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ABSTRACT. Driven by climate change, more frequent and extreme wildfires have brought a greater threat to humans globally. Fast-

spreading wildfires endanger the safety of residents in the wildland-urban interface. To mitigate the hazards of wildfires and facilitate 

early evacuation, a rapid and accurate forecast of wildfire spread is critical in emergency response. This study proposes a novel dual-

model deep learning approach to achieve a super real-time forecast of 2-dimensional wildfire spread in different scenarios. The first 

model utilizes the U-Net technique to predict the burnt area up to 5 hours in advance. The second model incorporates ConvLSTM layers 

to refine the forecasted results based on real-time updated input data. To evaluate the effectiveness of this methodology, we applied it to 

Sunshine Island, Hong Kong, and generated a numerical database consisting of 210 cases (12,600 samples) to train the deep learning 

models. The simulated wildfire spread database has a fine resolution of 5 m and a time step of 5 minutes. Results show that both models 

achieve an overall agreement of over 90% between numerical simulation and AI forecast. The real-time wildfire forecasts by AI only 

take a few seconds, which is 102 ~ 104 times faster than direct simulations. Our findings demonstrate the potential of AI in offering fast 

and high-resolution forecasts of wildfire spread, and the novel contribution is to leverage two models which can work in tandem and be 

utilized at various stages of wildfire management. 
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1. Introduction 

Fire has been a long-existent phenomenon on Earth and an 

essential part of different ecosystems (Running, 2006; Belcher, 

2013). With the rise of human civilization and the expansion of 

living space, humans are gradually occupying the wildlands to 

create more urban areas. Meanwhile, our human activities have 

caused more and more wildfires and increased the frequency of 

extreme wildfires. Once a wildfire occurs (Figure 1a), it primar- 

ily affects the residents who live in the emerging wildlandurban 

interface (WUI) (Theobald and Romme, 2007; Gill and Stephens, 

2009). Driven by climate change and the extreme dry season, 

even if the initial ignition points are minor and far away from 

the urban areas, wildfires could threaten the safety of residents 

after rapidly spreading for hundreds of kilometers across states 

and countries. Wildfire has become a global natural disaster 

that concerns many countries and regions (Jolly et al., 2015; 

Walker et al., 2020; Witze, 2020). 

Wildfire behavior is a complex and dynamic phenomenon 

influenced by various factors, including the characteristics of 

the fuel, topography, weather conditions, and local landscape. 

As such, fire spread is not always linear or steady-state, and pre- 
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dicting its course can be challenging. In particular, sudden changes 

in weather conditions or the ignition of new fires can cause 

rapid shifts in the pattern of wildfire spread, potentially breach-

ing established firebreaks and endangering previously safe ar-

eas. Therefore, accurate forecasting of real-time or shortterm 

trends in fire spread is essential for effective wildfire manage-

ment, particularly in wildland-urban interface (WUI) zones. Re- 

al-time fire spread forecasts can aid fire services in allocating 

resources, planning evacuations, and implementing other emer-

gency response measures by predicting a fire's expected trajec-

tory and intensity. These predictions can also assist residents in 

making informed decisions about their safety and help to pre-

vent loss of life and property damage. 

On the other hand, to reduce the hazards of extreme wild- 

fires in the dry season, prescribed or culture burning has been 

an effective strategy for reducing fuel loads (Fernandes and 

Botelho, 2003; Penman et al., 2011). Forest services and fire- 

fighters often adopt this proactive defensive method to reduce 

fuel accumulation in the wildland. Nevertheless, prescribed 

burning often gets out of control and becomes a new wildfire, 

like the 2022 Calf Canyon/Hermits Peak Fire in New Mexico, 

USA (Nevins, 2022). Thus, it requires precautions and new   

technology to plan and monitor the prescribed burning devel-  

opment. In short, a real-time forecast of the 2-D burnt perimeter  

for a spreading wildland fire provides a critical reference in  

both the long-term fire management and the emergent decision- 
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Figure 1. (a) Recent global wildfire incidents and (b) the historical evolution of wildfire modelling. 

 

making of firefighting, evacuation, and rescue. 

Researchers have attempted to simulate wildfires and fore- 

cast their spread behaviors since the 1950s or even earlier (Fig- 

ure 1b). In the early days, most models were simple and prob- 

abilistic, based on limited human observation and experience. 

These models mainly assessed the wildfire risk but could not 

predict wildfire spread (Skinner and Chang, 1996). Later in the 

1970s, more understanding of wildfire dynamics was introduced 

to the mathematical model. Notably, Rothermel proposed a wide- 

ly used semi-physical formula that considers different factors 

of fire, fuel, landscape, and weather to calculate the wildfire 

spread (Rothermel, 1972). In the 1990s, several software tools 

had been developed to program these semi-physical models 

and environment parameters to predict 2-D wildland fire spread. 

For example, FARSITE (later becoming a part of FlamMap) cod- 

ed Rothermel's equation to simulate and visualize wildfire pro-

pagation (Finney, 1998). The running of FARSITE needs input 

from the Geography Information System (GIS), but the data from 

wildland fuel, weather, and landscape are often challenging to 

acquire accurately. 

Since the 2000s, several numerical software was devel- 

oped for physics-based fire modellings, such as HI- GRAD/FIRE- 

TEC and Wildland Fire Dynamics Simulator (WFDS) (Hoffman 

et al., 2016). These tools are based on computational fluid dy-

namics (CFD) that can solve the atmospheric flow field and 

ground boundary flow near the fire (Anderson and Wendt, 1995). 

