
111 

  

ISEIS 
Journal of 

Environmental 
Informatics 

 

 

 

Journal of Environmental Informatics 39(2) 111-124 (2022) 

www.iseis.org/jei       

 

Development of A Simulation-Based Multi-Objective Optimization Method for 

Improving the Advanced Oxidizing Capacity of Hydrodynamic Cavitation  

Reactor - A Case Study of Self-Excited Oscillation Cavity 
 

S. L. Nie1, J. K. Zhou1, H. Ji1 *, Z. Y. Dai2, and Z. H. Ma1 

 
1 Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100124, China 

2 Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, Hubei 430074, China 

 
Received 26 July 2021; revised 18 November 2021; accepted 14 December 2021; published online 18 January 2022 

 
ABSTRACT. In this study, a simulation-based multi-objective optimization method is developed for optimizing the structural design of 

hydrodynamic cavitation (HC) reactor and improving the cavitation effect of HC reactor. The developed method integrates simulation 

technique of computational fluid dynamics (CFD) and optimization techniques of surrogate model and nondominated sorting genetic 

algorithm II (NSGA-II) into a general framework. The effect of structure parameters and their interactions on the cavitation effect of the 

self-excited oscillation cavity (SEOC) are analyzed. Results demonstrate that optimization techniques of surrogate model and NSGA-II 

can effectively improve the structure and the capacity of SEOC. Simulation results show that the internal vapor volume fraction and 

outlet vapor volume fraction of SEOC (based on the optimized structure) increase by 13.46 and 38.01%, respectively. The optimized 

structure of SEOC is also verified experimentally through the degradation experiment of methylene blue solution. The degrees of degra-

dation before and after optimization respectively are 10.12 and 16.14%, and the degradation capacity increases by 59.5%. This study 

will play a significantly guiding role on the optimization design of HC reactor for advanced oxidation processes (AOPs) to obtain the 

preferable cavitation effect. 
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1. Introduction 

With the progress of modern society and the rapid devel-

opment of industry, a large amount of wastewater containing 

organic matter is produced, making the problem of water pol-

lution increasingly serious (Sun et al., 2020a). Organic pollu-

tants in wastewater, such as ammonia nitrogen, will deteriorate 

water quality, lead to eutrophication of water, and cause serious 

environmental problems. At the same time, the composition of 

organic pollutants in wastewater is complex, which is generally 

poisonous and carcinogenic to living organisms (Rajoriya et 

al., 2017). Therefore, wastewater treatment measures have re-

ceived more and more attention. 

A number of methods based on physical, biological and 

advanced oxidation processes (AOPs) can effectively treat or-

ganic wastewater (Asztalos and Kim, 2017; Yi et al., 2018). AOPs 

possess strong oxidation capacity, which can produce hydroxyl 

radicals (·OH) through physical and chemical processes. It can 

also react with most organic pollutants in a fast chain, and con- 

vert harmful substances into carbon dioxide (CO2), H2O, and  
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mineral salts without secondary pollution. AOPs include a vari-

ous of processes such as ozone, Fenton, ultrasonic cavitation, 

hydrodynamic cavitation (HC), etc (Bhat and Gogate, 2020). 

HC can reduce the local pressure of the fluid flowing through 

the structure below the saturated vapor pressure, at which time 

the cavitation bubbles appear in the liquid. In the cavitation pro-

cess, the bubble undergoes three stages of formation, growth, 

and collapse; in the collapse process, the bubble produces a se-

ries of physical and chemical effects, thereby generating a large 

number of hydroxyl radicals (·OH) (Franke et al., 2011). Pre-

viously, a number of researchers demonstrated that the HC and 

its combination with other oxidation methods have significant 

positive effects on the degradation of industrial wastewater, Sa-

licylic acid, Rhodamine B, carbamazepine, imidacloprid, pe-

troleum refinery effluent and benzene present in wastewater 

(Chakinala et al., 2009; Mishra and Gogate, 2010; Patil et al., 

2014; Thanekar et al., 2018; Doltade et al., 2019; Thanekar et 

al., 2021). Recently, as one of novel AOPs, HC has attracted 

much attention in the field of wastewater treatment (especially 

refractory wastewater), featured by fast reaction rate, strong 

oxidation capacity, low-cost operating, green, and non-pollution, 

as well as simple equipment, large treatment capacity and easy 

combination with other techniques (Gogate, 2020). 

Several scholars have demonstrated the effectiveness and 

applicability of the self-excited oscillation cavity (SEOC). Ge-
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Figure 1. Research scheme. 

 

veci et al. (2003) analyzed the effective wavelength of the 

SEOC and the phase velocity of the vortex structure, which 

could provide guidance for the optimization of nozzle structure 

parameters and the physical model of the dimensionless fre-

quency of oscillation. Li et al. (2016) analyzed the effect of 

nozzle inlet area discontinuity on axial pressure oscillation on 

the basis of previous related studies, and conducted an experi-

mental study using Helmholtz nozzles. The study found that the 

area discontinuity could increase the pressure oscillation am-

plitude, and had almost little effect on the oscillation frequency. 

