
41 

  

ISEIS 
Journal of 

Environmental 
Informatics 

  

 

 

Journal of Environmental Informatics 40(1) 41-55 (2022) 

www.iseis.org/jei      

 

Solar Photovoltaic Utilization in Electricity Generation to Tackle Climate Change 
 

H. Demirhan1 * 

 
1 School of Science, Mathematical Sciences, RMIT University, Melbourne 3000, Australia 

 
Received 25 May 2021; revised 01 February 2022; accepted 03 February 2022; published online 15 April 2022  

 
ABSTRACT. Climate change is threatening nature by impacting the vital processes of life. The efforts to mitigate climate change mainly 

focus on utilizing renewable energy sources in high energy consumption areas. This article studies the contribution of solar photovoltaic 

(PV) utilization in electricity generation to climate change mitigation through a comprehensive modeling framework. The mean tempera- 

ture anomalies, anthropogenic greenhouse gas emissions, solar photovoltaic capacity installations, and solar cycle length are considered 

using Australian data between 2001 and 2019. It is demonstrated that solar PV installations have a strong potential to contribute to 

mitigating climate change. A 1% increase in average PV installations contributes to reducing the temperature anomalies by 0.05%, and 

when considered in the same model with greenhouse gas emissions, a 1% increase in sunspot numbers increases temperature anomalies 

in Australia by 0.71% in the long-run. A low-magnitude relationship between solar cycle length and greenhouse gas emissions is also 

observed. The results of this study are beneficial in specifying more accurate targets, better allocation of limited climate action budgets, 

and better planning and management of solar energy investments.   

 
Keywords: autoregressive distributed lag (ARDL) bounds testing, cointegration, greenhouse gas emissions, renewable energy, solar cycle, 

surface temperature anomalies 

 

 

 

1. Introduction 

New technologies and economic development lead to ac- 

tivities that increase electricity demand. Global primary energy 

consumption increased by 1.7% per year in the last decade (Zhang 

et al., 2019). Electricity and heat production share 25% of the 

generated greenhouse gas (GHG) emissions (Esen et al., 2017). 

Although energy consumption cannot be considered as the only 

reason for climate change or GHG emissions, the most signifi- 

cant part of GHG emissions is sourced from energy related an- 

thropogenic activities, and it is considered to be the major thread 

to globalized human civilization in this century (Breyer et al., 

2015; Elum and Momodu, 2017). 

According to International Energy Agency, 28% of global 

energy generation was sourced from renewables in the first quar- 

ter of 2020. The share of solar photovoltaic (PV) systems in 

global electricity generation is almost 3% in 2020 (IEA, 2021), 

while PV generation can supply 30 ~ 50% of electricity in com- 

petitive markets (Creutzig et al., 2017). Findings in the recent 

literature show that independent of their scale, PV systems can 

contribute up to 55% over different long-run strategy scenarios 

(Breyer et al., 2015; Jäger-Waldau et al., 2020), although there 

are some obstacles to the propagation of solar PV generation 

(Shahsavari and Akbari, 2018). PV utilization in electricity gen-  
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eration has excellent potential to mitigate climate change. Its 

main contribution is to reduce GHG emissions and air pollution 

by generating almost zero carbon dioxide (CO2), nitrous oxide, 

methane gases, and waste products (Tsoutsos et al., 2005; Mas- 

son et al., 2014). Due to the strong correlation between GHG 

emissions and temperature anomalies (NOAA, 2021), lower GHG 

emissions translate into reduced temperature anomalies. The 

speed of increase in temperature anomalies is 0.22 ℃/decade 

(Susskind et al., 2019), and two-third of the warming has oc- 

curred since the 1970s (NOAA, 2020), which show the swift 

response of the temperature anomalies to the changes in GHG 

emissions in a short period of time. This rapid relationship can 

also be seen in the mitigation of temperature anomalies by re- 

ducing GHG emissions. However, the relationship patterns be- 

tween temperature anomalies, GHG emissions, and PV instal- 

lations need to be figured out to understand the magnitude and 

speed of the mitigation in temperature.  

In general, the contribution of solar energy utilization to 

the mitigation of climate change is investigated using indices or 

descriptive analyses without delving into the contribution of spe- 

cific forms of solar energy utilization (Abdullah et al., 2014; 

Breyer et al., 2015; Shahsavari and Akbari, 2018; Jäger-Waldau 

et al., 2020). In this sense, there is insufficient information on 

the particular impact of solar PV capacity installations on tem-

perature anomalies as a proxy of climate change. Revealing the 

amount of mitigating effect of solar PV installations on climate 

change is needed to set more achievable targets and strategies 

in climate emergency action plans and optimal use of economic 

resources to tackle climate change from the energy production 
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perspective. Due to the notable share of solar PV generation in 

the range of renewables, it is important to understand the contri- 

butions of solar PV utilization to the mitigation of climate change. 

In the literature, the studies to model different proxies of 

climate change such as temperature anomalies employ Granger 

causality analysis, correlation/autocorrelation analysis, and lin- 

ear and nonlinear lagged models (Fierro and Leslie, 2014; Breyer 

et al., 2015; Ayers, 2017; Muryshev et al., 2017; Booth, 2018; 

Hébert and Lovejoy, 2018). The long-run relationship between 

the concentration of CO2 and global temperature is analyzed by 

using spectral density estimates, the Pearson correlation coeffi- 

cient, and trend models (Davis, 2017). However, when working 

with time series data, the main source of information, namely 

autocorrelation in the series, needs to be considered by the em- 

ployed statistical methods. In this sense, the use of a rolling cor- 

relation analysis can provide more accurate results than either 

the Pearson correlation coefficient or a non-parametric alterna- 

tive. Furthermore, autoregressive distributed lag (ARDL) bounds 

testing approach (Pesaran et al., 2001), which tests for the spu- 

rious regression phenomena, has been used in climate modeling 

to explore long and short-run effects of various features on cli- 

mate change. Although ARDL bounds and Granger causality 

analyses are used in climate research, to the best of our knowl- 

edge, only a limited number of studies focus on quantitatively 

estimating the contribution of solar PV utilization in electricity 

generation to the mitigation of climate change using these so-

phisticated modeling techniques. 

This article studies the short- and long-run impact of aver- 

age PV installations on climate change by using a comprehen- 

sive modeling framework that integrates the rolling correlations 

analysis, Granger causality analysis, and ARDL bounds test- 

ing. Having an insignificant signal between the dependent and 

exploratory series introduces the risk of discovering spurious 

relationships by ARDL bounds testing (Elkadhi et al., 2017; 

Emodi et al., 2018; Perez et al., 2018). Our modeling frame- 

work first statistically ensures that the signal between the pairs 

of dependent and exploratory series is significant using rolling 

correlation analysis. Since ARDL bounds testing is supported 

with Granger causality analysis, the likelihood of obtaining spu- 

rious relationships is minimized. A graphical approach for se- 

lecting lag orders of the Granger causality test is also intro- 

duced. Our modeling framework is suitable for any analysis that 

focuses on the short- and long-run relationship between climate 

change proxies and other exploratory features. The main prac- 

tical contributions of this research are that i) the potential amount 

of reduction in temperature anomalies for every kW installed 

PV capacity is revealed. This is a crucial input for strategy mak- 

ing processes to mitigate climate change. ii) The impacts of 1% 

change in PV installations, 1% change in sunspot numbers, and 

one metric ton of carbon dioxide equivalent (Mt CO2-e) change 

in GHG emissions on the temperature anomalies are shown. iii) 

It is numerically demonstrated that solar cycle length needs to 

be considered in the climate change models through the exis- 

tence of a significant signal between the pairs of sunspot num- 

bers and GHG emissions and temperature anomalies, Granger 

causality between temperature anomalies and sunspot numbers, 

and long-run equilibrium relationship between GHG emissions 

and sunspot numbers. Although sunspot numbers cannot be con- 

sidered the primary source of climate change, their significant 

impact needs to be considered in climate related research. 