These tools make wildfire simulation exquisite but consume 

considerable time and require high computation costs. Overall, 

the wildfire modelling method is evolving from statistics-based 

models to physical-based models. Nevertheless, all these com-

putational tools are too slow to give real-time forecasts of wild-

land fire development. For example, forecasting the wildfire 

front in a few minutes often takes CFD-based software to run 

hours, so these kinds of wildfire simulations neither help guide 

the wildfire emergency response nor plan the prescribed burn-

ing. 

 

1.1. Research Motivation 

While semi-physical modelling provides a faster alterna- 

tive to computational fluid dynamics (CFD) modelling, it still 

requires several or more minutes for a single case. For example, 

in the case of firefighters needing to evaluate hundreds of sce- 

narios for prescribed burning, semi-physical modelling would 

require one or two days to demonstrate all cases. This make 

real-time modelling a more viable option for generating com- 

prehensive plans in a limited time frame. Moreover, semi-phys- 

ical modelling is unsuitable for on-site wildfire situations re- 

quiring real-time forecast output for decision-making. 
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Figure 2. Process of the whole methodology with four major steps to realize the wildfire spread forecast. 

 

To overcome the above issues, more recently, new artifi- 

cial intelligence (AI) models have been proposed for fire fore- 

cast (Wang et al., 2022; Wu et al., 2022; Zhang et al., 2022), 

including wildfire forecast, which is an emerging research topic 

(Radke et al., 2019; Allaire et al., 2022; Jiang et al., 2022). The 

mathematic-based computation can be switched into a data- 

driven matchup in the database, where AI models calculate the 

mathematical relations among different parameters within sec- 

onds. Many researchers optimized the traditional models with 

AI models to increase the accuracy of forecasts (Radke et al., 

2019; Zhou et al., 2020). Also, deep learning was widely used 

to explain and predict the wildfire spread rate (Zhai et al., 2020; 

Storey et al., 2021; Li, Lin, et al., 2022). Deep learning models 

were also adopted to map and forecast the wildfire risk possi- 

bility (Jaafari et al., 2019; Le et al., 2020; Allaire et al., 2022). 

Meanwhile, the AI-based models primarily decreased the com- 

putation time and made the long-term forecast possible in sim- 

ulating wildfires (Hodges and Lattimer, 2019; Sung et al., 2021; 

Li, Zhang, et al., 2022). By leveraging the power of AI, this 

approach allows for more accurate and efficient prediction of 

fire behavior and can provide critical information to support 

decision-making in firefighting operations. 

However, these past studies focused on simulating or fore- 

casting the wildfire spread with low-resolution satellite data and 

giant time steps. Specifically, the input simulated cell size is the 

same size as the GIS pixel (usually 30 × 30, 200 × 200, 2 k × 2 k 

m2 or larger) (Hodges and Lattimer, 2019; Jaafari et al., 2019; 

Allaire et al., 2021; Li et al., 2022). These models heavily rely 

on GIS data that are either in low resolution or not in real- time. 

Thus, they cannot handle high-resolution and real-time wildfire 

images from unmanned aerial vehicles (UAVs), the state-of-

the-art remote sensing data acquisition in ecosystem manage-

ment (Burgués and Marco, 2020). Moreover, previous findings 

can neither monitor early-stage wildfires with a burning area 

smaller than the pixel size of satellite images nor calibrate the 

forecasted burnt area by real-time UAV images in a real wild-

fire scene. 

This study proposes a dual-model deep learning method to 

forecast the wildfire spread in different fire scenarios. The sim- 

ulated wildfires are recorded in a short time step of 5 min and 

a fine cell size of 5 × 5 m2 that fits the input of UAV imaging. 

A numerical database with hundreds of wildland fire scenarios 

in an island of Hong Kong is established for demonstration. 

Two deep learning models (U-Net and ConvLSTM) are trained 

by the database for pre-fire risk assessment and real-time emer- 

gence response in a wildfire. Compared to traditional simula- 

tion-based methods used mainly in wildfire post-accident anal- 

ysis, our method demonstrates 102 ~ 104 times faster in wildfire 

modelling and achieves real-time forecast. The accuracy and 

reliability of models are tested by random wildfire scenarios, 

which lay a foundation for future intelligent wildfire fighting 
and management. 
 

1.2. Contributions 

This work has made several significant contributions to 

the field of wildfire modelling and management. The main con- 

tributions of this work are summarized as follows: 

• A review of the development of wildfire modelling was con-

ducted, emphasizing the need for AI-based wildfire mod- 

elling approaches that can provide accurate predictions of 

fire behavior. 

• One specific issue identified and addressed in this study is 

the challenge of forecasting wildland fire spread relying 

on low-resolution satellite data and large time steps. A nu-

merical wildfire database was established with 5-m high-

resolution images specifically for Hong Kong to overcome 

this challenge. This database establishment method pro-

vides a valuable resource for improving wildfire modeling 

and forecasting accuracy and resolution. 

• A novel dual-model deep learning method was first pro-

posed to achieve super real-time forecasts in wildfire ma-

nagement. By leveraging the information in the numerical 

wildfire database, the two models can work in tandem and 

be utilized at various stages of wildfire management, ad-

dressing the shortcomings of single-AI model methods with- 

out self-calibration. 
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Figure 3. The Sunshine Island in Hong Kong, (a) its location with a red star (proposed artificial islands inside the black line), and 

(b) the orthophoto of Sunshine Island (from Google Earth Pro). 