Zhou et al. (2017) conducted experimental studies on the flow 

field characteristics and pressure oscillation characteristics of 

pulsed jets, and studied the influence of bubble clouds in SEOC 

with pump pressure and confining pressure. Wang et al. (2019) 

optimized the cavity diameter, outlet diameter and working 

pressure of the SEOC through response surface model and 

computational fluid dynamics to improve the spray quality of 

the nozzle. Xiang et al. (2020) analyzed the periodic dynamic 

characteristics of the pulsed cavitation jet under the best exper-

imental conditions, and explained the generation mechanism of 

the cavitation jet. Fang et al. (2020) proved that there is a close 

relationship between the vortex-cavitation interaction and the 

flow mechanism in the Helmholtz oscillator through numerical 

simulations. 

Generally, the cavitation generated in SEOC determines 

the effect of HC in the degradation of wastewater. The working 

principles and flow field characteristics of SEOC provide the-

oretical guidance for the structural design of SEOC. Unfortu-

nately, few studies focus on the structural optimization design 

method to achieve the better cavitation effect for SEOC. Uni-

variate optimization based on control variables and orthogonal 

experiment optimization are two common SEOC structural op-

timization methods (Wang, 2005; Jin and Mi, 2016; Zhang et 

al., 2021). However, univariate optimization ignores the inter-

action between the parameters, leading to the result fall into the 

local optimum. Although the orthogonal experiment optimiza-

tion method considers the interaction between the parameters, 

the result is often just a combination the level of factor sets, 

which can cause the optimal structural parameters to be inac-

curate. 

Therefore, this study aims to develop a simulation based 

multi-objective optimization method for optimizing the struc-

ture of SEOC, which incorporates techniques of computational 

fluid dynamics (CFD) simulation, surrogate model, and non-

dominated sorting genetic algorithm II (NSGA-Ⅱ) within a 

general framework. The main research components of this study 

can be summarized as follows: (i) a simulation-based multi-

objective optimization method is developed for improv-ing the 

advanced oxidizing capacity of HC reactor; (ii) CFD simula-

tion is used for predicting the cavitation capacity of HC reactor 

and analyzing the influence of various parameters as well as 

their interactions on the cavitation effect; (iii) surrogate model 
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and NSGA-II in association with low computation and global 

optimal solution are capable of optimizing the structure of SEOC; 

(iv) compared with the conventional univariate and orthogonal 

experiment optimization method, simulation results and exper-

imental tests demonstrated that the proposed method can in-

crease degradation degree and capacity of HC reactor. Figure 1 

shows the scheme of this study. 

2. Methodology 

2.1. Principle of Cavitation Effect and Degradation 

Mechanism 

Figure 2(a) shows the structure and working principle of 

SEOC. The main structural parameters are the upper nozzle in-

let diameter d1, the lower nozzle outlet diameter d2, the cavity 

diameter D and the cavity length L (Zhou et al., 2017; Wang et 

al., 2019). 

 

 

Figure 2. SEOC structure diagram. 

 

When the fluid enters the cavity from the jet inlet (i.e. up-

per nozzle) of SEOC, the high-speed jet has strong shear with 

the static liquid in the cavity, which can form a turbulent shear 

layer in the flow direction of the fluid and generating discrete 

vortices. The pressure oscillation wave is generated when the 

discrete vortex interacts with the collision wall. The wave then 

propagates upward at the speed of sound and triggers a new 

vortex disturbance. Repeatedly, due to the barrier of the colli-

sion wall, the vortex can be further magnified and moved to the 

center of the cavity, forming a larger vortex. The pressure in the 

center of the vortex gradually decreases, forms a negative pres-

sure area, generates a large number of cavitation bubbles, and 

eventually results in cavitation airbag (Wang et al., 2017). 

In this process, the mechanism of HC degrades pollutants 

as shown in Equations (1) and (2). Cavitation bubbles release 

energy during the collapse process, resulting in a high energy 

density. The large amount of energy can form local high tem-

perature and pressure (5000 ~ 10000 K and 500 ~ 1000 atm) in 

a very short time. Under these extreme conditions, water mole-

cules split to produce hydroxyl radicals (Li et al., 2020; Yi et 

al., 2021). Therefore, under certain working conditions, the ca-

vitation effect has a great impact on the degradation effect. 

 

         (1) 

 

      (2) 

 

2.2. Simulation Modeling for CFD Flow 

It is assumed that the mixture of liquid and vapor is uni-

form and has no slip velocity. The mixture model is used as the 

calculation model for multiphase flow, the turbulence state is 

considered, the effect of cavitation is added, and the cavitation 

control equations are finally formed. The corresponding conti-

nuity equation, momentum equation and mass conservation 

equation of the multiphase flow model are as follows (Huang 

et al., 2013): 
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where ρm and ρl are the density of mixture and liquid respective-

ly, u is the velocity of the mixture, p is the pressure of the mix-

ture, μ is the laminar viscosity of the mixture, μt is the turbulent 

dynamic viscosity of the mixture, αl is the volume fraction of 

liquid, m
& is the condensation rates, and

-
m& is the evaporation rates. 

In this study, CFD fluent is used for numerical calculation. 