2. Dataset and Methodology 

2.1. Data and Overview of the Study System 

In this study, the study system consists of Australia. Ac- 

cording to the Australian National Greenhouse Gas Inventory, 

33.3, 19.6, and 19.1% of GHG emissions in 2020 (excluding 

land-use, land-use change, and forestry emissions) were due to 

electricity generation, stationary energy, and transportation, re- 

spectively (DI, 2021b). In Australia, 7% of energy consump- 

tion was supplied from renewables in 2019 ~ 2020, and the shares 

of solar PV and solar hot water were 18.1 and 4.4%, respective- 

ly (DI, 2021a); hence, the share of solar PV generation is about 

1.3% in the energy mix in Australia. In 2018 ~ 2019, the share 

of solar PV generation in renewables was 13.4% (DI, 2021a). 

This corresponds to an almost 5% increase in the share of PV 

generation in one year. It is projected that solar energy use in 

Australia will increase by 5.9% per year to 24 PJ in 2029 ~ 

2030 (Bahadori and Nwaoha, 2013). 

The observations of the study system are recorded over the 

timespan of September 2001 and June 2019. Summary statis- 

tics and 95% confidence intervals of mean for temperature anom- 

alies, GHG emissions, PV installations, and sunspot numbers 

series are given in Table 1. 

The main climate change proxy is the mean surface temper- 

ature anomaly that shows departures from the long-run average 

of surface temperature (Hébert and Lovejoy, 2018; Li et al., 2020; 

Valipour et al. 2021). The quarterly mean temperature anoma- 

lies series, which represents departures from the 1961 ~ 1990 

average temperatures, is obtained from the Australian Govern- 

ment Bureau of Meteorology’s Climate Change and Variability 

database (BOM, 2021a, 2021b). Consequently, this series meets 

the Australian Government Bureau of Meteorology data quality 

standards. The time series plot of the quarterly mean tempera- 

ture anomalies series is given in Figure 1. 

The temperature anomalies fluctuated around a mean level 

of 0.525 ℃ until Q3 of 2012. Then, the mean level shifted up 

to 1.122 ℃ between Q4 of 2012 and Q2 of 2019 as a strong 

impact of climate change. The overall mean of the temperature 

anomalies series was 0.749 ℃ with a 95% confidence interval 

of 0.602 and 1.929 ℃. Such a wide confidence interval for the 

temperature anomalies is due to high positive and negative fluc- 

tuations resulting from climate change throughout September 

2001 and June 2019. The mean temperature anomalies series is 

shown by {Tt: t = 1, 2, …, 72} and called “temperature anom- 

alies series” throughout the article. 

GHG emissions are recorded and maintained by the Aus- 

tralian Government Department of Industry, Science, Energy 

and Resources (DI). DI gets data from National Greenhouse 

Accounts that conform to the international guidelines of the Unit-

ed Nations Framework Convention on Climate Change and is 

subject to quality assurance processes to provide reliable data  

(DI, 2019). Quarterly GHG emissions series was obtained from 
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Table 1. Summary Statistics and 95% Confidence Intervals of Mean for Temperature Anomalies, GHG Emissions, PV 

Installations, and Sunspot Numbers Series 

Series Min Median Mean Max SE 
95% Confidence interval 

Lower Upper 

Temperature anomalies (℃) –0.870 0.748 0.749 2.120 0.075 0.602 1.929 

GHG emissions (Mt CO2-e) 130.600 141.200 142.100 157.700 1.013 140.115 416.726 

PV installations (kW) 12.3 10497.2 10026.1 50779.0 1263.3 7550.1 24824.3 

Sunspot numbers 2.767 49.583 60.829 187.433 5.975 49.118 157.101 

Note that SE represents standard error. 

 

 
 

 

Figure 1. Time series plots of raw quarterly mean temperature anomalies, raw quarterly seasonally adjusted mean GHG 

emissions, raw quarterly average PV installations, and raw quarterly smoothed sunspot numbers series. 
 

“Data Table 1B: Quarterly Emissions by Sector since 2001 ~ 

2002, “Seasonally Adjusted” National Greenhouse Accounts 

Report (National Greenhouse Accounts, 2021). The average quar-

terly GHG emission in the observation period was 142.1 Mt 

CO2-e with a relatively small standard error (Table 1); hence, 

the range of GHG emissions in Australia over the observation 

period is also narrow. Raw quarterly seasonally adjusted GHG 

emissions series is plotted in Figure 1. There are multiple trends 

in the series as an indication of nonstationarity. Although the 

ARDL bounds test can be applied with nonsta-tionary data, sta-

tionarity is needed for the Granger causality test. Since nonsta-

tionarity can cause discovering spurious relationships, the trend 

adjustment was applied to get both trend- and seasonally- adjust-

ed GHG emissions series for the analysis. Adjustments were 

applied to other series for the same reason if the nonstationarity 

exists. For the adjustment, the Seasonal and Trend decomposi-

tion using Loess (STL) decomposition (Hyndman and Athana-

sopoulos, 2018) was used with the trend-cycle window of 13 

and the seasonal window of 13. The time series plot of the ad-

justed GHG emissions series is given in Figure 2. After the ad-

justment, there is no evidence of either trend or seasonality in 

the GHG emissions series. The GHG emissions series is denot-

ed by {Et: t = 1, 2, …, 72} throughout the article. 

The quarterly installed average PV capacity series was tak- 

en from the Australian Government Clean Energy Regulator 

(CER) database, and the quarterly mean installed average PV 

capacity series was calculated for our analysis. This database 

includes all the solar PV generator systems that have been in- 

stalled under the Commonwealth Government’s Renewable En- 

ergy Target scheme (DI, 2018). Australian PV Institute pub-

lishes live and historical PV energy generation data from the 

CER’s databases. The series is published by Australian PV In-

stitute (2021). CER applies thorough data quality control proce-

dures through an online registry. The mean of quarterly average 

PV installations within the observation period was 100026.1 kW 

with a standard error of 1263.3 kW with an extremely large 

range and variation (Table 1). These statistics imply a large var- 

iation in the raw series displayed in Figure 1. There was a signi-  
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Figure 2. Time series plots of adjusted quarterly mean GHG emissions, log of adjusted quarterly PV installations, and log of 

adjusted quarterly smoothed sunspot numbers series. 

 

ficant upward movement in 2010 based on the subsidies given 

by the Australian Government, such as the solar credit rebate 

scheme for PV installations. However, the average installed PV 

capacity came back to a mean level, which was significantly high-

er than the level before 2010 and showed a slightly upward trend 

after 2015. This series was adjusted for trend using the STL 

decomposition with the trend-cycle window of 5 and the sea-

sonal window of 13 to remove the nonstationarity. The logarith-

mic transformation was also applied to reduce the variance of 

PV installations series due to large fluctuations between 2010 

and 2012. The adjusted average PV installations series is denot-

ed by {Pt: t = 1, 2, …, 72} throughout the article. Since there 

are negative values in Pt series, log(Pt + |min(Pt)| + 0.1) was 

used, where |•| is the absolute value of the inner expression for 

the logarithmic transformation. The time series plot of the ad-

justed quarterly log-average PV installations series is shown in 

Figure 2. The drop around 2010 ~ 2012 is due to the explosive 

increase in the raw PV installations series around the same time-

frame. 