 

• This work provided a new deep learning-based framework 

for a fast and smart emergency response to earlystage wild- 

land fires. By enhancing our ability to predict and manage 

wildfires, this research can help to improve global wildfire 

safety and reduce the risk of property damage and loss of 

life.  

2. Methodology 

The target of our study is to forecast any wildfire spread 

situation with a lead time of 5 hours and in a short time step of 

5 min. With this tool, we can assess the fire hazard before im- 

plementing the prescribed burning or forecast wildfire burnt ar- 

eas more accurately by feeding high-resolution UAV images. 

While actual data on wildfire spread is the most suitable for 

training the model, it is often limited due to infrequent occur- 

rences of fires on the same land and a lack of adequate footage 

to reconstruct the whole process. Hence, this study used numer- 

ical wildfire scenarios to create the database. These scenarios 

enabled the development of accurate and efficient models for 

wildfire forecasting, providing valuable tools for enhancing wild- 

fire management strategies. 

Compared to the numerical database in the literature (Arca 

et al., 2007; Zigner et al., 2020), our database includes not only 

massive simulated wildfire scenarios but also very fine resolu- 

tion and short time steps to support emergency response. Here-

in, wildfire spread processes are generated by FlamMap 6, which 

runs the code of FARSITE (Finney, 1998, 2006). Figure 2 shows 

the whole flow chart of the proposed methodology. It includes 

four steps, (1) using FARSITE to simulate hundreds of wildfire 

spread cases beforehand, (2) building a database of numerical 

wildfire simulations after preprocessing, (3) training the dual-

model deep learning method with the database, and (4) apply-

ing random fire cases and deep learning models to achieve su-

per real-time forecast of the wildfire. 

Hong Kong is a highly populated modern city with over 

4,000 skyscrapers, but it also has ~70% of its land covered by 

woodland, shrubland, and wetland (Lee et al., 2017). Therefore, 

it is a typical WUI that is constantly threatened by wildfires. 

According to the data from Hong Kong Fire Services Depart-

ment (‘Hong Kong Fire Services Department - Access to Infor-

mation’, 2021), about 1,000 wildfires (or hill fires) are reported 

annually. Over 80% of wildfires witness a burning area of less 

than 1,000 m2 and a burning time of 24 h because of significant 

firefighting efforts. Still, some wildfires spread to nearby high-

population urban areas that cause significant safety issues and 

air pollution. 

To prove the applications of wildfire forecast in Hong 

Kong, Sunshine Island, also called Chau Kung To indigenously, 

is chosen as the study area (Figure 3). It has an area of 0.54 km2, 

a total border length of 3.1 km, with a homogeneous vegetation 

type. The island is so tiny that it will be shown in fewer than 10 

pixels in a typical image from MODIS satellites. Thus, GIS 

data is almost impossible to monitor any wildfire on this island. 

Instead, it is perfect for one or more UAVs to monitor wildfire 

development and firefighting processes on this small island. 

Moreover, the limited area and homogeneous vegetation type 

make this island an ideal demonstration to train and verify the 

AI model. This island is also a crucial part of Hong Kong's Lan- 

tau Tomorrow Vision (Wang et al., 2019; Fung, 2020), which 

is a future plan to reclaim land from the sea and develop new 

residential areas. 

Thus, understanding the wildfire hazard of this area is crit- 

ical for the safe future development of Hong Kong, and the 

methodology can also provide the basis for small-scale global 

wildfires. Interested parties can develop their own database, repli- 

cate the training process, and apply the same methodology to 

their region of interest. 

 

2.1. Physics-Based Modelling and Input Parameters 

Despite multiple wildfires that occurred on Sunshine Is- 

land historically, there is limited information on these past fire 

cases. Thus, modelling the wildfire spread numerically is the
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Figure 4. Required input parameters of FARSITE in the modelling. 

 

only way to create a database. FARSITE (Finney 1998) is de- 

veloped and widely used by the U.S. Forest Service as an ef- 

fective tool for simulating the wildfire spread process and eval- 

uating the burning areas (Srivas et al., 2016). The software solves 

the wildfire-spread equation proposed by Rothermel and Albini 

(Rothermel, 1972; Albini, 1985), so it can predict the 2-D perime- 

ter of the burnt area, defined by the fastest local rate of fire 

spread and its direction. Therefore, this work uses numerical 

wildfire cases generated by FARSITE. It is worth noting that 

the numerical results have similar patterns as the real scenario 

wildfire data, as FARSITE is often used for planning prescribed 

burning and reconstructing the wildfire history for post-fire anal-

ysis (Wu et al., 2013; Benali et al., 2016, 2017). 

FARSITE is a semi-physical tool that assumes a constant 

wildfire spread rate within each cell, regardless of its size (5 × 

5 m2 or 2 × 2 km2). This approach becomes unrealistic when 

the cell size is very large, but the fire is relatively small. Al- 

though FARSITE's calculation speed (in the order of minutes 

and hours) is much faster than CFD-based simulation (in the 

order of days), it still cannot forecast fast-changing wildfires or 

support immediate decision-making by fire and forest services. 

Furthermore, during the simulation, FARSITE cannot incorpo- 

rate real-time input parameters, such as changing wind speed 

and direction. Therefore, a more flexible and faster AI-based 

wildfire forecasting method is needed to support real-time emer- 

gency response in complex fire behaviors and environmental 

changes. The models developed in this study provide a viable 

solution to these challenges and enable accurate wildfire fore-

casting, incorporating real-time input data from various sources, 

such as UAVs, to support effective decision-making by fire- 

fighting agencies. 