The standard k-ε model is used to describe the turbulence state, 

and the k-ε equation can be expressed as follows: 
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where μ is the laminar viscosity coefficient, μt is the turbulent 

viscosity coefficient, Gk is the turbulent kinetic energy generat-
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ed by laminar velocity gradient, YM is the fluctuation caused by 

excessive diffusion in compressible turbulence, Gb is the turbu-

lent kinetic energy generated by buoyancy, and C1ε, C2ε, C3ε, σk, 

and σε are constants. 

In this study, Schnerr-Sauer cavitation model based on 

Rayleigh-Plesset equation is used in numerical calculation. The 

following equations are employed to describe the mass transfer 

process of vapor and liquid (Sun et al., 2015): 
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where Re and Rc represent the process of evaporation and con-

densation respectively, αv is local vapor volume fraction, ρm is 

the mixtures density, ρv is the vapor density, RB is the bubble 

radius, and pv is the saturated vapor pressure. 

The model grid based on the unstructured grid is establish-

ed as shown in Figure 2(b). In the CFD simulation, liquid water 

is the primary phase, vapor is the secondary phase, the inlet 

pressure is 1 MPa, and the outlet pressure is 1 atm. The pres-

sure-based solver is used for steady-state calculations, and the 

pressure-velocity coupling algorithm is SIMPLEC, with a con-

vergence criterion of residual values below 10-3 and stable bal-

ance of inlet and outlet flows. In order to eliminate the influen-

ce of grid size on the numerical simulation results to ensure the 

credibility of the results, the grid independence of the numeri-

cal model is verified in this study. 

 

 
 

Figure 3. Calculation results of different number of cells. 

 

In order to test the grid independence, the same grid divi-

sion method is used for generating 6 kinds of grids. The appro-

priate number of grids is selected through comparing the vapor 

volume fraction in the cavity and the outlet. Figure 3 presents 

the calculation results of different number of cells, where V1 is 

the area-weighted average vapor volume fraction in the cavity 

and V2 is the weighted average vapor volume fraction at the 

outlet. As shown in Figure 3, with the increase of the number 

of cells, the calculation results increase firstly, and then tend to 

be stable. When the number of cells exceeds 15000, the change 

rates of V1 and V2 are both less than 1%, almost unchanged. 

We compared the simulation results in this study with the 

experimental results in the literature by Zhang et al. (2021), as 

shown in the Figure 4. It can be seen from the figure that al- 

though the experimental results are quite different from the si- 

mulation results, the change trends of the experimental results 

and the simulation results are identical. This indicates that the 

numerical simulation results are credible and the parameters 

corresponding to the optimal values are correct when using nu-

merical simulation for optimization. 

 

 

Figure 4. Comparison of maximum pressure value between 

simulation and experiment. 

 

2.3. Optimization for SEOC’s Structure 

Based on CFD flow field simulation, a surrogate model is 

used to optimize the SEOC's multi-objective structure (Dong 

and Liu, 2021). Figure 5 shows the optimization processes in-

cluding defining variables, design of test points, model train-

ing, global optimization, and error check. The specific imple-

mentation steps of the optimization method are as follows. 

 

2.3.1. Defining Variables 

In this study, the optimization aims to obtain the optimal 

structural parameters of SEOC with the preferable cavitation 

effect. Correspondingly, the optimization object corresponds to 

the independent variables. The independent variable is defined 

as the ratio of three structural parameters, namely d2 / d1, D / d2, 

and L / D. The optimization range of each parameter is 1.5 ~ 

3.0 for d2 / d1, 4 ~ 9 for D / d2 and 0.4 ~ 0.7 for L / D. 

Generally, vapor volume fraction V1 in the cavity can di-

rectly show the cavitation effect in SEOC. The larger the value 

of V1, the more bubbles are generated in the cavity and the bet-

ter the cavitation effect. Since the bubbles in the cavity are not 

uniformly distributed, in order to make the result more reason-

able, the area-weighted average value is employed to express 

the vapor volume fraction (V1) in the cavity. At the same time, 

in order to facilitate the study of the subsequent part of this top- 

ic, it is necessary to study the outlet vapor volume fraction (V2) 

of the SEOC. The area weighted average value of vapor volume 

fraction is shown in Equation (10). Correspondingly, the target 
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Figure 5. Optimization flow chart. 

 

variables of this study are determined to be V1 and V2, as shown 

in Equations (11) and (12): 
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where  v is the area-weighted average of vapor volume fraction, 

n is the number of grids, Ai is the area of each grid, vi is the 

volume fraction of vapor at each grid,
inner

v is the average vol- 

ume fraction of vapor in the cavity, and
out

v is the average vol- 

ume fraction of vapor at the outlet. 

 

2.3.2. Design of Experiments 

When using the surrogate model, it is very important to 

design the experimental points. The designed experimental points 

should cover the entire space within the allowable range of in-

dependent variables, and there is an optimal solution in space. 

At the same time, the experimental points are independent of 

each other. The commonly used design methods of experiment-

tal points include orthogonal experimental design (OET), cen-

tral composite design, Latin hypercube sampling, optimal Latin 

hypercube design (OLHD), Box-Behnken and full factor de-

sign (FFD) (Aber et al., 2010; Zhang et al., 2011; Sun et al., 

2020b). 