Solar cycle lengths have been used as a predictor for the 

surface temperature and its anomalies in the literature. An in-

verse relationship was observed between solar cycle lengths and 

surface temperatures (Friis-Christensen and Lassen, 1991; Lassen 

and Friis-Christensen, 1995, 2000; Solheim et al., 2012). Solar 

cycle length is used to predict global average surface tempera-

ture anomaly along with CO2 by using the sunspot numbers as 

the proxy of solar cycle lengths to give temperature anomaly 

forecasts for a horizon up to 2100 (Kristoufek, 2017; Booth, 

2018). The study of Booth (2018) established significant eviden-

ce for the impact of solar cycle length on transient climate re-  

sponse. The sunspot numbers series used in this study originat-

ed from the U.S. Department of Commerce, National Oceanic 

and Atmospheric Administration (NOAA), Space Weather Pre-

diction Center (SWPC), Space Weather Operations (SWO) Unit 

(SWPC NOAA, 2021). The dataset was published by SWPC 

NOAA (2021) in monthly average daily sunspot numbers. The 

data quality is subject to the data quality assurance procedures 

of NOAA. The smoothed monthly series was converted into 

quarterly series as displayed in Figure 1 to get quarterly aver-

age daily smoothed sunspot numbers series. The sunspot num-

bers have an approximately a cycle of approximately 11 years 

(Singh et al., 2011). In the considered time period, they had a 

peak in the Q1 of 2002 and then a dip in Q4 of 2008, another 

peak around 2014. On the other hand, GHG emissions made a 

peak in Q3 of 2008 and a dip in Q2 of 2014. From the de-

scriptive analysis perspective, there is a counter-movement in 

sunspot numbers and GHG emissions over the same time-

frame. This is a descriptive indication of a significant relation-

ship between these two series, which is explored in detail in 

Section 3.1. From Table 1, the mean of average daily smoothed 

sunspot numbers was 60.83 with a standard error of 5.97 with 

a large range and variation. Since the raw series displays multi-

ple trends, the stationarity of the series needs to be ensured. A 

trend adjustment was made using STL decomposition with the 

trend-cycle window of 7 and the seasonal window of 13. The 

quarterly average daily sunspot numbers series is shown by {St: 

t = 1, 2, …, 72} and called “sunspot numbers series” (SSN) 

throughout the article. The logarithmic transformation was ap-

plied to stabilize the adjusted series as much as possible using 

the formula log(St + |min(St)| + 0.1) due to the negative values 
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in the adjusted series. The time series plot of the adjusted quar-

terly sunspot numbers series is shown in Figure 2. After the ad-

justment, the periodicity of sunspot numbers is not seen with-

in the considered time window. 

The analysis of solar PV utilization’s impact on the temper-

ature anomalies requires simultaneous data on exploratory vari-

ables and the dependent variable in the same frequency, at least 

on the Australia scale. Also, the data need to be going through 

a quality control process of the data provider. For the analysis 

presented in this study, other variables from weather and solar 

energy utilization data would also be thought of as explanatory 

variables. However, to the best of our knowledge, quarterly so- 

lar thermal systems data is unavailable for Australia from the 

third quarter of 2001 to the second quarter of 2019. PV data is 

the only available solar energy utilization data that goes through 

a quality control process and is available in quarterly frequency 

over the study’s timespan. 

A missing model component distracts the assumptions of 

the model, such as the randomness of residuals. The informa- 

tion in the dependent variable not captured by a model (a func- 

tion of explanatory variables) goes to the residuals. Therefore, 

the suitability of a model and the sufficiency of explanatory vari- 

ables are assessed by residual analysis. The primary source of 

information in time series data is the autocorrelation in the de- 

pendent variable. So, the impact of a missing explanatory vari- 

able(s) is observed in the residual analysis by seeing a signifi- 

cant autocorrelation in residuals which is not captured by the 

model and nonnormality of the residuals. In our case, it is demon- 

strated that there is no residue autocorrelation left in residuals, 

and they are normally distributed as expected in Section 3. This 

implies that the model captures all the information in the depen- 

dent variable; hence, the current exploratory variables provide 

the model with sufficient explanatory capacity to acquire the var-

iation in the temperature anomalies. Therefore, not having an-

other solar variable does not impact the generalizability of the 

work. Another consideration for including other weather and so- 

lar variables in the same analysis with PV installations is that it 

would create misleading results due to multicollinearity. Thus, 

in this work, the impact of PV installations is solely focused on 

among many other solar energy-related series. Full dataset and 

R codes for implementing all the time series adjustments and 

analyses in the article are given in the Electronic Supplemen-

tary Material. 

 

2.2. Rolling Correlation Analysis 

It is essential to ensure that the signal in the series is signifi- 

cantly different from pure random noise or not dominated by the 

physical variabilities, especially when the series is relatively short 

or includes low-frequency data. The rolling correlation analysis 

proposed by Gershunov et al. (2001) is implemented to check if 

the signals can significantly be distinguished from the white 

noise. The null hypothesis of the test is that “the signals in a pair 

of series are not significantly different from the white noise.” 

In this approach, standard deviations of empirical rolling corre-

lations of two original series and those of two correlated white 

noise series at the same magnitude as the original series are com-

pared by simulating the white noise series many times. Since 

the white noise series are replicated many times, the (1 – α)% 

level confidence limits are produced for the standard deviation 

of rolling correlations in the white noise series. Then, if the em-

pirical standard deviation of rolling correlations is between the 

confidence limits, it is concluded that there is no significant dif-

ference between the signals in the series and the white noise. On 

the other hand, it is decided that the correlation between the se-

ries is physical if the empirical standard deviation is outside the 

confidence limits (Gershunov et al., 2001). The “rolCorPlot” func-

tion from the “dLagM” R package (version 1.1.3) is used to im-

plement this test (Demirhan, 2020). 

 

2.3. Unit-Root and Granger Causality Testing 

A time series is either trend- or difference-stationary. If the 

series is trend-stationary, removing the trend makes the series 

stationary. Whereas, if the series is difference-stationary, it is 

integrated of order d, i.e. I(d), and taking the d-th difference of 

the series makes it stationary. To check for the stationarity of the 

series, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), 

and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit-root tests 

are employed using the R package “urca” (Said and Dickey, 1984; 

Kwiatkowski et al., 1992; Banerjee et al., 1993; Cryer and Chan, 

2008; Pfaff, 2008). The null hypothesis of the ADF and PP tests 

is that “a unit-root is present in the time series”. Whereas the 

null hypothesis of the KPSS test states that “the time series is 

trend-stationary”. 

Due to a numerical linear relationship between two nonsta- 

tionary series, a spurious correlation can be obtained between 

them. This implies the impracticality of using the exploratory 

series {Xt} in forecasting the dependent series {Yt}. Granger test 

of causality is a statistical procedure to test if {Xt} series is use- 

ful in forecasting {Yt} series (Granger, 1969). The null hypoth- 

esis of the Granger causality test is that “{Xt} does not Granger 

cause {Yt}”. The most critical input of this test is the number of 

lags of {Xt} and {Yt} series included in the model (Thornton and 

Batten, 1985). Two linear models are constructed to implement 

the Granger test based on pre-specified lag orders of {Xt} and 

{Yt} series. The lag orders determine the number of parameters 

in the models, creating a trade-off between the bias created by 

a parsimonious parameterization and inefficiency due to over- 

parameterization. This trade-off is addressed by using informa- 

tion criteria (Thornton and Batten, 1985). The number of lags 

can be specified by using information criteria such as Akaike 

Information Criterion (AIC) or Bayesian Information Criterion 

(BIC) (Akaike, 1970; Geweke and Meese, 1981). While AIC 

penalizes the log-likelihood by the number of parameters in the 

model, BIC simultaneously considers the number of parame- 

ters in the model and the sample size. AIC and BIC tend to favour 

a large lag order for small to moderate samples, hence, a false-

positive Granger causality finding (Bruns and Stern, 2019). In 

this sense, considering only one lag order based on either AIC 

or BIC is a restrictive approach and frequently generates false-

positive findings in the literature that focuses on Granger causal- 

ity between energy use and economic output (Bruns and Stern, 

2019). On the other hand, researchers can consider running mul- 

tiple Granger tests with different lag lengths and use only the 
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ones that reject the null hypothesis of the Granger test, which 

is called “p-hacking” and has the potential to produce excess 

significance (Bruns and Stern, 2019). To avoid excess signifi- 

cance, the lag order for the Granger test is selected by visualiz- 

ing the p-values computed for many lags along with the corre- 

sponding rescaled AIC and BIC values in the same plot. Rescal- 

ing is done by dividing AIC or BIC values by their maximum 

for plotting purposes. Instead of selecting the lag order that gives 

significant causality (to avoid “p-hacking”), the lags corres-

ponding to the notable drops in both or either of AIC and BIC 

over all the plotted ranks are considered and the corresponding 

p-values are taken into account for the test. A drop in the informa- 

tion criteria implies that the bigger model where the drop oc- 

curs provides us with a notably better model in terms of the good-

ness-of-fit since the increase in the goodness-of-fit dominates 

the penalty applied by the information criteria due to the increas- 

ing size of the model. Accordingly, a significant p-value im- 

plies that the corresponding lag order can be used for testing. 