Running any wildfire simulation requires a significant num- 

ber of inputs related to topography, meteorological conditions, 

and burning parameters. For example, in the case of crown fires, 

the software requires five critical terrain parameters and three 

optional topography parameters, according to Finney (1998). 

These parameters define the landscape and fuel type, which do 

not change with time, weather, or ignition. Additionally, seven 

meteorological input parameters and one ignition parameter are 

needed to simulate the effect of weather, season, and ignition. 

The values of these parameters can be changed directly in the 

software before running the simulation. 

Figure 5. (a) Labels of 8 ignition points and (b) locations in 

elevation maps. 
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Figure 6. Preprocessing demonstration, (a) input preprocessing: a case of normalization and the lump in 12 parameters, and (b) 

output preprocessing: a case of extract time from the full case. 

 

For instance, Figure 4 lists the input parameters required 

for simulating wildfires on Sunshine Island. These inputs pro- 

vide a foundation for accurately modeling and forecasting wild- 

fire behavior, supporting effective decision-making by firefight- 

ing agencies. 

The land elevation data for this island was directly obtained 

from the Hong Kong government's open-source website. Sub-

sequently, ArcGIS 10.2 software was used to post-process this 

data, resulting in a 5-meter resolution image obtained through 

remote sensing techniques. The slope and aspect data were also 

derived from the elevation information using ArcGIS 10.2 with 

the exact pixel resolution. We considered local vegetation types 

to customize the fuel model and canopy cover, and an expanded 

standard NFFL fuel model (Scott and Burgan, 2005) was em-

ployed. In order to set meteorological inputs, average values 

during high fire-prone seasons were utilized. 

Once all parameters for a given case have been input, FAR- 

SITE can run the wildfire simulation and generate burnt area 

data at each time step. Depending on the simulation time, time 

step, input resolution, and computational abilities, a single case 

can take anywhere from several minutes to several hours to com- 

plete. In order to create a large database of wildfire scenarios 

for AI training, we varied three key parameters (ignition loca-

tion, wind speed, and wind direction) while keeping all other 

parameters constant. In the training dataset, each ignition point 

is associated with four different wind speed values and eight 

wind directions. Additional random parameters were selected 

for the testing dataset to test our AI models' feasibility and gen-

eralization ability. In total, 210 wildfire cases are simulated, as 

listed in Table 1. 

Figure 5 depicts the eight ignition locations randomly se- 

lected to cover the island's internal and border areas. These lo- 

cations were chosen to reflect the geographic features of the 

entire island and include varying elevations (as shown in Figure 

5b). Each case has one fixed ignition point, one fixed value of 

wind speed, and one fixed value of direction.  

To train and test our deep learning models, we divided the 

total number of wildfire cases into two separate datasets: 192 

for training and validation and 18 for blind testing. The sum of 

these two datasets results in a total of 210 full cases (as indi- 

cated in Table 1). Each case comprises 60 images of the burnt 

area obtained after preprocessing (as described in Section 2.2), 

with one image generated every 5 minutes during the entire 

300-minute (or 5-hour) duration of the simulated wildfire spread. 

These simulation results represent the burnt area where wild-

fires have spread over the course of 5 hours following ignition. 

The image resolution is 198 × 225 pixels, with each pixel cov-

ering an area of 5 × 5 square meters. This fine resolution allows 

for visualization of the wildfire spread at a time step of 5 minutes. 

Due to the finer pixel size compared to previous research, these 

data could not only be derived from GIS data but also obtained 

from on-site UAV images. 
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Figure 7. AI model structure in the paper, (a) U-Net structure and (b) ConvLSTM structure. 

2.2. Data Pre-Processing to Form the Database 

Two distinct steps are taken to preprocess input parame- 

ters and output simulation results. Firstly, input parameters are 

normalized to facilitate training (as shown in Figure 6a). This 

involves normalizing the values of all parameters within each 

pixel to range from 0 to 1. Additionally, Model A selects 12 

parameters (T1-5, M1, M2, M4, M6, M7, ignition location, and 

time) as the primary input data for later training. These param- 

eters are then combined into a single 12-band image for each 

time step of each case. Since M3 and M5 are default parameters 

during simulation, they are not included in the AI model input. 

During the entire simulation process, three meteorological in- 

puts (temperature, humidity, and cloud cover) remain unchanged. 

Therefore, these bands are pre-filled with a value of 0 in each 

pixel. In future work, we plan to consider the more complex me- 

teorological influences by examining the effect of season and 

climate on wildfires. Additionally, the ignition point is special-

ly handled using Gaussian distribution around the initial pixel, 

as suggested by (Tompson et al., 2014). This preprocessing step  

is crucial to ensure that the kernel (3 × 3) can effectively extract 

the feature map of ignition points during model training. Wild-

fire images depicting burning and spread over a duration of 5 

hours are generated from all 210 cases, where the white pixel 

(with a value of 1) represents the burnt area. However, the lack 

of any discernible pattern over time poses a challenge for sub-

sequent image processing. A separation algorithm has been pro- 

posed to extract the time data from the simulation results to ad-

dress this issue. Through this algorithm, all wildfire evolution 

images in each case can be divided into 60 images, each repre-

senting a time step of 5 minutes between 5 and 300 minutes (as 

shown in Figure 6b). 