In this study, OET, OLHD and FFD are selected to design 

the experimental points, and the advantages and disadvantages 

of the three methods are compared. Finally, a suitable method 

for designing experimental points is determined. In this study, 

leave-one-out cross-validation is used for error analysis, and 

the correlation coefficient (R2) and the root mean square error 

(RMSE) are used to characterize the accuracy of the model, and 

the expressions are as follows: 
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where n is the number of experimental points, yi is the real 

value of the experimental point xi, i
y is the predicted value of 

the surrogate model of the experimental point xi, and y is the 

average of the real response value. The value of R2 is between 

0 and 1, and in this range, the closer the value of R2 is to 1 and 

the smaller the RMSE value is (RMSE ≥ 0), the closer the surro-

gate model is to the real situation, that is, the higher the accu-

racy. 

After calculating the real response value of each experi-

mental point, a batch of sample points are obtained, and R2 and 

RMSE of different design methods can be obtained by using the 

sample points to train the surrogate model, as shown in Table 1. 

During the experimental processes, each variable has five 

levels. However, at the same condition, the number of sample 

points produced by different experimental design methods is 

different. As shown in Table 1, the best result of model training 

is full factor design, and the worst is orthogonal experimental 

design. For OET, because the number of sample points is too 

small and the sample points contain less model information, the 

model accuracy is low. At the same time, the experimental point 

of the orthogonal experimental design is very dependent on the 

orthogonal table, and it is difficult to obtain a suitable orthogo-

nal experimental design table. FFD can obtain a large amount 
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of model information because the sample points are full of the 

whole independent variable space, which makes the surrogate 

model have high accuracy. However, too many sample points 

may result in a large amount of calculation, and the calculation 

of the real response value of the experimental points is very 

time-consuming. OLHD can artificially control the number of 

experimental points, and uniform, random and orthogonal sam-

pling in the range of the independent variable, and a large amount 

of model information can be obtained with fewer points. There-

fore, through comprehensively considering calculation amount 

and model accuracy, OLHD is chosen as the experimental point 

design method, and the number of experimental points is 50. 

 

Table 1. R2 and RMSE of Different Experimental Point Design 

Methods 

 n V1-R2 V1-RMSE V2-R2 V2-RMSE 

OET 25 0.8583 0.1087 0.8466 0.0759 

OLHD 50 0.9311 0.0719 0.9348 0.0545 

FFD 125 0.9443 0.0636 0.9394 0.0522 

 

2.3.3. Training Surrogate Model 

Surrogate model is a mathematical approximation method, 

which can approximately replace the internal relationship be-

tween input and output. Training surrogate model refers to solv-

ing the functional relationship between experimental points and 

experimental or simulation results. This study compares the ac-

curacy of the functional relationships obtained from the Krig-

ing model (KRG), Polynomial response surface model (PRS), 

Radial basis function model (RBF), Shepard model (SHEP) and 

a Weighted average surrogate model (WAS) (Goel et al., 2007; 

Sun et al., 2017; Chen and Wu, 2018).  

The WAS model is composed of two models, and the pro-

portion of each model is determined by the model error. There-

fore, we first compare the R2 and RMSE of KRG, PRS, RBF 

and SHEP, and then select two models with better performance 

to form the WAS model. Finally, the most suitable surrogate 

model is selected to optimize the SEOC’s structure. The experi-

mental point design method adopts OLHD, and the number of 

experimental points is 50. The accuracy of each model is shown 

in Table 2. When using a single surrogate model, the accuracy 

of the functional relationship solved by each model is slightly 

lower. The two models with better performance are RBF and 

PRS, which constitute the WAS model. Obviously, the accu-

racy of the combination of the two models is much higher than 

the single model. Therefore, the surrogate model used in this 

optimization scheme is the WAS model composed of PRS and 

RBF. 

 

2.3.4. Find the Optimal Solution 

A genetic algorithm based on multi-objective optimization 

is used to perform global optimization within the range of in-

dependent variables. NSGA-II can reduce the computational 

complexity and make the individuals of the Pareto front evenly 

expand to the whole Pareto front. At the same time, it also in-

troduces the elite strategy to effectively prevent the loss of the 

best individual and improve the accuracy of the optimization 

results (Na et al., 2017; Mansour et al., 2020; Wang et al., 

2020a). In this study, the Pareto optimal solutions with the best 

cavitation effect are obtained by using NSGA-II optimization 

algorithm, taking d2 / d1, D / d2 and L / D as design variable and 

V1 and V2 as optimization targets. 

 

Table 2. R2 and RMSE of KRG, SHEP, RBF, PRS and WAS 

 V1-R2 V1-RMSE V2-R2 V2-RMSE 

SHEP 0.3957 0.2844 0.4346 0.2293 

KRG  0.4158 0.2093 0.5274 0.1466 

RBF 0.5282 0.1881 0.5502 0.1430 

PRS 0.6353 0.1654  0.6436 0.1273 

WAS 0.9311 0.0719 0.9348 0.0545 

 

2.3.5. Error Check (adding point strategy) 

Since both V1 and V2 are small values between 0 and 1, af-

ter obtaining the Pareto optimal solutions, it is necessary to per-

form error analysis on the points in the solution set to ensure 

that the optimal solution with the higher accuracy can be ob-

tained. In this study, a small number of design points were ran-

domly selected for verification. Five verification points are uni-

formly selected from the Pareto front solutions, as shown in 

Figure 6(a), to form the verification set Y = {Y1, Y2, Y3, Y4, Y5}. 