We do not straightforwardly go for the minimum AIC or BIC 

in this approach. Instead, we look for a notable drop that indi-

cates a considerable improvement in the goodness-of-fit before 

reaching out to large lag orders, which is the main reason for 

overfitting caused by the use of information criteria. This ap- 

proach can be further investigated in terms of its sensitivity and 

specificity in hypothesis testing. However, this is outside the 

scope of this study.  

The “grangertest” function from the R package “lmtest” is 

used to implement the Granger causality test (Zeileis and Ho- 

thorn, 2002). The code to create the mentioned visualization is 

given in Section 2.5 of the Electronic Supplementary Material. 

 

2.4. ARDL Bounds Testing 

ARDL models allow the inclusion of independent time se- 

ries into autoregressive models. Cointegration analysis is used 

to assess the short- and long-run relationships between a depen- 

dent series and a set of independent series (Pesaran et al., 2001). 

ARDL bounds testing approach proposed by Pesaran et al. (2001) 

provides a practical way of conducting the cointegration analy- 

sis. The stationarity of the series is one of the major considera- 

tions in cointegration analysis (Pretis and Hendry, 2013). In this 

sense, the ARDL bounds test can be applied with nonstationary 

series provided that they are I(1). ARDL bounds testing is more 

robust to a small sample size than its counterparts (Zhai et al., 

2017). This makes it reliable to run a cointegration analysis with 

a relatively shorter series (Zhai et al., 2017). It also provides 

short- and long-run relationships simultaneously by one analysis 

(Zhai et al., 2017). Pesaran et al. (2001) defined five different 

settings for the structure of constant and trend in the equilibri- 

um relationship. The details of the test and its implementation 

are given in Section 1 of the Electronic Supplementary Materi- 

al. The ARDL bounds test is conducted based on an F-statistic 

under the null hypothesis that “there is no cointegration among 

the series” against the alternative hypothesis stating the exis- 

tence of cointegration. If a significant cointegration is identi-

fied, then the general error correction model (ECM) given in 

Equation (S2) of the Electronic Supplementary Material is fit-

ted to figure out the long-run equilibrium relationship between 

the series and their short-run effects on temperature anomalies. 

 

2.5. Modeling Framework 

The proposed modeling framework integrates rolling cor- 

relations analysis, Granger causality tests, and ARDL bounds 

testing into a framework to demonstrate the relationship pat-

terns between temperature anomalies, GHG emissions, sunspot 

numbers, and PV utilization. The flow diagram of the modeling 

framework proposed in this study is given in Figure 3. The anal-

ysis starts with a descriptive analysis of the dataset, including 

testing the significance of signal between pairs of dependent 

and exploratory series. If the signal is significant, then the anal-

ysis continues in two arms: i) implementing the Granger cau-

sality test at many lag orders and ii) investigating if all the se-

ries are integrated of the maximum order of one. In the first arm 

of the analysis, the p-values of Granger causality tests, rescaled 

AIC, and rescaled BIC are displayed in a plot, and the p-value 

where a drop occurs in AIC and/or BIC is taken to decide the 

significance of the Granger causality. If the Granger causality 

is significant, the Granger causality test results are merged with 

ARDL bounds testing to specify the ARDL model used in ARDL 

bounds testing. Also, the results of Granger causality tests are 

interpreted to draw conclusions. In the second arm of the anal-

ysis, if all the series are integrated of the maximum order of 

one, the ARDL models are specified as the next step where the 

two arms of the analysis intersect. Then, the lag orders are spec-

ified, and the ARDL bounds testing is carried on. The essential 

step of the framework is the diagnostic checking of the model 

assumptions. The serial independence of residuals, homosce-

dasticity of residuals, normality of residuals, the correctness of 

the model’s functional form for the lag orders of the test, and 

stability of residuals are demonstrated for the validity of the 

ARDL bounds test results. If all the assumptions are validated, 

the analysis is terminated by interpreting all the results in rela-

tion to the research questions. Suppose there is an insignificant 

signal, higher orders of integration, or violation of assumptions 

in the flow. In that case, we need to terminate the analysis and 

go back to the dataset to fix the issue. 

From Figure 3, after a descriptive analysis such as in Sec- 

tion 2.1, we first need to demonstrate that the correlation pat- 

terns between the dependent and exploratory series, namely the 

signals between the pairs of the series, are significantly differ- 

ent from random noise. The rolling correlation analysis of Ger-

shunov et al. (2001) is used for this purpose. This step ensures 

that there is significant information to be captured by modeling 

and helps the practitioner to avoid detecting spurious relation- 

ships. Then, Granger causality tests are implemented by mak-

ing the selection based on the changes in AIC and BIC, as ex-

plained in Section 3.2. This way, we aim to avoid detecting spu-

rious relationships. In parallel, the unit root tests are imple-

mented to ensure the main assumption of ARDL bounds testing 

that the series are integrated up to a maximum order of one. For 

the specification of the model that involves deciding on the ex- 

ploratory series to be included in the model, significant Gran- 

ger causalities between the dependent and the exploratory se-  
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Figure 3. Flow diagram of the modeling framework.  

 

ries are considered. The search algorithm of Demirhan (2020) 

is employed to specify the lag orders for the series in the model. 

After implementing the ARDL bounds test, we need to ensure 

that none of the assumptions of the ARDL bounds test is violat- 

ed through a comprehensive diagnostic checking. The outputs 

of both ARDL bounds and Granger causality tests are consid-

ered simultaneously to draw inferences. 

3. Results 

3.1. Rolling Correlation Analysis 

The rolling correlation analysis is implemented to analyze 

the correlation structure between two time series over different 

time windows. This analysis is used to test if the signals in the 

pairs of {Tt, Et
*}, {Tt, Pt

*}, and {Tt, St
*} series are significantly 

different from the white noise series or not (Gershunov et al., 

2001). Since the logarithmic transformation changes the corre- 

lation structure of the series, raw series Et
*, Pt

*, and St
* are used 

for the rolling correlations analysis in this section. In the rolling 

correlation analysis, a narrow window length examines the sig- 

nal for closer quarters, and a wide window length covers the cor- 

relation over several years. Since the length of the series is not 

relatively long, a large window length is not suitable for the anal- 

ysis. The window lengths of 5, 7, 11, 15, and 17 were taken to 

cover small, moderate, and relatively large windows for testing. 

Figure 4 shows the rolling correlations between the pairs of {Tt, 

Et
*}, {Tt, Pt

*}, {Tt, St
*}, and {Et

*, St
*}. In Figure 4, the dashed 

red lines show the 95% confidence interval limits for the mean 

of the average rolling correlations indicated by the horizontal 

solid line. The bold, solid line shows the average rolling corre-

lation over the widths. 