Following preprocessing, a large database is established 

for AI model training, pairing input, and output data at every 

time step. The entire database comprises 12,600 (210 cases × 60 

images) 12-band input images as well as 12,600 wildfire evolu-

tion images. To facilitate deep learning training, all data (or im-

ages) are resized to 192 × 224 pixels, as the neural network re-

quires image resolution to be a multiple of eight to go through 
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4 times pooling. AI models will be trained using this database 

to achieve the desired forecasting objectives. 

2.3. A Dual-Model Deep Learning Method 

This section introduces the basic methodology and struc- 

ture of two proposed deep-learning models (Figure 7). These 

two models both share the same database but require different 

inputs in adaptation to different wildfire scenarios. 

The selection of deep learning models for a given task is 

contingent upon the characteristics and requirements of that task. 

For the purpose of prescribed burning planning, we choose the 

semantic segmentation algorithm to realize the wildfire fore-

cast, employing a binary representation scheme in which un-

burnt areas are denoted by 0 and burnt areas are represented by 

1. The U-Net algorithm, known for its efficacy in segmentation 

tasks, has been selected to achieve this objective. During actual 

wildfire scenarios, temporal and spatial data play a crucial role 

in predicting the spread of wildfires. Therefore, ConvLSTM, 

which combines the convolutional neural network (CNN) with 

long short-term memory (LSTM), is employed to forecast the 

propagation of wildfires. Incorporating LSTM algorithms with- 

in the ConvLSTM model enables it to capture long-range de-

pendencies of sequential data. This makes ConvLSTM particu-

larly suitable for modelling dynamic systems such as wildfire 

spread, where the evolution over time is highly correlated with 

the spatial location. 

 

2.3.1. Model A: Wildfire Hazard Assessment 

Model A is a U-Net model, one of the earliest algorithms 

for semantic segmentation using fully convolutional networks. 

The U-Net architecture utilizes a symmetric U-shaped structure 

consisting of compressed and extended paths (Ronneberger et 

al., 2015), from which it derived its name. The entire model 

structure of the U-Net used in this paper is depicted in Figure 

7a. This network is a classic fully convolutional network and 

does not require any fully connected operations. Convolutional 

layers are used to extract local features from small sub-regions 

within the images that contain geographic information. Subse- 

quently, information on these features can be fused into the 

subsequent processing stage to detect more advanced features, 

such as the probability of fire reflecting spreading trends. 

The compress path of Model A comprises five blocks, with 

the first four blocks utilizing two convolutional layers and one 

max pooling layer for down-sampling. The last two blocks have 

two dropout layers to prevent overfitting during model training. 

During the up-sampling process, each block adopts one up-

sampling layer and three convolutional layers, which are then 

concatenated with the down-sampling convolutions. 

Model A takes 12-band images (as shown in Figure 6a) as 

input, containing a dozen adjustable topographic and meteoro- 

logical parameters that can influence wildfire spread behaviors. 

The output of this model comprises corresponding wildfire evo- 

lution figures with a size of 192 × 224 pixels. In the training 

dataset, this model utilizes 11,520 samples of 12-band images 

(Input) and 11,520 wildfire evolution figures (Output) from the 

database. 

2.3.2. Model B: Data-Driven Wildfire Forecasting 

Model B is a ConvLSTM model that utilizes Long Short- 

Term Memory (LSTM) - a particular type of recurrent neural 

network (RNN) designed to address long-term dependency prob- 

lems. LSTMs were introduced by Hochreiter and Schmidhuber 

in 1997 (Hochreiter and Schmidhuber, 1997) and are capable 

of processing temporal one-dimensional data. However, when 

the temporal data consist of images, traditional LSTMs cannot 

handle them as they require a multi-dimensional tensor input. 

Therefore, adding convolutional operations to LSTM is more 

effective for feature extraction of images (Shi et al., 2015). In 

this study, Model B (Data-driven Wildfire Forecasting) adopts 

the ConvLSTM structure to train the models (as shown in Fig-

ure 7b). Each block consists of 2 ConvLSTM layers, one max 

pooling layer, and one dropout layer to prevent overfitting dur-

ing training. The three up-sampling blocks have two symmetry 

ConvLSTM layers similar to the down-sampling blocks. 

The input format for Model B differs from that of the U-

Net model. Here, five consecutive wildfire evolution figures with 

a time-step of 5 minutes (spanning a total duration of 25 min-

utes) are used to forecast the following wildfire evolution fig-

ure. Specifically, five figures with a size of 192 × 224 pixels serve 

as input, whereas one figure with the same size serves as out-

put. This model uses 11,520 wildfire evolution figures from the 

database in training. 

 

2.4. The Training Process of Two Deep Learning Models 

To summarize, the database used for training both models 

comprises 11,520 preprocessed 12-band images. Normalization 

of inputs dramatically reduces the computation cost of model 

training.  

The proposed U-Net framework contains convolutional, 

max-pooling, up-sampling, and dropout layers to avoid overfit- 

ting with a dropout value of 0.5. Binary cross-entropy and Adam 

serve as the loss function and optimizer. The dataset for training 

is divided into 32 batches, and the U-Net model is trained for 

200 epochs with a train-validation data ratio of 9 : 1. In total, 174 

cases are for training, 18 cases are for validation, and 18 blind 

cases are for testing. On the other hand, the ConvLSTM model 

does not require the normalization of input data types, and the 

input and output data types are identical., The dataset used for 

training has 10,560 samples and binary crossentropy, and Adam 

serves as the loss function and optimizer. These samples were 

divided into 20 batches, and the ConvLSTM model was trained 

for 100 epochs with a train-validation data ratio of 9 : 1. To de-

termine the optimal values of these hyperparameters, random 

search and manual adjustment methods are performed on a sub-

set of the dataset to evaluate the performance. Both models were 

trained on a server with 32 cores, 124 GB of physical memory, 

and a Tesla P100 GPU.  

