 0.000 

CFOA 0.374 0.831 0.049 0.103 0.293 0.157 0.155 0.148 

CCMFOA 0.405 0.812 0.011 0.111 0.394 0.091 0.008 0.041 

 

debris flow disasters. The spatial density of debris flow gullies 

refers to the regional magnitude and frequency of the debris flow 

disasters. The weathering degree of rock and the fault density re-

presents geological conditions of debris flow formation. The per-

centage of land area with a slope more significant than 25° of 

the land area is related to the geomorphologic state and denotes 

the potential energy of debris flow disasters. The flood hazard 

frequency is a hydrological index relating to the possible num-

ber of debris flow occurrences. The variation coefficient of the 

mean annual precipitation represents a meteorological variable. 

The average day of rainfall more than 25 mm by ten years is a 

water volume index for debris flow formation. And the percen-

tage of cultivated land with a slope greater than 25° of total 

cultivated land denotes the influence of human activity on de-

bris flow activities. Their relative degree analyses to the danger- 

ous degree can be found in references (Liu and Tang, 1995; Liu 

et al., 2002). Index values of samples of case 1 are listed in Table 1. 
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Table 3. Comparisons of Projection Scores among Different Algorithms in Case 1 

Algorithms 1 2 3 4 5 6 7 8 9 10 

RAGA (Wang and Jin, 2002) 0.903 1.374 1.374 0.908 0.561 0.253 0.244 1.787 0.897 1.021 

IFOA 1.197 1.197 1.499 0.768 0.586 0.292 0.292 1.499 0.586 1.071 

CFOA 0.806 1.320 1.252 0.753 0.397 0.421 0.420 1.582 0.418 1.036 

CCMFOA 0.705 1.276 1.276 0.606 0.265 0.265 0.265 1.379 0.265 1.003 

 

Table 4. Ranks of Debris Flow Disasters Obtained with 

Different Methods 

Samples 

 

Country 

 

ANN 

(Wang, 

2000) 

RAGA 

(Wang 

et al., 

2002) 

IFOA 

 

CFOA 

 

CCMF

OA 

 

1 Wenchuan III III III III III 

2 Lixian IV IV III IV IV 

3 Maoxian IV IV V IV IV 

4 Heishui III III II III III 

5 Songfan II II II II II 

6 Maerkang I I I II II 

7 Rangtang II II I II II 

8 Jinchuan V V V V V 

9 Xiaojin II II II II II 

 

  
 

Figure 4. Optimization process along with iteration number in 

case 1. 

 

 
 

Figure 5. Optimization process along with iteration number in 

case 2. 

4.1.2. Model Implementation 

According to the procedure in Section 3, the optimal PDV 

α = (0.405, 0.812, 0.011, 0.111, 0.394, 0.091, 0.008, 0.041) in 

case 1 is obtained with the population size of 80, the iteration 

number of 100 and the adaptive control coefficient ζ of 7. The 

corresponding maximum value of the projection index function 

Q(α) is 0.53. Projection scores of samples based on the corre- 

sponding PDVs (Table 2) obtained from the RAGA, IFOA, 

CFOA, and CCMFOA are listed in Table 3. 

 

4.1.3. Analysis of Results 

According to the aggregation distribution of projection 

sores among samples, the ranks of debris flow disasters are spec- 

ified as five levels from very low (I), low (II), moderate (III), 

significant (IV), to high (V). Grades of the dangerous degree 

for samples obtained from different methods for case 1 are listed 

in Table 4. It is observed in Table 4 that the orders from small 

to large for projection scores obtained by the CCMFOA were 

samples 5, 7, 9, 6, 4, 1, 10, 3, 2, and 8. The dangerous degrees 

of samples 5, 6, 7, and 9 were low II. The grade of samples 1, 

4, and 10 were moderate III. Samples 2 and 3 were rated as sig- 

nificant IV; and sample 8 was specified as high V, respectively. 

Results from the PP method were broadly consistent with those 

of the neural network method except sample 6. These results 

indicate that the proposed way is efficient and feasible. The PP 

method can directly describe the information of multiple vari- 

ables and the dangerous degree of debris flow disasters with one- 

dimensional variables. The neural network behaves like a black 

box effect and cannot directly correlate between indicators and 

ratings. 