The rolling correlations between temperature anomalies and 

GHG emissions came down to low levels from moderate to high 

at the beginning of the 2000s. Then, an increase to a positive and 

moderate level was seen around 2012. The overall average rolling 

correlation hited a negative, moderate-to-high level before 2015 

and shifted towards positive values by 2020. This can be due to 

the impact of another variable and efforts made to mitigate the 

temperature anomalies. The rolling correlations between tem-

perature anomalies and PV installations in Australia navigated 

up and down in a range of moderate-to-low positive and nega- 

tive correlations until 2010. Due to the enormous increase in the 

investments in the utilization of solar radiation as a renewable 

energy source in 2010, the rolling correlation patterns jumped 

to a negative moderate-to-high value and had remained there for 

almost four years. This implies the mitigating potential of solar 

investments on temperature anomalies. Then, possibly due to 

the reduced rate of increase in average PV installations, a de- 

crease in the magnitude of the rolling correlations towards a pos- 

itive, low-to-moderate level was observed by 2020. The rolling 

correlations between temperature anomalies and SSN fluctuat- 

ed between negative and positive moderate levels until 2012, 

and after a drop-down to –0.7 level, it decreased in magnitude 

and continued to swing around low levels of rolling correlation. 

A moderate negative overall rolling correlation was observed 

between GHG emissions and SSN. The correlation between GHG 

emissions and SSN within a one- to two-year window rose to a 

very high magnitude around 2010 and 2014, where these series 

had almost opposite trends (Figure 1). This strongly indicates a 

significant relationship between GHG emissions and a non-

anthropogenic feature SSN. 

To test the significance of signals between the considered 

pairs of temperature anomalies and the exploratory features, stan- 

dard deviations of rolling correlations and corresponding 95% 
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Figure 4. Rolling correlations between temperature anomalies and GHG emissions, PV installations, and SSN series for the window 

lengths of 5, 7, 11, 15, and 17. Flat black and red lines show the overall mean level and the corresponding 95% confidence interval. 

 

test limits for all pairs and 90% test limits for the pair of temper- 

ature anomalies − SSN are given in Table 2. At a 5% level of 

significance, the signals between temperature anomalies and GHG 

emissions and those between temperature anomalies and PV in-

stallations are significant for the widths of 7, 11, 15, and 17. 

The rolling correlations between GHG emissions and SSN are 

significant for all window widths. Those between temperature 

anomalies and SSN are significant at a 5% level of significance 

for the window width of 5 and at a 10% level of significance 

for the widths of 11, 15, and 17. Overall, it is concluded that 

the signals between the pairs of {Tt, Et
*}, {Tt, Pt

*}, {Tt, St
*}, and 

{Et
*, St

*} are all significantly different from the white noise char-

acteristic. 

This result implies that using temperature anomalies series 

as a dependent feature and GHG emissions, PV installations, and 

SSN series as exploratory features for further analyses is suit- 

able. Based on the significance of the signal between GHG emis- 

sions and the SSN series, analysis of the relationship between 

these series is applicable. Therefore, it is safe to proceed to the 

next Granger causality analysis step and assess the degree of 

integration in the proposed modeling framework in Figure 3. 

 

3.2. Degree of Integration 

The results of unit-root tests applied to ensure temperature 

anomalies and the adjusted GHG emissions, PV installations, 

and SSN series are either I(0) or I(1) are given in Table 3. It is 

concluded that at a 5% level of significance that there is no unit 

root for the temperature anomalies, GHG emissions, PV installa- 

tions, and SSN series (I(0)) by ADF, PP, and KPSS tests; hence, 

the main assumption of the ARDL bounds test is satisfied. Based 

on these results, it is appropriate to proceed with the model spec-

ification for ARDL bounds testing as per the proposed model-

ing framework in Figure 3. 

 

3.3. Granger Causality Analysis 

Since the Granger causality test is sensitive to the choice 

of the lag orders, instead of reporting a single p-value for a pre- 

determined lag order, p-values of the Granger causality test and 

rescaled AIC and BIC values are plotted for a range of lag or-

ders in Figure S2 Supplementary Material for the {Yt, Xt} pairs 

of {Tt, Et}, {Tt, Pt}, {Tt, St}, {Et, Tt}, {Et, St}, and {Pt, Tt}. 

Following the Granger test arm of the modeling flow in Figure 

3, AIC and BIC values are rescaled by dividing to their maxi-

mum over the considered range of lag orders to plot AIC and 

BIC values next to the p-values. From Figure S2, it is expected 

to see a significant p-value ideally for the lag where a drop oc-

curs in AIC and/or BIC to decide the significance of the Gran-

ger causality. Accordingly, there is a significant Granger cau-

sality between temperature anomalies and GHG emissions (Pan-

el (a)), temperature anomalies and SSN (Panel (e)), and PV in-

stallations and temperature anomalies (Panel (d)). GHG emis-

sions and SSN contain useful information to forecast tempera-

ture anomalies, which can also be used to forecast PV installa-

tions. This result follows from the increasing PV investments 

to mitigate climate change. For the test between temperature 

anomalies and PV installations (Panel (c)), p-values that are 

close to the 10% significance level are seen at lags 10 and 17. 
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There are also many significant lags, including the one that cor-

responds to the minimum BIC value for the test between PV 

installations and temperature anomalies (Panel (d)). This indi-

cates the existence of Granger causality between temperature 

anomalies and PV installations. There is no evidence of the use-

fulness of temperature anomalies and PV installations in fore-

casting GHG emissions (Panel (b) and (g)). The Granger cau-

sality test barely identifies a causality between GHG emissions 

and SSN at the 10% significance level (Panel (f)). Significant 

rolling correlations are observed between these series within 

sub-intervals of the considered timespan. However, the SSN 

series is mildly informative for forecasting GHG emissions over 

the whole time-span of the study. GHG emissions include some 

information to predict PV installations (Panel (g)). This result 

would be due to the reactional PV installations to increasing 

GHG emission levels. 

 

Table 2. Standard Deviations of Rolling Correlations and 

Corresponding Test Limits for the Pairs of Temperature 

Anomalies, GHG Emissions, PV Installations, and SSN 

Pair Width 
Sd. Rol. 

Cor. 
95% limit 5% limit 

Temperature 

anomalies and 

GHG 

emissions 

5 0.526 0.552 0.407 

7 0.480 0.467 0.307 

11 0.441 0.370 0.204 

15 0.355 0.325 0.155 

17 0.351 0.301 0.136 

Temperature 

anomalies and 

PV 

installations 

5 0.549 0.559 0.423 

7 0.504 0.474 0.320 

11 0.438 0.383 0.213 

15 0.381 0.329 0.162 

17 0.381 0.309 0.142 

GHG 

emissions and 

SSN 

5 0.581 0.530 0.414 

7 0.529 0.437 0.311 

11 0.510 0.349 0.220 

15 0.483 0.297 0.169 

17 0.477 0.278 0.147 

Temperature 

anomalies and 

SSN 

5 0.567 0.559 0.418 

7 0.446 0.473 0.316 

11 0.357 0.381 0.213 

15 0.317 0.326 0.160 

17 0.312 0.308 0.146 

 Width 
Sd. Rol. 

Cor. 
90% limit 10% limit 

Temperature 

anomalies and 

SSN 

5 0.567 0.537 0.429 

7 0.446 0.451 0.324 

11 0.357 0.356 0.226 

15 0.317 0.306 0.173 

17 0.312 0.287 0.158 

Sd. Rol. Cor.: Standard deviations of rolling correlations; significant 

standard deviations are marked bold. 

 

Overall, since Granger causalities are found between pairs 

of temperature anomalies and GHG emissions, SSN and PV in- 

stallations, and between GHG emissions and SSN, it is suitable 

to include GHG emissions, SSN, and PV installations in ARDL 

bounds testing for the dependent feature temperature anoma- 

lies. Also, SSN contains useful information to explain GHG emis-

sions over an ARDL bounds testing. Due to the significance of 

the signal and Granger causalities between the temperature anom-

alies and exploratory series, we proceed with ARDL bounds test-

ing as per the modeling framework of Figure 3. 