Model A (Wildfire Hazard Assessment) can support im- 

plementation plans and decisions regarding prescribed burning, 

which requires precautions for safety reasons. Model B (Data- 

driven Wildfire Forecasting) can forecast future fire spread lo- 

cations based on real-time input from the current burning region 

in cases where wildfires are out of control. This model can aid  
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Figure 8. Loss values of two models: (a) loss and accuracy of U-Net structure, and (b) loss and accuracy of ConvLSTM structure. 

 

decision-making in firefighting, evacuation, and rescue opera-

tions. Both models can work independently to address different 

wildfire issues and situations based on the needs of the forest 

and fire services department. 

3. Results and Discussion 

3.1. Model Performance Evaluation 

The assessment of model performance is a critical aspect 

of deep learning applications. One popular method for evaluat- 

ing the effectiveness of models involves the use of loss func- 

tions. Loss functions allow us to quantify the degree of differ- 

ence between predicted outputs and actual values during the 

training phase. In this study, we employ binary cross-entropy 

as the loss function for both Model A (U-Net) and Model B (Con- 

vLSTM). Binary cross-entropy is a commonly used loss func-

tion for image segmentation tasks and is particularly effective 

when binary values represent the output. 

The loss function measures the distance between the pre- 

dicted probability and the accurate distribution, with lower val- 

ues indicating better model performance. By adopting binary 

cross-entropy as the loss function, we can evaluate the devia- 

tion between predicted 2-dimensional figures and simulated fig- 

ures during the training phase. This approach allows us to train 

the models to accurately predict the burnt and unburnt areas in 

wildfire evolution images, enabling them to provide accurate fore- 

casts for future fire spread locations. (Figure 8). 

Figure 8 illustrates the evolution of loss values with more 

training epochs for both models. In the U-Net model, the loss 

value experiences a significant decline during the initial 50 

epochs and minor variations while being trained. Eventually, 

both the training loss and validation loss stabilize at 0.0058 and 

0.0093, respectively, indicating that the training has achieved 

the desired effect. Similarly, in the ConvLSTM model, the loss 

decreases significantly in the first 20 epochs. Subsequently, the 

training loss and validation loss become steady and nearly iden- 

tical at 0.0023 and 0.0032, respectively. In both models, the ac- 

curacy value calculated by the model is over 99.0%. 

Nevertheless, the loss value provides a clearer indicator of 

the rationality of our training. The predicted results take the form 

of a "heatmap" (Spitzer et al., 2014), where each pixel repre-

sents the likelihood of wildfire spread between 0 to 1 after the 

sigmoid activation function. These trained models will be fur- 

ther validated with several case demonstrations in the follow-

ing section, using a pivotal metric to assess forecast results. 

 

3.2. Forecasting of Wildfire Spread in Model A (Wildfire 

Hazard Assessment) 

Table 1 summarizes the train data and test division for all 

cases. To demonstrate the feasibility of the trained models, a 

total of 18 full cases comprising 1,080 spread figures were used 

to evaluate model performance. Two selected cases (A1 and 

A2) are presented below and explained in more detail (refer to 

Videos S1 and S2 for a visual demonstration). In Case A1, the 

ignition point is set at point 1, the wind speed is 10 mph, and 

the wind direction is 0 degrees (south). Both the ignition point 

and wind direction variables exist in the training dataset. In 

contrast, Case A2 involves an entirely random selection of ig- 

nition point 7, a wind speed of 10 mph, and a wind direction of 

200 degrees (north by east). 

Case A1 (Ig1, wind speed = 10 mph, wind direction = 

south / 0°, and t = 0 ~ 300 min): In Case A1, the ignition point 

and wind direction have been used in the training dataset. There- 

fore, AI confronts a relatively simple case that aims to show 

whether Model A can detect changes in different wind speed 

values. Nine representative periods ranging from 0 min to 300 

min are demonstrated in the figures (as shown in Figure 9a). 

The overall trends in both simulated figures and forecasted re-

sults are similar. It is worth noting that the U-Net model has 

learned the burning border (the island border) throughout the 

process; hence the spread fits quite well near the island border.  

This proves that the deep learning model has grasped the spread 

pattern of the research area. 

However, there are still some differences in the spread near
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Figure 9. Forecasting results in Model A (Wildfire Hazard Assessment), (a) Case A1: Ig1, wind speed = 10 mph, wind direction = 

south, and t = 0 ~ 300 min (Videos S1), and (b) Case A2: Ig7, wind speed = 10 mph, wind direction = north by east 200°, t = 0 ~ 

300 min (Videos S2), where input is a 12-band image. 
 

the marginal island, where errors could be observed in both re-

sults. Regarding the figure of forecasted results at 300 min, even 

the middle section displays some light blue areas, which indi- 

cates that the model calculates a low possibility of it being burnt. 

Although some errors occur, the trained model performs well 

in Case A1 and shows a high tendency of successful forecasting. 
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Figure 10. Forecasting results in Model B (Data-driven Wildfire Forecasting), (a) Case B1: Ig1, wind speed = 4 mph, wind direction 

= southeast 315°, t = 30 ~ 300 min (Videos S3), and (b) Case B2: Ig8, wind speed = 4 mph, wind direction = north by east 200°, t 

= 30 ~ 300 min (Videos S4), where input is five past figures. 