Then, the structural parameters corresponding to Yi are found, 

and the real response values at each point are calculated through 

CFD. Finally, the relative error at the corresponding point is 

calculated as follow: 

 

 e 100%  1,2,3,4,5
i i

i
i

Y y
R i

y


  ，       (15) 

 

where Yi is the predicted value of the surrogate model, and yi is 

the real value at that point. If the relative error Rei is less than 

3%, the value of Pareto optimal solutions is considered to be 

accurate. On the contrary, it shows that the value error of Pareto 

optimal solutions is large, and the accuracy of surrogate model 

needs to be further improved. This requires expanding the num-

ber of samples to reduce errors. This study adopts the method 

of adding points based on prediction to expand the sample size. 

It is a method of adding points at the minimum approximate 

value of the training point space to make the optimization result 

converge to the optimal value, that is, adding the points in the 

set Y to the sample points. Then, the process (as shown in Fig-

ure 5) is executed again until the error condition is satisfied, 

and the iteration is terminated. 

In this study, the convergence condition is satisfied after 4 

iterations, so that the relative error of the model is less than 3%, 

and the number of samples is increased from 50 to 70. In each 

step of iteration, the fitting error of WAS is always smaller than 

that of other surrogate models. The R2 and RMSE of the sur- 

rogate model at the initial and after convergence are presented 

in Table 3, and the relative error of each point in validation set 

Y is listed in Table 4. 

As can be seen from Tables 3 and 4, when only the initial  
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Figure 6. Pareto front solutions (the black point is the Pareto optimal solutions, and the red point is the verification point selected 

from the Pareto optimal solutions). 

 

sample points are used, the surrogate model fits the two target 

variables well. However, in the local position (Pareto optimal 

solutions), the fitting effect of V1 is better, and the fitting effect 

of V2 is slightly worse. After adding points locally to iterative 

convergence, the R2 and RMSE of the surrogate model are im-

proved or decreased, indicating that the accuracy of the model 

has been further improved. Meanwhile, it can be seen from the 

relative error that the fitting effect of V1 and V2 is improved at 

the local position (Pareto optimal solutions). This is because 

the newly added sample points are taken from the Pareto opti-

mal solutions, namely, the added sample points are very close 

to the expected Pareto front, which greatly improves the accu-

racy of the sample points and makes the model converge quick-

ly. Therefore, the local adding point strategy of adding the points 

of the verification set to the sample points can ensure the accu-

racy of the obtained Pareto optimal solutions, without adding 

too many sample points and not generating too much computa- 

tion.  

Through the above steps, we can finally get a more accu- 

rate Pareto front solutions as shown in Figure 6(b). Pareto front 

solutions is a set in which the points are all the optimal solution. 

3. Result and Discussion 

3.1. Formation Process of Cavitation Airbag 

Figure 7 shows the vapor distribution in the SEOC at dif-

ferent times. Cavitation is initially generated near the upstream, 

and when it develops downstream, vortices and cavitation bub-

bles begin to accumulate near the collision wall due to the block-

ing of the collision wall, as shown in Figure 7(a). Subsequently, 

the vortex gradually becomes larger, and the negative pressure 

area in the cavity expands, resulting in many cavitation bub-

bles. The cavitation bubbles combine with each other to form 

larger vapor bubbles, and gradually move to the center of the 

cavity, as shown in Figure 7(b). Finally, the vortex is further 

enlarged and moved to the center of the cavity to form a large 

negative pressure area, and numerous cavitation bubbles form 

cavitation airbag in the cavity. At the same time, part of the 

cavitation vortex moves downstream of the nozzle with the jet, 

forming the vapor distribution diagram as shown in Figure 7(c). 

The formation process of the cavitation airbag proves that the 

SEOC can generate effective disturbance feedback, so that the 

vortex can be formed in the cavity, and the vortex can be mag-

nified in a very short time to form a negative pressure region, 

thereby causing cavitation. At the same time, in this process, 

the cavitation region will also become larger with the increase 

of the vortex, and the cavitation bubbles in the cavity will gra-

dually increase. 

 

Table 3. R2 and RMSE of the Surrogate Model 

 n V1-R2 V1-RMSE V2-R2 V2-RMSE 

Initially 50 0.9311 0.0719 0.9348 0.0545 

After convergence 70 0.9424 0.0621 0.9497 0.0469 

Improvement — 1.21% 13.59% 1.60% 13.93% 

 

Table 4. Relative Error of Each Point in The Verification Set 

  Y1 Y2 Y3 Y4 Y5 

Initial relative error 

(n = 50) 

V1 1.97% 3.03% 3.55% 0.93% 1.75% 

V2 7.92% 5.65% 7.89% 7.03% 9.23% 

Relative error after 

convergence (n = 

70) 

V1 1.60% 1.54% 1.19% 1.13% 2.05% 

V2 0.18% 0.37% 0.27% 1.20% 1.73% 

 

3.2. Global Sensitivity Analysis 

In order to intuitively explain the changes of the target var-

iables V1 and V2 to the structure parameters d2 / d1, D / d2, and 

L / D, the response surface analysis is conducted, as shown in 

Figure 8. Figure 8(a), (b), and (c) show the influence of various 

parameters on the vapor volume fraction V1 in the cavity. As 

can be seen from the figures, V1 increases and then decreases 

with increasing D / d2, decreases with increasing L / D, and in-

creases with increasing d2 / d1. Figure 8(d), (e) and (f) show the 

influence of various parameters on the outlet vapor volume frac- 

tion V2. As can be seen from the figures, V2 decreases with the  

  

  (a) Distribution of sample points     (b) Pareto optimal solutions 
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Figure 7. Formation process of the cavitation airbag in the SEOC. (a), (b), and (c) are the vapor volume fractions of 0.15, 0.65, 

and 2.5 ms, respectively. 