 

4.2. Case 2 

4.2.1. Data 

There are no clear and unified classification standards for 

the dangerous degree of debris flow hazard so far. Different in- 

dicator systems may lead to changes in results obtained by the 

same method. Herein, data from the literature (Wang, 2009; Li 

et al., 2021) named case 2 was consequently added to verify the 

proposed model’s validity further. In case 2, 39 debris flow in 

Beichuan were selected to confirm the feasibility and rationali- 

ty of the proposed method. Beichuan County is located in the 

subtropical humid monsoon climatic zone in Sichuan, China. 

High debris flows occur in the loose Quaternary layers in July-

September because the rainfall is concentrated chiefly in the 

summer. Loose source material reserves (103 m3), S1, basin area 

(km2), S2, drainage density (km−1), S3, basin relative relief (km), 

S4, shifting bed proportion (%), S5, main channel length (km), 
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S6, and once in 50 years of scales (103 m3), S7 were chosen as 

evaluation indicators. The measured values of indexes are listed 

in Table 5. Ranks of debris flow disasters are also specified into 

five levels from very low (I), low (II), moderate (III), signifi- 

cant (IV), to high (V). Dangerous degrees and projection scores 

of samples identified from the proposed model and comparisons 

with other methods for case 2 were listed in Tables 6 and 7. 

 

Table 5. Index Values of Samples for Case 2 (Wang, 2009; Li 

et al., 2021) 

Samples S1 S2 S3 S4 S5 S6 S7 

1 0.04 2.5 19.32 1.60 0.48 2.06 58.54 

2 39.04 13.9 21.85 1.40 0.50 4.03 200.47 

3 79.50 4.5 15.89 0.98 0.64 3.35 55.44 

4 104.5 1.8 28.17 1.04 0.86 1.38 56.29 

5 50.20 1.9 25.68 1.10 0.48 1.36 62.95 

6 2.40 2.4 18.63 1.14 0.23 1.78 60.22 

7 1500.00 1.6 44.06 1.12 0.61 3.32 16.20 

8 242.00 0.5 18.60 0.46 0.84 0.73 20.06 

9 160.70 0.8 17.38 0.66 0.72 1.09 24.29 

10 4.80 4.6 21.33 0.86 0.54 1.99 106.92 

11 73.20 21.8 21.67 2.04 0.42 7.82 168.19 

12 109.30 23.2 23.24 2.30 0.61 7.49 200.42 

13 60.00 3.5 22.94 1.24 0.65 2.25 72.93 

14 70.60 0.7 16.29 0.96 0.61 1.43 16.26 

15 163.32 18.7 22.60 1.68 0.76 5.91 186.55 

16 378.24 21.4 24.07 1.50 0.76 7.42 158.73 

17 15.55 2.7 23.33 1.22 0.45 2.89 38.10 

18 54.00 2.6 27.12 1.26 0.41 3.13 33.18 

19 107.30 0.6 16.67 0.67 0.73 0.99 19.30 

20 106.50 0.3 10.67 0.52 0.76 0.66 12.64 

21 3.36 0.7 27.86 0.55 0.47 2.09 8.30 

22 4.13 2.8 18.79 1.00 0.47 2.35 49.16 

23 12.14 0.5 18.40 0.92 0.52 1.15 13.99 

24 120.08 1.8 19.56 1.04 0.89 1.35 58.13 

25 15.98 3.1 20.10 0.84 0.51 2.54 47.42 

26 30.00 3.5 21.74 0.82 0.75 1.80 85.51 

27 114.00 24.6 20.84 1.22 0.64 8.10 158.15 

28 14.26 2.8 20.82 1.12 0.70 1.56 85.73 

29 33.00 4.1 19.63 1.09 0.46 3.64 46.02 

30 900.03 22.2 22.05 1.70 0.44 11.36 99.78 

31 210.00 3.6 21.25 1.20 0.96 3.12 49.03 

32 485.00 2.5 21.80 1.00 0.81 1.97 53.26 

33 931.24 23.1 21.34 1.20 0.66 9.88 111.81 

34 12.21 4.0 18.98 1.03 0.53 2.56 68.76 

35 98.50 22.7 26.04 1.86 0.76 7.66 175.78 

36 67.20 2.5 18.12 1.02 0.83 1.32 89.14 

37 93.30 2.8 21.36 1.30 0.78 2.75 43.33 

38 135.57 26.4 21.93 1.80 0.67 8.46 184.61 

39 14.66 2.8 29.96 1.34 0.82 2.29 55.32 

 