 

Table 3. P-Values of the ADF, PP, and KPSS Unit Root Tests 

for the Considered Series 

Test Tt Et Pt St 

ADF < 0.01 < 0.01 < 0.01 < 0.01 

PP < 0.01 < 0.01 < 0.01 < 0.01 

KPSS > 0.10 > 0.10 > 0.1 > 0.1 

Tt: Temperature anomalies series; Et: GHG emissions series; Pt: PV 

installations series; St: Sunspot numbers series. 

 

3.4. Short and Long Run Relationships 

3.4.1. Temperature Anomalies 

The lag structure of the ARDL model in Equation (S1) of 

Supplementary Material needs to be specified to apply the ARDL 

bounds test. For this aim, AIC or BIC was minimized using the 

search algorithm proposed by Demirhan (2020) using the “ardl- 

BoundOrders” function from the “dLagM” package. The maxi- 

mum lag order was set to 5 to define the search domain for opti- 

mal AIC or BIC. The maximum lag order was selected based 

on the sample size and parsimony principle to avoid over-fitting 

(Parzen, 1982). Any increase in the number of lags included in 

a model raises the number of parameters. When we have a mod- 

el with large lag orders, a large sample is needed to inform the 

parameters in the model to get reliable results. A large number 

of lag orders also creates extreme learning from the data and 

results in an over-fitting, non-parsimonious model. AIC penal- 

izes models with the number of parameters, and BIC penalizes 

the models considering both the sample size and the number of 

parameters. In this sense, large lags relative to the sample size 

are expected to be eliminated by BIC. Setting a high maximum 

lag order increases the risk of getting a non-parsimonious mod- 

el and increases the search time by spending computation time 

on less likely models. Optimizing AIC led to pT = 0 and pE = 0, 

pP = 5, and pS = 4, namely ARDL(0, 0, 5, 4), as the best model 

and ARDL(0, 0, 5, 0) as the second-best model. Whereas BIC 

gave ARDL(0, 0, 0, 0) as the best model and ARDL(0, 0, 5, 0) 

as the second-best. Since ARDL(0, 0, 0, 0) does not include any 

short term impact of any of the variables and considering the 

agreement between AIC and BIC and the parsimony principle, 

the orders were set as follows: pT = 0 and pE =0, pP = 5, and pS 

= 0 for the lag structure of the ARDL bounds test. Based on the 

specified orders, four past quarters were considered for PV in-

stallation series in Equation (S1) of the Supplementary Materi-

al; and hence, the duration of short-run is under 4 for this data, 

and that of long-run is longer than a year. The ARDL bounds 

test results and the tests for violations of assumptions and AIC 

and BIC of the general ECM under each case are given by Ta-

ble 4, where significant F-statistics and the smallest values AIC 

and BIC are bold-faced. 

The serial independence of the residuals is confirmed by 

BG and LB tests under the null hypothesis that “there is no se-  
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Table 4. Results of ARDL Bounds Test, Diagnostic Tests for the Model Assumptions, and AIC and BIC, of the Full Model for 

All Cases 

 Critical values for the F-Test P-values of the tests for 

assumptions 

GOF measures for the full 

model  Sig. Level I(0) I(1) F-Stat. 

Case 1 10% 2.010 3.100 
 

BG 0.473 AIC 119.08 

5% 2.450 3.630 
 

LB 0.705 BIC 147.54 

1% 3.420 4.840 6.319** BP 0.992       
SW 0.186      

  RESET 0.829 
  

Case 2 10% 2.482 3.334 
 

BG 0.469 AIC 121.07 

5% 2.946 3.862 
 

LB 0.703 BIC 151.73 

1% 4.048 5.092 5.513** BP 0.934       
SW 0.198       
RESET 0.828 

  

Case 3 10% 2.838 3.898 
 

BG 0.469 AIC 121.07 

5% 3.408 4.550 
 

LB 0.703 BIC 151.73 
1% 4.725 6.080 6.200** BP 0.934       

SW 0.198       
RESET 0.753 

  

Case 4 10% 3.110 3.900 
 

BG 0.462 AIC 119.59 

5% 3.624 4.488 
 

LB 0.690 BIC 152.43 

1% 4.808 5.786 6.015** BP 0.802       
SW 0.699       
RESET 0.682 

  

Case 5 10% 3.618 4.635 
 

BG 0.438 AIC 119.59 

5% 4.253 5.363 
 

LB 0.690 BIC 152.43 

1% 5.698 6.970 6.764* BP 0.802       
SW 0.699       
RESET 0.681 

  

* Significant at 5% level of significance. ** Significant at 1% level of significance. BG: Breusch-Godfrey test (Asteriou and Hall, 2021). LB: 

Ljung-Box test (Cryer and Chan, 2008). BP: Breusch-Pagan test (Asteriou and Hall, 2021). SW: Shapiro-Wilk test (Cryer and Chan, 2008). RESET: 

Ramsey's RESET test (Asteriou and Hall, 2021). 

 

rial correlation in the series”, homoscedasticity of the residuals 

is confirmed by BP test under the null hypothesis that “the re-

siduals are homoscedastic”, and normality of residuals is con-

firmed by SW test under the null hypothesis that “the residuals 

are normally distributed” with all p-values greater than 0.05. 

And there is no issue around the correctness of the model’s 

functional form for all cases by Ramsey’s RESET test under 

the null hypothesis that “there is no specification issue with the 

linear form of the model” with all p-values greater than 0.05. 

For Cases 1 to 4, there is evidence to conclude the existence of 

cointegration between temperature anomalies and GHG emis-

sions, PV installations, and sunspot numbers at a 1% level of 

significance, whereas the same is concluded at a 5% level with 

Case 5. So, there is a statistically significant long-run relation-

ship (equilibrium) between temperature anomalies and GHG 

emissions, PV installations, and sunspot numbers series in Aus-

tralia. 

Since both AIC and BIC suggest Case 1, the results with 

Case 1 are reported in detail. In order to check the stability of 

the model, the cumulative sum (CUSUM), the cumulative sum 

of squared recursive residuals (CUSUMSQ), and the moving 

sum (MOSUM) plots of recursive residuals are given in Figure 

S3 of Supplementary Material for Case 1. Since all the points 

are in-between confidence limits in all plots of Figure S3, the 

stability of the models is ensured. Then, we can proceed with 

drawing inferences from the ECM regression model and the 

cointegration equation following the modeling flow in Figure 3. 

For Case 1, estimates of short-run coefficients and error cor-

rection (EC) coefficient of the ECM regression model in Equa-

tion (S2) of Supplementary Material are given in Table 5. Ac-

cording to the F-statistic, ECM is significant at the 1% signifi-

cance level with a p-value of 1.76 × 10–6 < 0.01. Sunspot num- 

bers and GHG emissions do not have a significant short-run ef- 

fect on temperature anomalies. All the considered lags of short-

run PV installation coefficients significantly affect the temper- 

ature anomalies, while the short-run effect of the PV installa- 

tions series is insignificant. The value of the error correction co-

efficient is –0.760, and it is significant with a p-value close to 

zero. Thus, if temperature anomaly deviates from the long-run 

equilibrium relationship with GHG emissions, PV installations, 

and sunspot numbers, 76% of the non-equilibrium state will be 

adjusted in one quarter. 

The cointegration equation was estimated as Mt-1 = Tt-1 – 

(0.0325Et-1 – 0.0520 ‧ log(Pt-1) + 0.7143 ‧ log(St-1)), where TT

= –0.7604 with (P = 4.55 × 10– 8 < 0.001) (see Section 2.6 of 

Supplementary Material for the details). The logic flow for the 



H. Demirhan / Journal of Environmental Informatics 40(1) 41-55 (2022) 

 

51 

use of the cointegration equation to draw inferences is explained 

in Figure 5. If a variable, X, is log-transformed, the coefficient 

of X is interpreted as predicted % change in the dependent vari-

able for 1% change in X in the long-run. Otherwise, the coeffi-

cient of X is interpreted as the predicted change in the depen-

dent variable for a one-unit change in X in the long-run. 