 

 
 

Figure 8. Influence of each parameter on the target variable. 

 

increase of D / d2 and L / D, and increases with the increase of 

d2 / d1. Through the response surface, the influence of each pa-

rameter on the target variable can be seen intuitively, but the 

interaction between the parameters cannot be explored, and the 

global sensitivity analysis of each parameter is carried out. 

In this study, sobol sensitivity analysis (SSA) method, based 

on variance decomposition, is used for global sensitivity analy-

sis to explore the degree of effect of each variable on the target 

variable (Ren et al., 2010). Compared with other sensitivity ap-

proaches, SSA can analyze the sensitivity of the first, second 

and higher order of parameters, and can also distinguish the 

sensitivity of parameter independence and interaction. SSA es- 
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Figure 9. First-order sensitivity and total sensitivity. 

 

timates the contribution of each parameter and its interactions 

based on the variance. The contribution of input parameters to 

the model output and the interaction between them can be esti-

mated using Equation (16). The first-order sensitivity Si and 

total sensitivity STi are expressed by Equations (17) and (18), 

respectively (Kumar et al., 2020; Abbiati et al., 2021): 

 

12...( ) i ij ijk p

i i j i j k

D y D D D D

  

           (16) 
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             (17) 
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D
            (18) 

 

where D(y) is the total variance of the output of each parameter, 

Di is the variance generated by xi, Dij is the variance generated 

by the interaction of xi and xj, Dijk is the variance generated by 

the interaction of xi, xj, and xk, D12…p is the variance generated 

by the interaction of x1, …, xp, and D~i is the variance of all 

parameters except parameter xi. 

The first-order sensitivity represents the effect of the change 

of a single parameter on the target variable, and the total sensiti-

vity also reflects the effect of interaction with other parameters. 

The difference between Si and STi represents the strength of the 

interaction effect between the parameters. The greater the dif-

ference is, the stronger the interaction between parameters is. 

Therefore, when the difference is small, the effect of the inter-

action of the parameters is small and can be ignored (Shu et al., 

2018). When V1 and V2 are the target variables, the Si and STi of 

the optimized parameters d2 / d1, D / d2 and L / D of the SEOC 

are shown in Figure 9. 

According to the first-order sensitivity, D / d2 has the high-

est effect on the target variable V1, followed by L / D, and d2 / 

d1 has the lowest effect; while D / d2 has the highest effect on 

the target variable V2, followed by d2 / d1, and L / D has the low-

est effect. To sum up, D / d2 has the highest degree of effect on 

the target variable, and then special attention needs to be paid 

to this parameter when optimizing the structure of the SEOC. 

However, L / D and d2 / d1 have different effects on V1 and V2. 

This may be due to the fact that L / D affects the size of the 

cavity, which affects the vapor volume fraction in the cavity, 

while d2 / d1 affects the outlet diameter, which affects the vapor 

volume fraction at the outlet, resulting in the difference of the 

effect of these two parameters on V1 and V2. It can be seen from 

Figure 9 that the difference between the Si and STi of d2 / d1 is 

small, while the difference between the Si and STi of D / d2 and 

L / D is large. This shows that d2 / d1 does not interact with other 

parameters, but the interaction between D / d2 and L / D has an 

effect on the target variables. Therefore, in the optimization pro-

cess, we should not only focus on the effect of each parameter 

on the cavitation effect of the self-excited oscillating cavity, but 

also consider the interaction between the parameters, and then 

reasonably to select the combination of the parameters. 

 

3.3. Comparison before and after Structural Optimization 

In order to verify the superiority of each point in the Pareto 

front solutions, the structure in the solution set is simulated and 

compared with the SEOC structure existed in our laboratory. 

The structural parameters of the self-oscillation cavity selected 

from the Pareto optimal solution (Case 1) and the structural pa-

rameters of the SEOC (Case 2) existed in our laboratory and 

the results of the numerical simulation using CFD simulation 

are shown in Table 5. The positions of Case 1 and Case 2 are 

shown in Figure 6(b). The structural parameters of Case 1 are 

taken from the middle value of the Pareto front solutions and 

Case 2 is the original device parameters in our laboratory. The 

vapor phase distribution in the cavity is shown in Figure 10. 

The formula of improvement degree is defined as follows: 

 

Case1 Case2

Case2

V -V
Improvement = %d   ge e

V
e 100r      (19) 

 

where VCase1 refers to V1 in Case1 and VCase2 refers to V2 in 

Case2.  