4.2.2. Evaluation Results 

Similarly, optimal PDVs for case 2 were achieved as listed 

in Table 8 by the CCMFOA and other FOAs with the same pa- 

rameters (NP = 80, maxgen = 100, and ζ = 7) as case 1. The cor- 

responding maximum value of the projection score obtained by 

the proposed method is 1.71 in case 2. Related projection scores 

obtained from the IFOA, CFOA, and CCMFOA are depicted 

as shown in Table 7. 

As expected, the evaluation results of case 2 obtained by 

the proposed method did well with those of the PP methods 

based on other FOAs, as listed in Table 6. These results and 

comparisons indicate that the evaluation method proposed here 

has good stability and reliability. 

 

Table 6. Ranks of Debris Flow Disasters Obtained with 

Different Methods for Case 2 (Wang, 2009) 

 

Samples 

 

Debris flow gully 

Multi-factor 

composite 

assessment 

model 

 

IFOA 

 

  

CFOA 

 

 

CCMFOA 

 

1 Caimazigou III III III III 

2 Shuxuegou IV IV IV IV 

3 Jinlongcun III III III III 

4 Wangjiashangou III III III III 

5 Chenjiabaogou III III III III 

6 Pijialianggou III III III III 

7 Xishanpogou III III III III 

8 Renjiapinggou II II II II 

9 Mofanggou II II II II 

10 Piankouxiang III III III III 

11 Xinyegou IV IV IV IV 

12 Qinglingou IV IV IV IV 

13 Subaohegou III III III III 

14 Shuligou II II II II 

15 Tianbaigou IV IV IV IV 

16 Sibanpinggou IV IV IV IV 

17 Sunjiagou III III III III 

18 Chayuanlianggou III III III III 

19 Hanjiashangou II II II II 

20 Baiguoshugou II II II II 

21 Weigou II II II II 

22 Madiwangou III III III III 

23 Huangjiawangou II II II II 

24 Jiangjiagou III III III III 

25 Liujiagou III III III III 

26 Daokaimengou III III III III 

27 Huangtulianggou IV IV IV IV 

28 Shuangminzigou III III III III 

29 Shupinggou III III III III 

30 Dengjiacungou IV IV IV IV 

31 Qushanzhengou III III III III 

32 Wanjiayangou III III III III 

33 Chenjiabagou IV IV IV IV 

34 Tudilianggou III III III III 

35 Chanzipinggou IV IV IV IV 

36 Shangyantaigou III III III III 

37 Shuanyigou III III III III 

38 Yangjiawangou IV IV IV IV 

39 Zhaojiawangou III III III III 

 

4.3. Comparisons and Discussions 

The corresponding values of projection index function ver- 
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sus iteration numbers were given in Figures 4 and 5. Projection 

scores of samples were illustrated in Figures 6 and 7, and Tables 

3 and 7. Optimal PDVs obtained with different algorithms were 

listed in Tables 2 and 8. 

 