 

Table 5. Estimates of the Short-Run Coefficients (in Italic) 

and the Error Correction Coefficient (in Bold) of the ECM for 

Case 1 

Variable Coefficient Std. Error t-Statistic P-Value 

ω’E –0.068 0.040 –1.702 0.094 

ω’P 0.047 0.049 0.948 0.347 

ψ’P1 0.260 0.064 4.078 0.000* 

ψ’P2 0.323 0.073 4.417 0.000* 

ψ’P3 0.195 0.071 2.769 0.008* 

ψ’P4 0.209 0.065 3.200 0.002* 

ψ’P5 0.177 0.056 3.186 0.002* 

ω’S –0.065 0.219 –0.295 0.769 

β – EC 

coefficient 
–0.760 0.112 –6.764 0.000* 

* Significant at 1% level of significance. 

 

 

Figure 5. Use of the cointegration equation to draw inferences. 

 

The potential amount of mitigation in temperature anoma- 

lies is calculated following the method diagram given in Figure 

5. The estimates of long-run coefficients of GHG emissions, PV 

installations, and sunspot numbers are TE = 0.0325, TP = –

0.052, and TS = 0.7143, respectively. Since PV installations 

and sunspot numbers were log-transformed, while a 1% increase 

in PV installations has a 0.052% mitigating effect on the tem-

perature anomalies in the long-run, a 1% increase in sunspot num-

bers increases temperature anomalies by 0.7143% in the long-run. 

From the coefficient of Et - 1, a unit increase in GHG emissions 

increases the temperature anomalies by 0.0325 ℃ in the long-

run. Kristoufek (2017) also observed that sunspot numbers and 

global temperature levels have a stable relationship in time us-

ing a dataset between 1880 and 2016. However, they did not 

report any quantitative information as provided in this article. 

In order to make these figures more explicit, the transfor- 

mation and the adjustment on the average PV installations se-

ries need to be taken back to the original scale. Due to the nega-

tive values in the adjusted average PV installations series, the 

log transformation was applied to the adjusted average PV in-

stallations series by log(Pt + |min(Pt)| + 0.1), where |min(Pt)| + 

0.1 = 6,287.927 (see Section 3.1), to shift it to the positive side 

of the real axis. The naïve forecast from the STL decomposition 

applied for the adjustment is 8.754. If Pt
* shows the raw aver-

age PV installations series, then the corresponding adjusted se-

ries is Pt = Pt
* – 8.754 at any time point ahead, t. Writing Pt in 

its place in the log transformation, we get Pt
* – 8.754 + 

6287.927 = Pt
* + 6279.173. So, if a naïve forecast for Pt

*, which 

is 20282, is used, then a 1% increase in Pt
* + 6279.173 = 20282 

+ 6279.173 = 26561.17 corresponds to a 265.6117 kW increase 

in the raw average PV installations series. Given that the over-

all average of temperature anomalies series is 0.749, every 

265.612 kW increase in average PV installations will mitigate 

temperature anomalies by 3.893 × 10–4 ℃ on average. The log- 

ic flow of this calculation is given in Figure S1 of Supplemen-

tary Material. 

When the individual impact of sunspot numbers is investi- 

gated on the temperature anomalies without considering GHG 

emissions and PV installations, the optimal lags of the ARDL 

bounds test were specified as pT = 1 and pS = 5 (see Section 2.6 

of the Supplementary Material). All residual diagnostics, in- 

cluding the insignificance of autocorrelation, homoscedastici-

ty, and normality of the residuals, were confirmed, and no struc-

ture and stability issue was observed. For Cases 3, 4, and 5, 

there is not enough evidence to conclude the existence of coin-

tegration between temperature anomalies and sunspot numbers 

even at a 10% level of significance. For Cases 1 and 2, it is only 

possible to observe a cointegration relationship at the 5% and 

10% significance levels, respectively. For Cases 1 and 4, AICs 

are 126.49 and 127.15, respectively and BICs are 148.39 and 

153.43, respectively. Although both AIC and BIC favour Case 

1, which provides us with a significant test result at a 5% level 

of significance, AIC and BIC do not reflect a notable difference 

for Case 4, for which there is no evidence of a significant co-

integration between temperature anomalies and sunspot num-

bers. Based on these results, it is not possible to strongly claim 

the existence of a long-run equilibrium between the pair of tem-

perature anomalies and sunspot numbers. This observation is 

in accordance with the literature. GilAlana et al. (2014) report-

ed a similar observation that both global temperatures and sun-

spot numbers show a long-run memory. However, there was 

not enough evidence to claim the existence of a cointegration 

relationship. Some authors have observed a possibility by cor-

relating surface air temperatures with solar cycle length that 

solar activity may influence climate change. However, since cor-

relation does not imply causality, there is no particular conclu-

sion on this issue (Scott et al., 2003; Solanki and Krivova, 2003; 

Gray et al., 2010). From the causality perspective, an indication 

of Granger causality between temperature anomalies and sun-

spot numbers is observed in this study (Figure S2, Panel (e)). 

However, this is not backed up by the ARDL bounds testing. 

Predicted % 

change

Is the 

variable X 

log-

transformed?

Yes

No
Predicted change

For each variable in CE

Estimate the 

cointegration 

equation (CE)
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Table 6. Results of ARDL Bounds Test for GHG Emissions, Residual Diagnostics Tests, AIC and BIC 

 Critical values for the F-Test P-values of the tests for 

assumptions 

GOF measures for the full 

model  Sig. Level I(0) I(1) F-Stat. 

Case 1 10% 2.44 3.28  BG 0.699 AIC 231.16 
 5% 3.15 4.11  LB 0.975 BIC 240.16 
 1% 4.81 6.02 29.19* BP 0.746   
     SW 0.375   
     RESET 0.066   

* Significant at 1% level of significance. 

 

3.4.2. GHG Emissions 

Since it is observed that there are significant rolling corre- 

lations and Granger causality between GHG emissions and sun-

spot numbers, the same procedure as Section 3.4.1 is followed 

to test the existence of a cointegration relationship between these 

features (see Section 2.6.2 of Supplementary Material).  

The lag orders were specified by optimizing AIC and BIC 

and simultaneously getting a stable model. The most parsimo- 

nious lag structure that gives a stable model was specified via 

BIC as pE = 0 and pS = 0 for the ARDL bounds test. When the 

test was run for Cases 1 to 5, only Case 1 ensured all the residu- 

al diagnostics. Recursive CUSUM and recursive MOSUM tests 

concluded the stability of the model. The results for the bounds 

test, residual diagnostics, and AIC and BIC are given in Table 

6 for Case 1.  

A significant long-run equilibrium relationship between 

GHG emissions and sunspot numbers is observed at a 1% level 

of significance. The error correction coefficient is –0.931 with 

a p-value of 7.74 × 10–11 < 0.01. Thus, if GHG emissions devi-

ate from their long-run equilibrium with sunspot numbers, 93% 

of the non-equilibrium state will be adjusted in one quarter. The 

short-run impact of sunspot numbers is insignificant. Since the 

cointegration equation is estimated as Mt - 1 = Et - 1 – 0.0493 ‧ 

log(St - 1), a 1% increase in sunspot numbers increases GHG emis-

sions by 0.0493% in the long-run. Thus, there is a significant 

but meager magnitude contribution from sunspot numbers to the 

increasing trends of GHG emissions. 