 

Case A2 (Ig7, wind speed = 10 mph, wind direction = 

200°, t = 0 ~ 300 min): In this case (Case A2), all the parame- 

ters are new to the model, and nine different periods ranging 

from 0 min to 300 min are demonstrated (as shown in Figure 

9b). From 10 min to 40 min, both the forecasted and simulated 

figures display apparent variances, particularly near the wild- 
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fire head. The predicted results show a faster spread than the 

simulated ones. Although they become similar in the mid-term, 

after 200 min, there is a noticeable difference between the two, 

with the predicted burnt areas appearing to be larger than the 

simulated results. Additionally, there are still a few light blue 

regions where the AI model is uncertain whether the area will 

be burnt. 

In summary, while the forecasted wildfire evolution fig- 

ures in Case A2 did not perfectly correspond to the simulated 

results due to the average generalization ability of the deep 

learning model, the results were still considered good and ac- 

ceptable. This can be attributed primarily to the random sce- 

nario chosen for the demonstration, where the model failed to 

comprehensively understand the burning pattern close to the 

new ignition site, given varying wind speeds and directions. 

Nonetheless, it can be concluded that AI accurately predicted 

the overall trends in wildfire spread when presented with a 

completely arbitrary scenario using Model A (Wildfire Hazard 

Assessment). This underscores the potential of using AI models 

for wildfire hazard assessment and management, particularly in 

situations where there is limited information or a lack of histor- 

ical data. Further developments in AI and machine learning 

technologies may enhance these models' accuracy and general- 

ization ability, leading to even more effective wildfire manage- 

ment strategies in the future. 
 

3.3. Forecasting of Wildfire Spread in Model B (Data-

Driven Wildfire Forecasting) 

Model B (Data-driven Wildfire Forecasting) requires few-

er input parameters than Model A and mainly relies on data-

driven forecasting based on information collected by on-site 

UAVs. The model forecasts wildfire spread chiefly based on 

the previous development. In this ConvLSTM model, five con- 

secutive maps of wildfire evolution with a 5-min time step 

within a 25-min interval are used to forecast the wildfire spread 

in the next 5 min. Thus, an entire case includes 55 spread im- 

ages from 30 to 300 min. Two different fire situations are pre-

sented to demonstrate the differences between simulated and 

forecasted results in Model B (refer to Videos S3 and S4 for a 

visual demonstration). 

Case B1 (Ig1, wind speed = 4 mph, wind direction = 

southeast / 315°, t = 30 ~ 300 min): In Case B1, the training 

dataset contained both wind direction and ignition point infor- 

mation. This case aimed to evaluate whether Model B (Data-

driven Wildfire Forecasting) could accurately capture changes 

brought on by different wind speed values. Figure 10a displays 

nine intervals in Case B1, ranging from 30 to 300 minutes. Ac- 

cording to the forecast, no burnt area is larger than the border, 

and Model B also exhibits a solid understanding of the island 

border. Additionally, it demonstrates good fitting results, as the 

fire perimeters in the two periods are relatively similar. 

One minor deviation observed at the early stage of wildfire 

spread for Model B is that it has a slightly lower rate of spread 

than the simulated outcomes. This can be partially attributed to 

the 3 × 3 kernel size of the model, which extracts fewer features 

when the burnt areas are small. Therefore, the model cannot 

accurately forecast when the burnt area is too tiny immediately 

after ignition. Nevertheless, the overall forecast quality is very 

high. 

Case B2 (Ig8, wind speed = 4 mph, wind direction = 

200°, t = 30 ~ 300 min): In Case B2, random parameters were 

selected to test the generalization ability of Model B. As shown 

in Figure 10b, nine selected intervals were demonstrated, and 

despite the increased number of variables, the forecasting ac- 

curacy remained stable. Few differences were observed be- 

tween simulated and forecasted results, and the rate of wildfire 

spread fit well with the test data. Each outcome presented many 

details near the wildfire head, and although there were slight 

disparities in the prediction, Case B2 demonstrated that Model 

B performed well in random scenarios. 

Compared to Model A (Wildfire Hazard Assessment), Mod- 

el B (Data-driven Wildfire Forecasting) exhibited better fitting 

and generalization abilities due to its data-driven input. There-

fore, achieving highly accurate forecasted results and calibrat-

ing the results from Model A during the implementation period 

is feasible. The success of Model B highlights the importance 

of data-driven approaches in wildfire forecasting, which can 

help improve the accuracy and efficiency of wildfire manage-

ment strategies. These approaches enable real-time tracking of 

fire evolution, emphasizing using UAV data, thereby providing 

a more accurate and comprehensive understanding of the fire 

dynamics. 

 

3.4. Performance of Forecasted Results 

Two models were proposed to address varying wildfire 

scenarios in different situations. To assess the accuracy of the  

Figure 11. Evaluation of four cases, (a) two cases in Model A 

(Wildfire Hazard Assessment) and (b) two cases in Model B 

(Data-driven Wildfire Forecasting). 
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forecasted results compared to the simulated results, the Inter- 

section over Union (IoU) metric was utilized. The IoU metric 

calculates the IoU scores of two figures at a specific burning 

time by dividing their intersection areas by their union areas 

(Zhou et al., 2019). This quantitative metric provides an objec- 

tive measure for evaluating the differences between deep learn- 

ing forecasts and direct simulations. 