From the simulation results of the two structures, it can be 

seen that the calculation results of the Case 1 structure are great- 

ly improved compared with the Case 2, in which V1 and V2 are 

improved by 13.46 and 38.01% respectively. This shows that 

the cavitation effect of the SEOC obtained by this optimization 

scheme is better than that of the existing SEOC existed in our 

  

(a) the first-order sensitivity and total sensitivity of 
each parameter to V1 

(b) the first-order sensitivity and total sensitivity of 
each parameter to V2 
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Figure 10. Vapor volume fraction distribution diagram of (a) Case 1 and (b) Case 2. 

 

laboratory, which proves the superiority of each point in the Pa-

reto optimal solutions. As can be seen from Figure 10, the pro-

portion of vapor in the SEOC of Case 1 is relatively high, and 

the cavitation bubble almost fills the whole cavity. While in 

Case 2, there is a higher proportion of vapor only near the cen-

ter of the cavity, a lower proportion of vapor and less cavitation 

bubbles at the edge of the cavity. This indicates that the space 

utilization rate of the SEOC of Case 1 is higher, and it also shows 

that the structure can generate more cavitation bubbles in the 

cavity, which makes the SEOC generate better cavitation ef-

fects. In addition, there are more bubbles in the exit jet of the 

SEOC of Case 1, which is beneficial to the study of SEOC cavi-

tation in the future. 

 

Table 5. Structural Parameters and CFD Simulation Results 

 d2/d1 D/d2 L/D V1 V2 

Case 1 2.88 6.09 0.4 0.7770 0.5631 

Case 2 2.0 6.0 0.5 0.6848 0.4080 

Improvement  13.46% 38.01% 

 

3.4. Study on Methylene Blue Degradation 

The numerical simulation results show that the vapor vol-

ume fraction of the optimized SEOC (Case 1) is significantly 

higher than that of the original SEOC (Case 2). This proves that 

the cavitation intensity of the optimized SEOC is improved, so 

that the water treatment capacity of the SEOC will be improved. 

In order to verify the water treatment effect of the optimized 

SEOC, methylene blue (MB) degradation experiments were 

carried out on the optimized SEOC and the original SEOC. 

In the process of HC, the degradation of MB may be due 

to the formation of hydroxyl radicals, so it is directly affected 

by the cavitation intensity. MB is relatively stable in air, its so-

lution is non-volatile and can react with hydroxyl radicals quick-

ly, so it is very suitable as a substrate for HC degradation ex-

periment. The experimental system setup is shown in Figure 11. 

There are two lines in the system, the main line and the bypass 

line. The main line mainly includes tank, pump, control valve, 

pressure gauge and HC generating device (SEOC). During the 

experiment process, one side of the pump is connected with the 

water tank, and the other side is connected with the control 

valve to make the waste water enter the nozzle, and then the 

cavitation occurs in the nozzle, and finally the waste water is 

discharged back to the water tank from the outlet. The pressure 

gauge monitors the inlet pressure of the nozzle, and the bypass 

line regulates the pressure and protects the circuit. 

During the experiment, the absorbance of MB solution 

was measured by the ultraviolet spectrophotometer (Figure 

12(a), UV759CRT, wavelength range 190 ~ 1100 nm, MB solu-

tion has the best absorbance value at the wavelength of 664 nm). 

As shown in Figure 12(b), the standard curve of methylene blue 

solution concentration is obtained by configuring different con-

centrations of MB solution to calibrate the relationship between 

absorbance (A) and MB solution concentration (CMB). The con-

centration of MB solution can be converted from the absor-

bance of the solution. 

During the experiment, the inlet pressure of Case 1 and 

Case 2 is 1 MPa, the outlet pressure is atmospheric pressure, 

the initial concentration of MB solution is 15 μmol/L, the solu-

tion volume is 5 L, the solution temperature is 25 ℃, the treat-

ment time is 120 min, and the sampling interval is 15 min. To 

ensure that the experimental conditions were in the cavitation 

state, the cavitation number was calculated as shown in Equa-

tion (20): 

 

2

2

0

1

2

vp p

v






            (20) 

 

where p2 is the downstream pressure, v0 is the fluid velocity, 

and pv and ρ are the vapor pressure and density of the liquid, 

respectively. According to the formula, the cavitation number 

in the self-excited oscillation cavity under the experimental 

conditions in this study is 0.12. Theoretically, cavitation can 

occur if the cavitation number is less than 1, and stable cavita-

tion is inevitably produced if the cavitation number is less than 

0.5. Therefore, the experimental conditions in this study are in 

a state of cavitation. The degree of degradation and degradation 

rate of MB solution under different conditions are shown in 

Figure 13. 

  

(a) Case 1 (b) Case 2 
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Figure 11. Experimental equipment and system schematic diagram. 

 

 

Figure 12. Concentration standard curve of methylene blue solution. 

 

It can be seen from Figure 13(a) that after 120 min of treat-

ment time, the degree of degradation of MB in Case 1 and Case 

2 is 16.14 and 10.12%, respectively, which is increased by 

59.5%. This means that the removal efficiency of MB in the 

optimized SEOC is obviously better than that in the original 

SEOC. Figure 13(b) shows the relationship between the first-

order kinetics ln(C0 / C) and time (the first-order model fits well, 

C is the concentration of MB solution and C0 is the initial con-

centration of MB solution). It can be seen from Figure 13(b) 

that the MB degradation rate of Case 1 (1.4 × 10-3 min-1) is also 

significantly higher than that of Case 2 (0.9 × 10-3 min-1).  