4. Discussion and Conclusions 

Almost all countries worldwide accept the phenomenon of 

climate change and its harmful impacts on nature. Some have 

already set their short- and long-run targets to mitigate the fac- 

tors that aggravate climate change. Use of the solar PV genera- 

tion for electricity production has a significant contribution to 

mitigating climate change. Therefore, this contribution needs 

to be revealed clearly to develop more accurate energy manage- 

ment plans and achievable targets. This article demonstrates the 

short- and long-run effects of solar energy utilization for elec- 

tricity generation on the mean temperature anomalies by using 

autoregressive distributed lag models and bounds testing ap-

proaches. The dataset of interest includes quarterly mean tem- 

perature anomalies, quarterly mean GHG emissions, the aver-

age capacity of installed PV panels in Australia, and sunspot num-

bers between September 2001 and June 2019. 

4.1. Relationship Patterns 

The GHG emissions, average PV installations, and sun-

spot numbers individually Granger cause temperature anoma-

lies. On the other hand, temperature anomalies Granger-cause 

neither GHG emissions nor average PV installations, as expect-

ed. A significant Granger causality between sunspot numbers 

and GHG emissions was not observed. A significant cointegra-

tion between temperature anomalies, anthropogenic GHG emis-

sions, solar PV utilization, and solar cycle length was seen. 

Thus, climate change, anthropogenic GHG emissions, solar PV 

utilization, and solar cycle length exhibit a common movement 

pattern in the long-run, and at the equilibrium state, the distance 

between them remains constant. However, the short-run im-

pacts of GHG emissions, average PV installations, and sunspot 

numbers on temperature anomalies are insignificant. This fol-

lows significant rolling correlations between temperature anom-

alies and GHG emissions, and temperature anomalies and aver-

age PV installations for seven quarters and insignificant rolling 

correlations for five quarters. By a cointegration coefficient of 

–0.76, the shocks to the equilibrium state are absorbed quickly, 

and 76% of the shock will be adjusted in one quarter; hence, a 

strong long-run relationship exists between the series. This im- 

plies that if the characteristics of some cointegrated series are 

changed, a considerable response from others, such as tempera- 

ture anomalies, will be observed. Since we do not have control 

over solar cycle length, anthropogenic GHG emissions can be 

decreased and/or solar energy utilization can be increased by 

making appropriate political and energy management decisions 

to mitigate climate change. 

 

4.2. Mitigation Potential 

Our study showed that large PV installations have a solid 

capacity to mitigate temperature anomalies. A 1% increase in 

average PV installations helps to reduce the temperature anom-

alies by 0.052%. In order to make it clearer in practice, if the 

increasing trend in average PV installations persists, for exam-

ple, as in the first and second quarters of 2011, where there was 

a 20830.67 kW increase, the increasing temperature can be re- 

duced by 0.0305 ℃ in one quarter. These figures demonstrate 

that it is very critical to increase solar energy usage by PV in-

stallations to mitigate the temperature anomalies. Considering 

the immense impacts of slight increases in global mean temper-

ature on nature, the gain by allocating more resources to solar 

energy investments is extremely crucial. From the rolling cor-

relation analysis and ARDL bounds testing results, it is high- 
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ly likely to see a considerable decrease in the temperature anom-

alies, especially after large-scale PV installations.  

Most countries formulate their climate change targets in 

terms of reduction in GHG emissions and compare their reduc- 

tion percentages over the years to other countries’ performance 

(for example, DEE, 2019). However, this does not translate into 

the impact of the reduction on climate change. As another prac-

tical use of our results, the impact of the solar PV capacity in-

stallations on temperature anomalies was observed as every 

265.6117 kW increase in average PV installations mitigates tem-

perature anomalies by 3.893 × 10–4 ℃ on average. This quanti-

tative information has the potential to contribute to scenario-

based studies on the reduction of GHG emissions, such as the 

recent study by Jäger-Waldau et al. (2020). 

 

4.3. Impact of Solar Activity 

There were discussions around the significance of solar 

activity on global warming in the literature (Solanki and Krivova, 

2003; Reimer, 2004). Remier (2004) mentioned that solar ac-

tivity has no role in global warming. On the other hand, Roy 

(2018) stated that the solar cycle would contribute to the de-

cline in the sea ice around the Arctic, which was also linked to 

CO2 emissions by Notz and Stroeve (2016). Another important 

conclusion of this study is about the impact of solar cycle length 

on temperature anomalies. A 1% increase in sunspot numbers 

increases temperature anomalies in Australia by 0.71% in the 

long-run. This observation confirms Friis-Christensen and Lassen 

(1991) and Lassen and Friis-Christensen (1995). There is also 

a significant but low-magnitude long-run relationship between 

GHG emissions and sunspot numbers. Quantitatively, it is esti-

mated to see a 0.0493% increase in GHG emissions for each 

1% increase in sunspot numbers. This finding introduces a de-

fault increment/decrement into the temperature anomalies and 

GHG emissions by increasing/decreasing sunspot numbers. Al-

though the numerical impact of sunspot numbers on GHG 

emissions is not sufficient to claim that increasing GHG emis-

sions can be attributed to solar forcing rather than anthropogen-

ic activities, it is recommended that the studies on the effect of 

anthropogenic CO2 or GHG emissions on climate change con-

sider the confounding effect of solar cycle length and GHG emis-

sions, and filtrate/consider it before drawing conclusions on the 

significance and the amount of the effect of GHG emissions on 

the climate change. 

 

4.4. Generalizability and Limitations 

Our modeling framework was implemented using Austra-

lian data, but this framework is a universal modeling frame- 

work for any other location or set of dependent and exploratory 

features. The generalizability of the results obtained with Aus- 

tralian data to other locations depends on similarities and dif- 

ferences between the locations in temperature anomalies, GHG 

emissions, and solar energy potential. Sunspot numbers are in- 

dependent of location. Most of the globe has similar tempera- 

ture anomalies characteristics as Australia except far northern 

parts of Asia and North America (NOAA, 2020). GHG emis- 

sions show a considerable variation over the countries (Olivier 

and Peters, 2021). While installed PV capacity is universal, the 

efficiency of PV panels depends on the location. In this sense, 

for countries with a similar carbon footprint and a lower solar 

energy potential than Australia, our results provide upper limits 

of reduction in temperature anomalies per percent increase in 

PV utilization for electricity generation. On the other hand, our 

results give lower limits for the countries with a similar carbon 

footprint and a higher solar energy potential than Australia. 

 One of the limitations of this study is the length of the se- 

ries used for the analysis. Considering that solar energy utiliza- 

tion for electricity generation is a relatively new issue and start- 

ed to follow an explosive trend after 2011 in Australia, the 

series used in the study included almost all the available infor-

mation on this matter. In this sense, the obtained results take all 

available information into account. In this study, only PV in-

stallations were focused on among other forms of solar energy 

usage. The increasing trend in the share of solar PV generation 

is the main reason for this. Since the residual diagnostics dem-

onstrate that there was no excess autocorrelation left in the 

model, the inclusion of another series into ARDL testing is not 

required in terms of the generalizability of the results. Since the 

impact of other solar energy systems will add up on the mitigat-

ing potential of PV systems, the figures presented in this study 

can be taken as a baseline potential of solar energy utilization. 

Another limitation is that the installed capacity cannot be fully 

utilized in many countries. To carry on the cointegration analy-

sis in this study, we need to have all the covariates measured 

simultaneously from 2001 to 2019. It is possible to get live en-

ergy generation data from the installed PV network via the Aus-

tralian PV Institute. However, in this case, it is not possible to 

include other covariates since they are not available at the same 

frequency. On the other hand, it is not quite possible to aggre-

gate the ultra-high frequency live PV generation data to get a 

quarterly series that dates back to 2001. Here, the trade-off is 

either getting a very short time series based on aggregated live 

data or working with a longer series by taking available PV in-

stallation data. Since longer series were needed to run time se-

ries analyses, installed PV capacity data were used knowing 

that the utilization is not 100%. However, installed PV capacity 

still provides us with information about solar energy utilization 

for electricity generation, assuming that PV devices are install-

ed at optimum settings for efficiency. 
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