Table 7. Comparisons of Projection Scores among Different 

Algorithms for Case 2 

Samples IFOA CFOA CCMFOA 

1 0.437  0.469  0.434  

2 1.196  1.204  1.174  

3 0.442  0.493  0.456  

4 0.346  0.423  0.342  

5 0.361  0.399  0.340  

6 0.362  0.371  0.344  

7 0.437  0.629  0.443  

8 0.085  0.161  0.106  

9 0.137  0.197  0.153  

10 0.535  0.564  0.519  

11 1.538  1.544  1.527  

12 1.697  1.714  1.691  

13 0.478  0.530  0.474  

14 0.155  0.202  0.168  

15 1.401  1.438  1.401  

16 1.440  1.498  1.450  

17 0.376  0.418  0.364  

18 0.387  0.435  0.367  

19 0.109  0.166  0.126  

20 0.032  0.084  0.064  

21 0.131  0.180  0.106  

22 0.346  0.379  0.342  

23 0.129  0.165  0.130  

24 0.327  0.398  0.344  

25 0.340  0.379  0.334  

26 0.437  0.489  0.434  

27 1.483  1.501  1.483  

28 0.446  0.493  0.444  

29 0.437  0.478  0.434  

30 1.492  1.592  1.524  

31 0.447  0.542  0.473  

32 0.376  0.472  0.399  

33 1.427  1.529  1.466  

34 0.447  0.483  0.444  

35 1.570  1.605  1.565  

36 0.422  0.480  0.434  

37 0.401  0.472  0.414  

38 1.702  1.720  1.703  

39 0.444  0.517  0.434  

 

It was viewed in Figures 4 and 5 that curves of projection 

index function obtained from the proposed method were higher 

than those obtained from other FOAs, indicating that the pre- 

sented method can get a relatively good optimal solution under 

the existing projection target function. Namely, both the project- 

tion index function value of the CCMFOA in cases 1 and 2 were 

the greatest. Maximum amounts of projection index obtained 

from the proposed model in case 1 were about 48 and 40% 

higher than those of the CFOA and IFOA with the same initial 

PDV. Moreover, projection scores changed with different algo- 

rithms despite the same rating because they were derived re- 

spectively from the various optimal PDVs. It shows that the op- 

timization of the PDV is vital for assessing debris flow disas- 

ters with the PP method. In addition, it was seen in Figure 6 

and 7 that the projection scores obtained from CFOA deviated 

from those from the proposed model and the IFOA model. The 

number of iterations in case 1 to determine the optimal PDV 

was 57, 27, and 85 of the CCMFOA, IFOA, and CFOA, re- 

spectively. The IFOA reached the optimal PDV most quickly, 

and its search speed was about 2.1 and 1.1 times faster than 

those of the CFOA and CCMFOA in case 1, respectively, but 

its projection index function value was lower than that of the 

CCMFOA. These suggest that the CFOA can avoid the local 

optimum of the PDV based on the judgment of smell concen- 

tration. The generating mechanisms of candidate PDVs based on 

the connection cloud model and IDC analysis are helpful to im-

prove the search speed of the optimal PDV. In case 2, the above 

features were also observed. These indicate that the PP method 

using the CCMFOA is easy to determine the dangerous degree 

of debris flow disaster and more convenient for application than 

other ways. The CFOA model can speed up the searching rate of 

the PP method but may lead to the problem of the local optima. 

Therefore, the CCMFOA can get better search efficiency and 

higher precision of the optimal PDV and and fuzziness of the 

searching process and mea-sured indicators. 

 

 
 

Figure 6. Results of project scores of samples for case 1. 

 

 

Figure 7. Results of project scores of samples for case 2. 
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Table 8. Optimal PDVs Obtained from Different Algorithms 

for Case 2 

Algorithms S1 S2 S3 S4 S5 S6 S7 

IFOA 0.088 0.662 0.097 0.247 0.008 0.417 0.556 

CFOA 0.196 0.555 0.131 0.246 0.068 0.515 0.553 

CCMFOA 0.144 0.661 0.020 0.261 0.045 0.435 0.532 

 

The assessment of debris flow disasters involving numerous 

uncertain indicators is a complex problem of uncertainty. The 

case study suggests that the CCMFOA with proper global and 

local search capabilities can avoid some defects of the basic 

FOA. It has better efficiency and accuracy because it can depict 

the randomness and fuzziness of the optimal PDV and the for- 

aging behaviors of the fruit fly swarm. It has the following ben- 

efits over other methods. 

1) The conventional methods for assessing debris flow di-

sasters generally need to construct the corresponding classifica- 

tion standard. Many uncertain indexes affect debris flow disas- 

ters, and the classification standard may vary with locations. It 

may restrict the application extent of these methods with the 

particular classification standard. So the CCMFOA-based PP 

method provides a fresh idea to analyze the debris flow disas- 

ters directly through measured data without the rating standard. 