Similar results have been reported by some scholars. Li et 

al. (2017) carried out MB degradation experiment with the op-

timized orifice plate, and reported that the removal rate of HC 

alone was less than 3%. Çalışkan et al. (2017) studied the de-

gradation effect of HC on RR180 in a pilot reactor, and reported 

that the removal efficiency of RR180 was only 4.6% when HC 

was used alone. Wang et al. (2020b) also presented similar ex-

perimental results in the process of HC degradation of textile 

wastewater, and the degradation degree of HC alone was only 

8.16%. It is indicated that the degradation capacity of organic 

matter by HC is limited, and the removal of MB by HC alone 

is not significant. In summary, the comparative experiment shows 

that the optimization method of this study can obtain the pre-

ferable SEOC structure parameters, which proves the effective-

ness of the optimization method. 

 

3.5. Future Research Work 

In this study, OLHD, surrogate model, NSGA-II and uni-

form point addition strategy are used in the optimization pro-

  

(a) Schematic diagram of water treatment unit (b) Experimental system setup diagram 

  

(c) Three-dimensional cross-sectional view (d) SEOC device 

 

  

(a) Sample and absorbance measuring 
equipment 

      (b) Concentration standard curve 
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Figure 13. (a) Degree of degradation and (b) first-order kinetic fitting. 

 

cess. The use of these methods has achieved good optimization 

results, but this is not the most perfect result. For example, ex-

perimental design method and addition strategy used need to 

be further explored. Although OLHD has achieved good results, 

the amount of calculation generated by the sample points is still 

relatively large, so it is necessary to further explore the experi-

mental design method which can reduce the amount of calcu-

lation while ensuring the same results. As for the addition stra-

tegy, this study only uses the simplest method, the addition stra-

tegy also needs to be improved. For instance, the expected im-

provement (EI) adding point criterion has the ability to develop 

the local optimal region and explore the potential optimal re-

gion, which can increase the iterative convergence speed in the 

optimization process and improve the utilization efficiency of 

simulation or experimental resources (Liu et al., 2018; Zhang 

et al., 2018). Finally, although the experimental study of MB 

wastewater degradation was carried out, it was verified that the 

degree of degradation of the SEOC was significantly improved 

after optimization. However, the degradation effect of HC is 

not obvious when it is used alone, so it is necessary to further 

explore the methods to improve the degradation effect of HC 

technology. Furthermore, the optimization method proposed in 

this study is suitable not only for the optimization of SEOC, but 

also for the other similar flow field optimization problems. 

4. Conclusions 

This study aims to develop an integrated method for opti-

mizing the structure of SEOC, which incorporates techniques 

of CFD simulation, surrogate model, and NSGA-II within a 

general framework. In this study, the vapor volume fraction in 

the cavity and the vapor volume fraction at the outlet are taken 

as the optimization objectives, aiming at the problems of inac-

curate optimal structure and large amount of calculation in the 

optimization design of SEOC, an optimization design method 

of SEOC structure for AOPs based on surrogate model and 

CFD simulation is proposed to obtain the preferable cavitation 

effect. The following conclusions were drawn from this study. 

(1) The combination of techniques of CFD simulation, sur-

rogate model and NSGA-II is applied to the structural optimi-

zation design of SEOC to improve the cavitation effect of SEOC, 

so as to improve the yield of hydroxyl radicals in the cavitation 

process, and finally improve the degradation degree of waste-

water. 

(2) An optimization method of SEOC structure based on 

surrogate model is proposed. A set of SEOC structure parame-

ters obtained by this optimization method are d2 / d1 = 2.88, D 

/ d2 = 6.09, and L / D = 0.4. Compared with the SEOC existed 

in our laboratory, the vapor volume fraction in the cavity and 

the vapor volume fraction at the outlet is increased by 13.46% 

and 38.01% respectively, thus enhancing the cavitation intensi-

ty and improving the degradation efficiency. 

(3) The global sensitivity analysis is carried out by using 

Sobol sensitivity analysis method to explore the effect of each 

parameter on the target variable. The analysis shows that the 

effect degree of the target variable V1 from high to low is D / 

d2, L / D and d2 / d1; the effect degree of the target variable V2 

from high to low is D / d2, d2 / d1 and L / D; and the interaction 

between the parameters D / d2 and L / D will affect the cavita-

tion effect of the SEOC. 

(4) The degradation experiment of MB is carried out on 

the SEOC before and after the optimization, and the degree of 

degradation was 10.12 and 16.14%, respectively, and the de-

gradation capacity increases by 59.5%. This shows that the 

degree of degradation of MB in the self-excited oscillating cav-

ity after optimization is significantly improved, which verifies 

that the optimization method in this study is effective.  

This study will not only play a significantly guiding role 

on the optimization design of SEOC for AOPs to obtain the pre-

ferable cavitation effect, but also provide support for the opti-

mization of a class of hydrodynamic structure problems. 
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