The use of the IoU metric represents a significant advance- 

ment in wildfire forecasting as it enables the accurate evalua- 

tion of the AI models' performance. By comparing the IoU scores 

of the forecasted and actual results, any discrepancies can be 

identified, which can then be used to refine and improve the 

models. This approach not only provides objective and quantita-

tive measures for evaluating model performance but also helps 

to enhance the accuracy and efficiency of wildfire management 

strategies. Overall, the utilization of the IoU matrix is a valuable 

tool in assessing the accuracy of deep learning models in pre-

dicting the spread of wildfires (Figure 11). 

Figure 11a displays the IoU values for two examples of 

Model A (Wildfire Hazard Assessment). The overall perfor- 

mance of the model is satisfying, with most values over 0.8 in- 

dicating that the spread trends are well forecasted. However, 

for the first six figures (before 30 minutes), the forecasted re- 

sults have a low IoU value. This can be attributed to the kernel 

size of U-Net being 3 × 3, while the burning areas in the first 

30 minutes may not extend to over 30 pixels. Consequently, the 

model cannot learn the spread features effectively when burnt 

area pixels are few, resulting in mapped wildfire evolution fig- 

ures with high errors when the burnt areas are small. 

On the other hand, Figure 11b shows the IoU values for 

two cases of Model B (Data-driven Wildfire Forecasting). The 

performance of the ConvLSTM model is remarkable, maintain- 

ing high IoU values throughout all 55 outcomes. In summary, 

the forecasted results of Model B (Data-driven Wildfire Fore- 

casting) are very close to the simulated results compared to 

Model A (Wildfire Hazard Assessment). Using a data-driven 

approach and incorporating UAV-collected data have signifi- 

cantly improved the accuracy and generalization ability of the 

model, leading to more effective wildfire forecasting and man- 

agement strategies. 

 

3.5. Application and Future Work 

The proposed dual-model deep learning method and re- 

lated algorithms enable the forecasting of wildfire development 

based on various inputs. The forecasted wildfire scenarios can 

assist in planning prescribed burns, integrating real-time wild- 

fire images obtained from UAVs to correct predictions, and pro- 

viding critical information to fire services in the field, as illus-

trated in Figure 12. 

Specifically, Model A (Wildfire Hazard Assessment) can 

be utilized for planning prescribed burning and predicting fire 

hazards under different ignition points, burning durations, and 

environmental conditions. The fast AI forecasting enables the 

exploration of many more prescribed burning scenarios to im- 

prove burning efficiency and avoid unintended wildfires. In con- 

trast, Model B (Data-driven Wildfire Forecasting) can provide 

short-term wildfire spread forecasts, which can be improved by 

real-time wildfire images captured by UAVs. 

It should be noted that these two AI models can be com- 

bined in practice for wildland fire management. For example, 

if extreme weather events occur, Model A could replace Model 

B as it performs better in cases of sudden data changes. On the 

other hand, Model B is more effective in wildfire spread fore- 

casting when stable weather conditions persist. Such a dual- 

model forecast approach addresses the shortcomings of single- 

model methods without self-calibration and provides super real- 

time outcomes in just several seconds. Regarding the method-

ology itself, we assume there is no data uncertainty and poten-

tial error in the data input for our proposed AI models. Also, a 

huge amount of data with a high confidence level of reliability 

have been fed to models to eliminate the model epistemic un-

certainty. 

To facilitate the application of this approach, user-friendly 

software or even mobile applications based on our proposed AI 

model must be developed for firefighters. This software should 

combine two forecast functions - wildfire risk assessment and 

real-time wildfire response - automatically switching between 

functions based on user needs. It should also realize data fusion 

of all input information, such as users' drawings and images 

from UAVs and airplanes, to achieve the most accurate forecast 

without sacrificing speed. 

However, multiple technical challenges are involved in 

developing this software, including fast and reliable data com- 

munication, edge cloud computing, image recognition of fire 

and burnt areas, and converting user needs into software func- 

tions. Given the dynamic nature of wildfires and potential data 

gaps, actual data will likely fluctuate widely. As such, we aim 

to enhance the stability of data collection and improve metric 

accuracy to minimize subjective influences. We intend to delve 

into the aforementioned solutions in our upcoming paper on 

software development based on our methodology. 

4. Conclusions 

This paper first introduced the development of wildfire 

evolution modelling and then reviewed emphatically the AI-

based model in wildfire modelling and forecast. Our attention 

was drawn to the existing problem of forecasting the wildland 

fire spread relying on low-resolution satellite data and large time 

steps. Thus, a dual-model AI method was proposed to achieve 

a super real-time forecast of the 2-dimensional wildfire spread 

with 5-m resolution sizes and 5-min time steps. Through train- 

ing, the two deep learning models developed in this study per-

formed well in wildfire forecasting, catering to different fire-

fighting needs. Model A (Wildfire Hazard Assessment) fore- 

casted wildfire evolution with a 5-minute time step in 5 hours, 

while Model B (Data-driven Wildfire Forecasting) calibrated 

the forecast based on data-driven input. The novel contribution 

is to leverage two models which can work in tandem and be uti-

lized at various stages of wildfire management. 

In contrast to conventional simulation-based techniques 
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Figure 12. Future application proposal. 

 

predominantly employed in post-incident analysis of wildfires, 

our approach showcases a remarkable speed enhancement of 

102 ~ 104 times in wildfire modeling and enables real-time fore-

casting. The entire methodology outlined in this study provides 

a new framework for managing small-scale wildland fires glob- 

ally. More complex factors, such as actual wind distributions 

and broader research regions, will be added to the database in 

the future. Furthermore, user-friendly software for firefighting 

should be developed, based on the proposed deep learning 

models, to facilitate the usage by fire and forest services. 
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