2) The CCMFOA can memorize a possible optimal PDV 

by the expectation Ex, and depict the individual’s search radius 

and learning stability by the entropy En and the hyper entropy 

He, respectively. These characteristics can enhance the algori-

thm to get the optimal PDV from elite individuals and avoid 

limiting the normal distribution in the normal cloud model. 

3) Candidate PDVs screened with the IDC rules of set pair 

analysis enable the optimization process of the algorithm to be 

more streamlined with the mechanism “picks the best of the 

best”. Namely, the candidate PDV produced randomly can be 

screened before the complex calculation of the PP method ac- 

cording to the connection degree between the candidate PDV 

and the optimal PDV obtained from the latest optimization. 

4) The proposed PP method using the CCMFOA overcomes 

the disadvantage of knowledge acquisition and the black-box 

effect in the neural network method. It can directly depict the re- 

lationship between the indicators and the degree of debris flow 

disasters. 

5. Conclusions 

Debris flow often poses potential threats to engineering con- 

struction activities and the residents in the debris flow-prone areas. 

The assessment of debris flow disasters is a nonlinear problem 

of multiple uncertainties. Hence, its rational evaluation is critical 

for risk management prevention and mitigation work in moun- 

tain areas. However, most of the previous methods for assessing 

the dangerous degree of debris flow at the regional scale almost 

cannot reflect the structural characteristics of the original non-

normal data. Conventional projection pursuit methods can deal 

with this problem but are not powerful enough to simultaneous- 

ly describe the fuzziness and randomness of the optimal PDV. 

Hence, the novel PP method using the CCMFOA is presented 

here to depict the multiple uncertainties of the PDV and over- 

come the above shortcomings of the traditional assessment meth- 

ods of debris flow disasters. Two illustrative examples and com- 

paisons further confirmed the validity and reliability of the pro- 

posed method. Some conclusions are obtained as follows. 

1) Debris flow disasters involve various uncertain indexes, 

and there lacks a uniform classification standard of dangerous 

degree for debris flow disasters. It may restrict the application 

extent of these methods of the particular classification standard. 

So the CCMFOA-based PP method without the rating standard 

provides a refreshing idea to examine the debris flow disasters 

directly through measured data. 

2) Compared with other FOAs, the CCMFOA can remem- 

ber the recently obtained superior projection directions using 

the expectation Ex and depict the randomness and fuzziness of 

an individual’s search radius and learning stability by the entropy, 

En, and the hyper entropy He, respectively. So the proposed 

method can ensure the reliability of the optimal PDV obtained 

from elite individuals. Moreover, it can provide a more accu- 

rate PDV with better optimization efficiency for the PP method. 

It utilizes the connection cloud model to produce the candidate 

PDV around the latest optimal PDV according to the mecha- 

nism “Picks the best of the best”. Namely, the analysis of the 

IDC relationship between the candidate PDV and the optimal 

PDV obtained from the latest optimization iteration is carried 

out to screen the candidate PDV before the complex computa- 

tion of the projection score. 

3) Case studies indicate that the CCMFOA-based PP 

method is more reasonable and feasible than the neural network 

method. The proposed method can fully depict the structure and 

information of non-normal distribution data of samples in one-

dimensional space and the randomness and fuzziness character- 

istics of the PDV. Meanwhile, it can compensate for the defects 

of the neural network method that the results rely on the sample 

data for training and validation. This proposed method without 

rating standards provides an alternative way to assess the dan- 

gerous degree of debris flow under multiple uncertainties. In 

addition, the proposed method overcomes the defect of a fixed 

search scope in the original FOA or other improved FOAs. And 

the computational projection rate of the way presented here is 

faster than that of the original FOA or other improved FOAs. 

This method with high convergence accuracy will provide a sci- 

entific basis for management and decision-making. 

4) Due to the complexity of debris flow hazards under mul- 

tiple uncertainties, it is hard to apply the basic FOA to find the 

optimal PDV of the PP method. Application and comparisons 

of examples have verified the validity and capability of the pro-

posed PP method to assess debris flow disasters. Although the 

CCMFOA can provide more accurate PDV for the PP method 

relative to other FOAs, how to produce the excellent original 

PDV still needs to be further investigated to improve the pro-

posed method’s stability in the future. 
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